
Journal of Computer Science 9 (1): 1-15, 2013 

ISSN 1549-3636  

© 2013 Raja and Sadasivam, This open access article is distributed under a Creative Commons Attribution  

(CC-BY) 3.0 license 

doi:10.3844/jcssp.2013.1.15 Published Online 9 (1) 2013 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Madasamy Raja, G., Department of Computer Science and Engineering, MET Engineering College, 

Chenbagaramanputhoor, Tamilnadu-629304, India 

 

1 Science Publications

 
JCS 

Optimized Local Ternary 

Patterns: A New Texture Model with 

Set of Optimal Patterns for Texture Analysis 

1
Madasamy Raja, G. and 

2
V. Sadasivam 

 
1Department of Computer Science and Engineering, 

 MET Engineering College, Chenbagaramanputhoor, Tamilnadu-629304, India 
2Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu-627012, India 

 
Received 2012-08-30, Revised 2012-12-10; Accepted 2013-01-22 

ABSTRACT 

Texture analysis is one of the important as well as useful tasks in image processing applications. Many texture 
models have been developed over the past few years and Local Binary Patterns (LBP) is one of the simple and 
efficient approach among them. A number of extensions to the LBP method have been also presented but the 
problem remains challenging in feature vector generation and comparison. As textures are oriented and scaled 
differently, a texture model should effectively handle grey-scale variation, rotation variation, illumination 
variation and noise. The length of the feature vector in a texture model also plays an important role in deciding 
the time complexity of the texture analysis. This study proposes a new texture model, called Optimized Local 
Ternary Patterns (OLTP) in the spatial methods of texture analysis. The proposed texture model is based on Local 
Ternary Patterns (LTP), which in turn is based on LBP. A new concept called “Level of Optimality” to select the 
optimal set of patterns is discussed in this study. This proposed texture model uses only optimal patterns to extract 
the textural information from the digital images and thereby reducing the length of the feature vector. This 
proposed model is robust to image rotation, grey-scale transformation, histogram equalization and noise. The 
results are compared with other widely used texture models by applying classification tests to variety of texture 
images from the standard Brodatz texture database. Experimental results prove that the proposed texture model is 
robust to grey-scale variation, image rotation, histogram equalization and noise. Experimental results also show 
that the proposed texture model improves the classification accuracy and the speed of the classification process. 
In all tested tasks, the proposed method outperforms the earlier methods.  
 
Keywords: G-Statistic Similarity Measurement, Level of Optimality, Local Binary Patterns (LBP), Local 

Ternary Patterns (LTP), Texture Classification, Transition Length  

1. INTRODUCTION 

Image analysis is a process that extracts useful 
information from the digital images. Image 
segmentation, image classification, image 
correspondence, image compression are some 
examples for image analysis. Feature extraction is an 
important step in almost every image analysis tasks. 
Feature extraction is a sub-process in image analysis 
that extracts some important features like color, 
texture and shape from a digital image. Among many 

features, texture plays a vital role in many image 
analyses, due to following reasons: 
 
• It contains more information compared to other 

features  

• It is an inherent and easy to recognize property of all 

surfaces  

• Majority of the natural surfaces exhibit texture 
 

Textures are characterized by spatial distributions of 
image pixel values in a local neighborhood region. 
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Though there is no unique definition of texture because of 
its wide variability, somehow it can be defined as a 
structure composed of a large number of more or less 
ordered similar elements or patterns. As textures are having 
different dimensions, single method of texture model is not 
adequate for a variety of textures. Image analysis that is 
based on texture feature is known as texture analysis. 
Texture analysis is a process of extracting information from 
the texture images, which characterizes the spatial 
variations within the image by using mathematical 
procedures and models. Texture analysis generally falls into 
four general categories and they are statistical methods, 
geometrical methods, model-based methods and signal 
processing methods (Tuceryan and Jain, 1999).  

1.1. Literature Review and Related Work  

In the digital images, the spatial distributions of grey 
values decide the textural features and hence, statistical 
methods analyze the spatial distribution of pixel values in 
the digital image. Based on the number of pixels defining 
the local feature, statistical methods can be classified into 
first-order statistical methods, second-order statistical 
methods and higher-order statistical methods (Ojala and 
Pietikyinen, 2004). A large number of statistical texture 
approaches have been proposed, ranging from first 
order statistics to higher order statistics. As first order 
statistical methods cannot model the texture perfectly, 
higher order statistics are widely used for texture 
analysis (Moasheri and Azadinia, 2011). Grey level co-
occurrence matrices (Haralick et al., 1973), grey level 
differences (Weszka et al., 1976) and Local Binary Patterns 
(Ojala et al., 1996) are some of the popular second-order 
statistical texture methods for texture analysis. Galloway 
(1975) and after some years Tsatsanis and Giannakis (1992) 
have proved that at the cost of computational complexity, 
higher than second-order statistical methods could also be 
used for statistical texture analysis.  

Geometrical methods are based on the concept that 
texture could be considered as a spatial organization of 
texture primitives. Fu (1982) proposed an idea in which 
the texture image is viewed as texture primitives, which 
are arranged according to a placement rule and texture 
analysis is a process of identifying those primitives or the 
placement rule. Matsuyama et al. (1983) used Fourier 
spectrum of a texture image to detect texture periodicity 
for the texture analysis. Liu et al. (2005) examined the 
structures of texture patterns in terms of their translation 
symmetries for the texture analysis. 

In model-based methods, mathematical models are 
used to represent the textures in an image such as fractals 
(Xia et al., 2006), random field models (Zhu et al., 1998) 
and so on. Signal processing methods consider the 
frequency domain of the digital images for the texture 

feature extraction. Coggins and Jain (1985) tested 
multichannel filtering approach using frequency and 
orientation  selective  filters  for  the  texture  analysis. 
Under signal processing methods, usage of Gabor filters 
(Daugman, 1980) and pyramids (Heeger and Bergen, 1995) 
have also been successfully investigated.  

1.2. Local Binary Patterns (LBP) 

The texture model Local Binary Patterns was first 
developed by Ojala et al. (1996). For a 3×3 
neighborhood around a centre pixel in an image, the LBP 
operator is defined as Equation 1:  
 

8
n

8 n c

n 1

LBP 2 s(i i )

1if u 0
ands(u)

0otherwise

=

= −

≥
= 


∑
 (1) 

 
where, n is the number of pixels in the considered 
neighborhood, ic is the pixel value of center pixel c and in 
are the pixel values of n. This LBP operator considers a 
local neighborhood with a certain radius around every pixel 
in the image and all the neighboring pixels are encoded by 
thresholding against the centre pixel of the neighborhood by 
using the piecewise function s(u). Then all the encoded 
neighboring labels are concatenated to form a binary pattern 
string and finally the histogram of all these binary pattern 
strings is used as the texture descriptor.  

 Ojala et al. (2002) extended their earlier work in the 
name of Uniform Local Binary Patterns (ULBP) by 
introducing a new concept called “Uniform patterns”. 
By considering the uniform patterns, total number of 
patterns in LBP is reduced from 256 to 58 and it is 
observed that in a texture image, for a 3×3 
neighborhood, nearly 90% of encoded labels are 
uniform patterns only.  

 Even after ten years of its introduction, still there have 
been various extensions and modifications from the original 
LBP operator, because it is computationally simple and 
very robust in terms of rotational and gray-scale variations. 
Some recent developments in medical imaging (Liu et al., 
2011), moving object detection (Trefny and Matas, 2010) 
and facial expression recognition (Ahmed et al., 2011) 
prove that the LBP texture model is still receiving a lot of 
attention. However LBP texture model is considered to be 
sensitive to noise especially in uniform regions (Rodriguez 
and Marcel, 2006). Moreover, it supports only a binary 
level comparison for encoding and thereby it is inadequate 
to represent the local texture information in more detail.  

1.3. Local Ternary Patterns (LTP)  

As LBP may be sensitive to noise, a 3-valued pattern 
instead of a binary pattern was introduced by Tan and 
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Triggs (2010). When a 3×3 neighborhood around a 
centre pixel in an image is considered, the LTP operator 
takes the form Equation 2: 
 

-1    if  u   i ,
c8

ns(i i ) and s(u ) 0    if   i t u  i t3LT P 8 n c c c
n 1

1    if   u  i t,
c

t ≤ −
= − = − < < +∑ 
=

≥ +

 (2) 

 
where, t is a user-defined threshold, n is the number of 
neighboring pixels surrounding the center pixel c, ic is the 
pixel value of c and in are the pixel values of n. In LTP, 
pattern strings are formed with three values (-1, 0, 1) 
according to a predefined and fixed threshold t, the length 
of the pattern histogram is very high (3

8
). To reduce the 

dimension of the pattern histogram, the ternary pattern is 
converted into binary pattern, by splitting it into its 
positive and negative parts. Two separate histograms for 
both positive and negative components are calculated and 
then the results are concatenated.  

A three valued LBP was also proposed to resist the 
noise with the help of fuzzy logic and a soft histogram 
(Ahonen and Pietikainen, 2007). Another three valued 
LBP version in the name of Local Texture Patterns was 
also introduced (Suruliandi and Ramar, 2008), in which 
all the three-valued patterns are considered as it is and 
there is no splitting of the patterns for the purpose of 
dimensionality reduction of the pattern spectrum. In 
Local Texture Patterns method, patterns with a 
maximum of three spatial transitions are considered as 
uniform patterns and the dimension of the pattern 
spectrum was 46. The same Local Texture Patterns 
method was modified in the name of Ternary Pattern 
Operator by reducing the uniformity measure to two 
transitions, with the pattern spectrum dimension of 24 
(Suguna and Anandhakumar, 2010). Both Local Texture 
Patterns and Ternary Pattern Operator methods were 
successfully tested for texture classification.  

Nanni et al. (2010) classified the pain states from 
facial expressions, by using extensions of LTP, namely 
Elongated Ternary Patterns (ELTP) and Improved Local 
Ternary Patterns (ILTP). In another extension, the 
combination of LTP with Histograms of Gradients 
(HOG) was successfully tested for object detection 
(Hussain and Triggs, 2010). The noise resistivity of 
Local Ternary Patterns has been again successfully 
proved in the form of Extended Local Ternary 
Patterns by Liao (2010). Center-symmetric Local 
Ternary Patterns, another novel texture feature based 
on LTP, was also presented for pedestrian detection 
(Zheng et al., 2011). The major advantage of LTP is it is 
resistant to noise but at the same time the major 
disadvantage of LTP and its modifications is that they are 
not invariant under grey-scale transform of intensity 
values as its encoding is based on a fixed predefined 
thresholding. Hence the objective of this research is to 

propose a new texture model as an extension of LTP, which 
takes the advantages of both LBP and LTP, to accomplish a 
better tolerance against grey-scale variation, histogram 
equalization, image rotation and noise, while at the same 
time optimizing the length of the patterns histogram. 

2. MATERIALS AND METHODS 

2.1. Encoding Method of the Proposed Texture 

Model  

In this study, a theoretically and computationally simple 
but efficient new texture model called Optimized Local 
Ternary Patterns (OLTP) is proposed. The proposed texture 
model OLTP uses only limited number of uniform patterns 
namely optimal patterns and thereby maintains the length of 
the pattern histogram as optimum.  

This new texture model considers a 3×3 local 
neighborhood region in a digital image for texture 
feature extraction. Let ic, i1, i2, …,i8 be the pixel values 
of a local 3×3 neighborhood region where ic is the value 
of the central pixel and i1, i2, …,i8 are the pixel values of 
its 8 neighbors. In this proposed texture model, the 
pattern string value for the local 3×3 neighborhood 
region is defined as Equation 3:  
 

n c

c n c n c

n c

0 if i (1 )i

P(i ,i ) 1 if (1 )i i (1 )i

5 if i (1 )i

 < − σ


= − σ ≤ ≤ + σ
 > + σ

 (3) 

 

where, σ is a small scaling factor and it is assigned as 
0.05. Figure 1 shows how the pattern value for a 3×3 
local neighborhood is calculated using Equation 3. 
Figure 1a represents a sample 3×3 local neighborhood 
which is to be encoded into pattern matrix by using 
Equation 3 and Fig. 1b contains the corresponding 
encoded pattern matrix. The pattern string for the 
selected 3×3 neighborhood region is given in Fig. 1c 
which is obtained from Fig. 1b by concatenating the 
encoded values in the pattern matrix.  

For a 3×3 local neighborhood region, the total 
number of different pattern strings will be 6561(3

8
). In 

other words, Equation. 3 will deliver any one pattern 
string from a set of 6561 different pattern strings for a 
3×3 local neighborhood region. So, a complete texture 
image can be described by a pattern histogram of 6561 
bins that represents the occurrence frequency of pattern 
strings over the texture image. Among these 6561 
different pattern strings, it is observed that only few 
pattern strings are frequently occurring patterns and all 
other pattern strings are very rarely occurring in a small 
local neighborhood of a texture image. So keeping 
separate bins for the rarely occurring pattern strings is a 
futile exercise which may result in wastage of memory 
as well as wastage of time.  
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(a) (b) (c) 

 
Fig. 1. Method for encoding the Patterns in OLTP texture 

model (a) 3×3 local region, (b) pattern matrix, (c) 

pattern string  
 

 
 
Fig. 2. A logical view of calculating Transition Length (ρ) 

among the sub patterns in the uniform pattern strings 
 

Further, the analysis of these frequently occurring pattern 
strings found that all these pattern strings have uniform 
circular structure and they are rotation invariant. To 
identify these frequently occurring pattern strings which 
are rotation invariant, let us consider, a uniformity 
measure ‘U’ which corresponds to the number of spatial 
transitions circularly among the sub patterns in the pattern 
strings. The uniformity measure ‘U’ is defined as 
Equation 4: 
 



 >

=

+= ∑
=

otherwise    0

0  |B-A| if     1
B)F(A,     where

))i,P(i),i,F(P(i))i,P(i),i,F(P(iU
8

2

1-ncnc8c1c

n  (4) 

 
 For example, the pattern string 55555555 has U 
value of 0, the pattern string 55555511 has U value of 2 
and the pattern string 11105551 has U value of 3. As it is 
already observed that frequently occurring pattern strings 
are having only few spatial transitions among the sub 
patterns, this research puts a constraint on the pattern 
strings to contain a maximum of 3 spatial transitions 
(U≤3). Those frequently occurring pattern strings which 
satisfy the condition of U≤3 are termed as uniform 
pattern strings and they are rotational invariant too. For 
U = 0, there are 3 uniform pattern strings and there is no 
uniform pattern string exist with U = 1. For U = 2, there 
are 21 uniform pattern strings and for U = 3, another 21 
uniform pattern strings are available. In total there are 45 
uniform pattern strings available, when U≤3 is considered 

as a constraint for the uniformity measure. All these 45 
uniform pattern strings are having a maximum of 3 
transitions (“0<->1” or “1<->5” or “0<->5”) between the 
successive encoded values (sub patterns).  

2.2. Transition Length (ρ) of the sub patterns  

Before going into the details of Level of Optimality 
(Lopt), it is necessary to introduce a concept called 
transition length (ρ) of successive encoded values (sub 
patterns) in the uniform pattern strings. Figure 2 
illustrates the basic idea behind the calculation of transition 
length (ρ) among the sub patterns in the uniform pattern 
strings. In Fig. 2, ic represents the value of the centre pixel 
in a 3×3 local neighborhood region, for which the uniform 
pattern string is encoded. Minimum level region represents 
those sampling points around the centre pixel (ic) which are 
encoded as 0, because they fall below to the minimum 
threshold (ic*(1-σ)). Maximum level region represents those 
sampling points around the centre pixel (ic) which are 
encoded as 5, because they fall above to the maximum 
threshold (ic*(1+σ)). Middle region represents the 
surrounding pixels of a local 3×3 neighborhood, which are 
encoded as 1, because they fall between the minimum and 
maximum threshold regions.  

In the uniform pattern strings, when a spatial 
transition occurs between the neighboring regions, then 
the length of that transition is considered as 1. For 
example, the sub pattern ‘01’in the uniform pattern string 
represents a spatial transition between minimum level 
region and middle level region. The sub pattern ‘15’ of 
uniform pattern strings represents a spatial transition 
between the middle level region and maximum level 
region. In both these cases, the transition length is 
considered as 1 since the spatial transitions occur between 
the neighboring regions. When there is a spatial transition 
between the extreme regions, then the transition length is 
considered as 2. For example, the sub pattern ‘05’ in the 
uniform pattern string represents a spatial transition 
between minimum level region and maximum level region 
for which the transition length is assigned as 2. Further, 
those patterns which are having two consecutive transitions 
among the sub patterns, transition lengths are assigned 
according to the flow direction of the spatial transitions. 
Table 1 contains the transition lengths of various sub 
patterns that are available in the uniform pattern strings.  

2.3. Level of Optimality (Lopt)  

This research introduces a new concept called “Level 
of Optimality” to check, whether a particular uniform 
pattern string can be included into the optimal uniform 
pattern set or not. Thus the concept “Level of 
Optimality” is acting as a tool to filter out the sub-
optimal uniform pattern strings which are seldom active 
in the process of texture feature extraction.  
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 (a)                       (b)                       (c)  (d)  

(a) 
 

 
(e) 

 

 
(f) 

 

 
(g) 

 
(h) 

 

Fig. 3.  Selected Images and their corresponding pattern spectrum 

obtained through OLTP texture model (a) Images: A-

French canvas, B-Brick, C-Water, D-Wood grain 
 
Table 1. Shows the details of the Transition Length (ρ) for the 

sub patterns of uniform pattern strings 

Transition length  
---------------------------------------------------------------------------- 
Sub pattern type  Transition length (ρ)  

‘01’  1  
‘10’  1  
‘15’  1  
‘51’  1  
‘05’  2  
‘50’  2  
‘015’  1  
‘510’  1  
‘105’  2  
‘150’  2  
‘051’  2  
‘501’  2 
 
Table 2. Shows some pattern strings used in the proposed 

texture model with their details 

Details of pattern strings  
---------------------------------------------------------------------------- 
  Level of Uniform Optimal 
Pattern string ‘U’value optimality pattern pattern 
00000000  0  2  Yes  Yes  
00000555  2  2  Yes  Yes  
00000005  2  1  Yes  No  
01010101  8  5  No  No  
00000150  3  1  Yes  No  
00001550  3  2  Yes  Yes 
 

Obviously this concept “Level of Optimality” is also 
useful in reducing the dimension of the pattern histogram 
which is a deciding factor in the execution time of almost 
all texture analysis.  
 The elements of the uniform pattern strings are 
either 0 or 1 or 5 or any combinations of these values. If 
the number of occurrences (cardinality) of 0, 1 and 5 are 
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represented by card (0), card (1) and card (5) 
respectively, then the level of optimality for a particular 
uniform pattern string can be computed as Equation 5: 
 

opt

1 min{card(0),card(1),card (5)}
L

max ( )

+
=

ρ
 (5) 

 
where, card (0), card(1) and card(5) ≠ 0 and ρ refers to the 

transition length among the sub patterns in the uniform 

pattern strings. For the patterns strings, which are not 

having any spatial transitions among the sub patterns, 

transition length cannot be calculated and obviously the 

level of optimality for these kinds of patterns also cannot be 

decided. Hence, those patterns strings with no spatial 

transitions are assigned with optimality level 2 by default so 

that they are considered as optimal patterns.  

2.4. Description of an Optimal Pattern  

A uniform pattern is said to be an optimal pattern, if 

it satisfies the following criteria:  

• The pattern string must not contain more than 3 
transitions between the successive encoded values 
(sub patterns) in the pattern string  

• The level of optimality must be greater than or equal to 2  

2.5. Optimized Local Ternary Patterns (OLTP)  

The following texture model, Optimized Local Ternary 
Patterns (OLTP) which is rotational invariant, gray-scale 
invariant, image histogram equalization invariant and noise 
resistant is proposed. OLTP operator uses only optimal set 
of patterns for describing a local image texture Equation 6: 
 

8

c n opt

i 1

p(i ,i ) if U 3and L 2
OLTP

25 otherwise

=


≤ ≥
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


∑
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This newly proposed texture model, OLTP uses a total 

number of 24 unique optimal patterns for texture 
representation. All other patterns are termed as “sub-
optimal” patterns and grouped under one label 25. 
Therefore the dimension of pattern spectrum has been 
reduced from 6561 to 25, that too with optimal set of 
patterns. Among these 24 unique optimal patterns, 17 
patterns are having a maximum of 2 transitions in their sub 
patterns (U = 2), 3 patterns are having U = 0 and there are 4 
patterns with U = 3. Table 2 shows some of the pattern 
strings with relevant details of their uniformity, level of 
optimality(Lopt)  and whether they are optimal patterns or 
not. Figure 3a shows some selected texture images from 
Brodatz album (Brodatz, 1966) and Figure 3b shows their 
corresponding pattern spectrum of the optimal patterns 
obtained through proposed OLTP texture model.  

2.6. Experimental Setup  

In this study, pattern spectrum of the optimal patterns is 
used as a tool for checking the similarity between sample 
and model textures. The non-parametric similarity measure 
G-statistic (Sokal and Rohlf, 2009) is used in the 
classification algorithm to test the similarity between two 
different pattern spectrums. This similarity measure G-statistic 

is also known as log-likelihood ratio which is computed as 
Equation 7: 
 

i i

n n n
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s , m i 1 s , m i 1 i 1

n

i i

i 1 s , m s , m

n n

i i
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∑ ∑ ∑ ∑

 (7) 

 
where, s is the pattern histogram of the optimal patterns 

of the test sample and m is the pattern histogram of the 

optimal patterns of the model sample, n is the total number 

of optimal patterns in the OLTP texture model and fi is the 

frequency of a particular optimal pattern i. In classification, 

a particular test sample is classified to the model sample to 

which it is having a high probability of belonging to the 

same population. This probability is measured by the value 

of similarity measure G-statistic. Lower the values of the 

similarity measure, higher the possibilities that both model 

and test sample images are likely to have come from the 

same population. If the value of G-statistic is high, it means 

that pattern histograms of model sample and test sample are 

variable and they are not same. This proposed method uses 

the K-nearest neighbor classification algorithm for texture 

classification experiments.  

3. RESULTS 

3.1. Statistics of Distribution of Optimal Patterns 

in OLTP  

For the study of the statistics of distribution of 

optimal patterns in the texture images, some widely 

used texture images are chosen from the standard 

Brodatz texture database. For all these selected texture 

images, the distribution of the 24 numbers of optimal 

patterns of the proposed OLTP texture model and the 

distribution of 45 numbers of uniform patterns of LTP 

texture model are calculated and listed in Table 3. By 

comparing the values in Table 3, it is observed that 

there is only marginal difference exists between the 

distribution of the optimal patterns of OLTP and 

uniform patterns of LTP even when the number of 
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patterns has been reduced to almost half in quantity in 

the proposed texture model OLTP compared to LTP. In 

the practical applications, this marginal difference in 

the distribution of patterns becomes negligible which is 

going to be proved in the following experiments.  

3.2. Texture Classification Using Proposed 

Model OLTP  

This research uses texture classification process to 

check the validity of the proposed texture model 

(OLTP). For all the experiments, both model samples as 

well as test samples are extracted from the selected 

texture images in various sizes.  

3.3. Experiment #1:  

The Brodatz texture images shown in Fig. 3a of size 

640×640 were taken for this experiment. Each individual 

texture image is considered as a model sample and 

there are 4 model samples in total. The selected 

texture images are resized into 256×256 and 65536 

test samples were extracted in three different sizes. 

Each test sample is compared against the model 

samples using Equation 7 and the test sample is 

classified to the nearest neighbor model sample for 

which it has a minimum distance (G-Statistics value). 

The classification is performed for test samples of size 

of 10×10, 20×20 and 30×30. Table 4 shows the 

classification performance of the proposed texture 

model and from the table, it is observed that the 

classification results are excellent with high 

classification accuracy. Another observation from the 

classification results is that the classification accuracy 

increases as the sample size increases.  

With the size of 15×15, 500 test samples were again 

extracted from each texture class of the images of Fig. 

3a for the comparative analysis of the classification 

accuracy of the proposed texture model OLTP. In this 

sub experiment, for four different texture classes there 

were 2000 test samples in total. Already existing texture 

models Texture Spectrum (TS) and LBP are considered 

along with the proposed texture model for this 

comparative study. The result of the comparison is given 

in the form of a chart in Fig. 4. In the case of TS texture 

model, 89.29 percent average classification accuracy is 

achieved. Though TS model is considered as a good 

texture model, it uses very large number of bins in the 

pattern histogram (6561) and took more execution time. 

The LBP model gave an average classification accuracy 

of 83.9 percent. Even though LBP texture model gave 

moderate results, the advantage of this model is, it uses 

only 10 bins in the pattern histogram with lower 

computational complexity. Among the three texture 

models under consideration, the proposed OLTP texture 

model delivers superior performance with the average 

classification accuracy of 98.7 percent.  

3.4. Experiment #2:  

Experiment #2 has been carried out to study the rotation 

invariance property of the proposed OLTP approach. 

Four different texture image classes at 6 different 

rotation angles (0°, 30°, 60°, 90°, 120° and 150°) are 

chosen from the Brodatz album for this study. Hence, 

there are 6 images in each texture class and totally 24 

different texture images are considered,which are 

displayed in Fig. 5.

 

 
 

Fig. 4. Comparative analysis of the classification accuracy of various texture models 
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 (a1) (b1) (c1) (d1) 

 

 
 (a2) (b2) (c2) (d2) 
 

 
 (a3) (b3) (c3) (d3) 
 

 
 (a4) (b4) (c4) (d4) 
 

 
 (a5) (b5) (c5) (d5) 
 

 
 (a6) (b6) (c6) (d6) 
 
Fig. 5. Sample images used in Experiment #2 with their rotation angles mentioned with in parenthesis (a1) Brick(00), (a2) 

Brick(300), (a3) Brick(600), (a4) Brick(900), (a5) Brick(1200), (a6) Brick(1500), (b1) Bubbles(00), (b2) Bubbles(300), (b3) 

Bubbles(600), (b4) Bubbles(900), (b5) Bubbles(1200), (b6) Bubbles(1500),  (c1) Leather(00), (c2) Leather(300), (c3) 

Leather(600),  (c4) Leather(900), (c5) Leather(1200), (c6) Leather(1500),  (d1) Wood(00), (d2) Wood(300), (d3) Wood(600),  

(d4) Wood(900), (d5) Wood(1200), (d6) Wood(1500)  

 

  
 
Fig. 6. Performance evaluation on the basis of average classification accuracy (%) of various texture models for the selected rotated 

texture images 
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 (a) (b) (c) (d) (e) 
 

 
  (f) (g) (h) (i) (j) 
 

 
  (k) (l) (m) (n) (o) 
 

 
  (p) (q) (r) (s) (t) 
 
Fig. 7. Sample images used in Experiment #3 (a) French Canvas, (b) Pigskin, (c) Bark, (d) Weave,  (e) Wood, (f) Raffia, (g) Sand, 

(h) Grass, (i) Water,  (j) Brick, (k) Bubbles, (l) leather, (m) Straw, (n) Wool,  (o)Reptile skin, (p) Pressed cork, (q) Cloth,   

           (r) Matting, (s) Paper, (t) Fur 
 

 
 
Fig. 8. Average classification accuracy (%) for the texture images which were corrupted by additive Gaussian noise with various 

SNR values 
 
Table 3. Shows the distribution of patterns in OLTP and LTP texture models for various texture classes 
Proportion  Distribution of patterns (%)  
of patterns --------------------------------------------- 
Texture class LTP OLTP 
French canvas  62  60  
Brick  52  51  
Water  73  71  
Bark  42  40  
Straw  44  41  
Weave  42  40  
Wood  71  71  
Wool  43  41  
Pigskin  44  42 
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Table 4. Classification of the test images using OLTP texture model  
Details of the classified samples 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Classification results (Out of 65536 Samples) 
 ------------------------------------------------------------------------------------------------------------------------------------------ 
      Classification 
 Sample size French canvas Brick Water Wood accuracy (%) 

French 10 63622 1568 303 43 97.08 
canvas 20 65424 85 15 12 99.83 
 30 65536 0 0 0 100.00 
Brick 10 1099 64117 234 86 97.83 
  20 132 65369 32 3 99.75 
 30 0 65536 0 0 100.00 
Water 10 35 11 64102 1388 97.81 
 20 15 0 65389 132 99.78 
 30 0 0 65536 0 100.00 
Wood 10 2 112 1345 64077 97.77 
 20 0 10 168 65358 99.73 
 30 0 0 0 65536 100.00 
Average 10     97.62 
 20     99.77 
 30     100.00 

 

Table 5. Classification of the rotated test images using various texture models 

Details of the classification accuracy 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Classification Accuracy for different degrees of rotation (%) 
Texture --------------------------------------------------------------------------------------------------------------------------------------------- 
Model  Texture class  30°  60° 90° 120° 150° Average 

LBP  Brick 74.32 63.14 52.53 54.110 59.570 60.73 
 Bubbles 69.21 51.47 60.44 59.180 58.120 59.68 
 Leather 91.01 90.08 89.37 91.300 88.240 90.00 
 Wood 85.54 87.74 88.31 89.980 86.660 87.65 
LTP  Brick 82.43 91.44 90.66 93.770 92.400 90.14 
 Bubbles 82.45 90.12 92.46 90.090 95.380 90.10 
 Leather 100.00 100.00 100.00 100.00 100.00 100.00 
 Wood 92.77 91.15 95.22 90.390 95.850 93.08 
OLTP  Brick 84.05 93.42 92.68 94.620 94.110 91.78 
 Bubbles 86.63 91.04 95.64 92.630 98.230 92.83 
 Leather 100.00 100.00 100.00 100.00 100.00 100.00 
 Wood 95.82 96.57 98.23 95.030 96.540 96.44 

 
Table 6. Classification performance analysis for the histogram-equalized 

Average classification accuracy for the various texture models 

 --------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  Classification accuracy (%) 
 ---------------------------------------------------------------------------------------------------------------- 
  Histogram  Histogram Equalized 
Texture Original texture Equalized and randomly rotated 
models images texture images texture images 

LBP  94.87  89.08  89.76  
LTP  96.85  91.64  90.80  
OLTP  97.77  95.42  92.79 

 
Table 7. Classification performance under the additive Gaussian noise environment 

Details of the classification accuracy for the various texture models 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Classification accuracy (%) 
 --------------------------------------------------------------------------------------------------------------------------- 
Texture Models  SNR = 100  SNR = 35 SNR = 15 SNR = 5 

LBP 92.32 91.21 88.43 61.33 

LTP 97.74 97.30 94.33 81.98 

OLTP 98.98 98.96 95.41 83.45 



Madasamy Raja, G. and V. Sadasivam / Journal of Computer Science 9 (1): 1-15, 2013 

   

11 Science Publications

 
JCS 

In each texture class, 4 images are without any 
rotation(Fig. 5a1, b1, c1 and d1), 4 images are rotated at 
30° (Fig. 5a2,b2, c2 and d2), 4 images are rotated at 60° 
(Fig. 5a3, b3, c3 and d3), 4 images are rotated at 90° 
(Fig. 5a4, b4, c4 and d4), 4 images are rotated at 
120°(Fig.5 a5, b5, c5 and d5) and 4 images are rotated 
at 150° (Fig. 5a6, b6, c6 and d6). This experimental 
setup is somewhat tough because model samples are 
given without any rotation that is with 0° rotations and 
the classification is tested with test samples with all other 
5 rotation angles. With the sample size of 25×25, 100 
samples were extracted from every texture image and 
there were 2400 test samples in total which are taken for 
this experiment. Table 5 presents the classification  
performance  of   various   texture  models namely    
LBP, LTP   and OLTP  for   the   test   samples. Figure 6 
shows the comparative analysis of the average 
classification accuracy of the selected texture models for 
this experiment. From the results, it can be understood 
that even under the difficult experimental setup, the 
proposed texture method OLTP outperforms all other 
compared texture models by achieving the highest 
average classification accuracy of 95.26%. 

3.5. Experiment #3 

Experiment #3 has been performed to study the 
image histogram equalization invariance property of the 
proposed OLTP texture model. This experiment has been 
carried out in three different environments and they are 
“Original Textures”, “Histogram-equalized Textures” 
and “Histogram-equalized and Randomly-rotated 
Textures”. For this experiment, 20 different texture 
images are selected from the Brodatz album and they are 
shown in Fig. 7. All the selected texture images have the 
size of 640×640 pixels and represent a texture class. 
Each texture image is partitioned into fifty sub-images 
with the size of 64×64 pixels. So there were 1000 test 
samples considered for this experiment in total. In this 
experiment, for the test of “Original Textures”, no 
histogram equalization and no random rotation were 
applied to both model and test samples. For the test of 
“Histogram-equalized Textures”, histogram equalization 
was performed on both model samples as well as test 
samples. Every histogram equalized image in the model 
samples and test samples are rotated by a random 
rotation angle between 0° and 360° in the case of 
“Histogram-equalized and Randomly-rotated Textures” 
test. The classification process was repeated 5 times 
independently and the average classification accuracies 
of texture models, Local Binary Patterns (LBP), Local 
Ternary Patterns (LTP) and Optimized Local Ternary 
Patterns (OLTP) are calculated and tabled in Table 6. 
According to the experimental results, the highest 

classification accuracy in all the environments is 
achieved by the proposed texture model only.  

3.6. Experiment #4 

In this experiment, the classification performance of 
the proposed texture method OLTP is evaluated under 
the noisy environment. Here also, the sample images that 
are shown in Fig. 7 are used and each texture sample 
images were corrupted by the zero mean additive 
Gaussian noise with four different Signal-to-Noise Ratios 
(SNR). All the selected sample texture images have the 
size of 640×640 pixels and represent a texture class. Each 
texture image was partitioned into fifty sub-images with 
the size of 64×64 pixels. So in total, 1000 test samples 
were considered for this experiment.  

In this experiment also, in addition to the proposed 
texture model OLTP, two more texture models namely, 
Local Binary Patterns (LBP) and Local Ternary Patterns 
(LTP) are considered for the comparative analysis. The 
classification process was repeated 5 times 
independently and the average classification accuracies 
are calculated and tabled in Table 7. From Table 7, it 
can be understood that, until the SNR value is 
maintained as 35, all the texture models provide good 
average classification accuracies because at this level of 
SNR value, noise effect is too small to distort the image. 
However, when the SNR value drops below 35, it can be 
noticed that due to the increase in noise power, all methods 
have significant drop in the classification accuracies. But 
even when the value of SNR is maintained as 5, the 
proposed method effectively performed to achieve sensible 
classification accuracy (83.45%).  

For further clarification, again the same sample 

texture images of Fig. 7 were partitioned into 25 sub 

images with the size of 128×128 pixels. In total, 500 test 

samples were considered for this sub experiment. Again 

all the sub images were corrupted by the zero mean 

additive Gaussian noise with 3 different signal-to-noise 

ratios (SNR = 5, SNR = 15 and SNR = 30). This 

classification process was also repeated 5 times to 

consider the classification performance of various texture 

models (LBP, LTP and OLTP) and the average 

classification accuracies are displayed in a graphical 

format in Fig. 8. It is proved that the proposed texture 

model OLTP is robust in the noisy environment since it 

maintains its classification performance superior to all 

other texture models even under heavy noisy conditions. 

From Fig. 8, it is also observed that, the classification 

accuracy becomes higher when larger size test samples 

were used and when the value of SNR becomes low or 

when the noise becomes severe, the classification 

performance degrades accordingly.  
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4. DISCUSSION 

4.1. Robust to Gray-Scale Variation  

In a digital image, when the illumination varies, it 

causes sudden changes in the grey-scale of the pixel 

values. The grey-scale invariant property in texture 

analysis is very much important in the sense that 

illuminations variations either in local level or global 

level cannot be avoided in digital images due to various 

reasons. It is known that the proposed texture model 

OLTP uses a scaling factor (σ) and the centre pixel of the 

local neighborhood region for which the pattern string is 

calculated, for encoding the patterns. The availability of 

scaling factor (σ) helps OLTP to use a more tolerable 

and dynamic threshold range for encoding the patterns. 

So, when there is a sudden change in the surrounding 

pixel values of the image due to the illumination 

variation, correspondingly there is a change in the 

threshold range to accommodate these changes. This is 

the reason for the grey-scale invariant property of the 

proposed texture model OLTP. But this is not the case in 

LTP, as it uses a fixed threshold to do the encoding. This 

is clearly explained in the Fig. 9.  

To test the grey-scale invariant property of the 

proposed texture model, grey-scale transform is applied 

to the image pixel values. Figure 9a shows the original 

image pixel values before the grey-scale transform is 

applied and Fig. 9a1 shows the image pixel values after 

the grey-scale transform (multiplied by constant ‘3’) is 

applied. Figure 9b-d are the LBP, LTP and OLTP 

encodings of the original image pixel values 

respectively, whereas Fig. 9 b1, c1 and d1 are the LBP, 

LTP and OLTP encodings of the grey-scale transformed 

version of the original image pixel values respectively. 

Since both OLTP encodings for the original image pixel 

values and the grey-scale transformed one are same (Fig. 

9 d and d1), it is proved that the proposed texture model, 

OLTP is grey-scale invariant method. Another texture 

model LBP is also invariant to gray-scale transforms which 

can be easily observed from the same LBP encodings of 

original image pixel values and grey-scale transformed 

pixel values (Fig. 9b and b1). When LTP is considered, 

Fig. 9c and c1 are different that leads to a conclusion that 

LTP is not robust to grey-scale variance. 

4.2. Robust to Rotation Variation  

This proposed model OLTP is robust in terms of 

rotation    variation    also.   As,   OLTP   texture 

model    uses    the   optimal patterns which are 

nothing but the subset of rotation invariant uniform 

patterns,   it    is   understood   that the proposed 

texture   model   should be rotation invariant method. 

The results of Experiment #2, which was 

experimented in the toughest condition of unrotated 

model samples and rotated test samples, substantiate this 

interpretation. From the observations, it is noted that 

number of patterns play an important role in the texture 

models. It is also observed that when larger number of 

patterns is used for texture description, more likely the 

misclassification of patterns in the encoding occurs, 

especially when the rotation is applied to the digital 

images. As expected, upon rotation, the proposed texture 

method OLTP yielded better classification accuracy than 

other compared texture methods LBP and LTP, because 

it uses only less number of patterns (optimal patterns).

 

 
(a) (b) (c) (d) 

 

 
 (a1) (b1) (c1) (d1) 
 

Fig. 9. Achieving Grey-scale Invariance: Comparision of LBP, LTP and OLTP texture methods (a) original image pixel values in a 

3×3 neighborhood, (b), (c), (d) LBP, LTP, OLTP encodings of (a) respectively,  (a1) grey-scale transformed pixels 

(multiplied by constant ‘3’),  (b1) LBP encoding after grey-scale transform,  (c1) LTP encoding after grey-scale transform,  

(d1) OLTP encoding after grey-scale transform 
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(a) (b) (c) (d) 

 

 
 (a1) (b1) (c1) (d1) 
 

Fig. 10. Achieving noise resistance: Comparision of LBP, LTP and OLTP texture methods (a) original image pixel values in a 3×3 

neighborhood, (b) LBP encoding of (a), (c) LTP encoding of (a), (d) OLTP encoding of (a), (a1) image pixel values after 

noise nclusion, (b1) LBP encoding after noise inclusion, (c1) LTP encoding after noise inclusion, (d1) OLTP encoding after 

noise inclusion  

 

4.3. Less Sensitive to Histogram Equalization  

By considering Experiment #3, it can be noted that 

unlike other compared texture models, there was no 

considerable drop in the classification accuracy in the 

proposed OLTP approach, when the image rotation with 

histogram equalization was applied. So, in this attribute 

also, proposed OLTP method outperforms other two 

compared methods (LBP and LTP) and it has been 

proved that proposed OLTP method is robust to 

histogram equalization too.  

4.4. Robustness to Noise  

Performing texture classification under a noisy 

environment can examine the robustness of any texture 

model against noise in real world applications. Since the 

proposed texture model OLTP is using a more flexible 

and dynamic threshold range which is based on the value 

of the centre pixel with the help of a scaling factor, it is 

also more robust to noise. In the case of LBP, though it is 

grey-scale invariant, it is sensitive to noise especially in 

the more uniform regions because it uses a fixed 

threshold that is based on exactly at the value of center 

pixel. As LTP is using a small fixed range as the 

threshold, it is not sensitive against the noise. This 

concept is clearly shown in the Fig. 10. Figure 10a 

shows the original pixel values prior to the application of 

noise and Fig. 10a1 shows the pixel values after the 

noise is applied. Figure 10b-d are the LBP, LTP and 

OLTP encodings of the original image pixel values 

respectively, whereas Fig. 10b1, c1 and d1 are the LBP, 

LTP and OLTP encodings of the noise included version 

of the original image pixel values respectively. Since 

both OLTP encodings for the original pixel values and 

the noise included one are same (Fig. 10d and d1), it is 

understood that the proposed texture model OLTP is a 

noise resistant approach. Another texture model LTP is 

also resistant to noise which can be easily observed from 

the same LTP encodings of original values and noise 

included pixel values (Fig. 10c and c1). When LBP is 

considered, Fig. 10b and b1 are different that leads to a 

conclusion that LBP is not robust to noise. Experimental 

results (Experiment #4) also validate this point that the 

proposed texture model OLTP is robust to noise.  

The following sentences summarize and discuss the 

implications of the experimental results with the focus on 

the significance of the salient features of proposed 

texture model OLTP. Three important and already 

established texture models have been involved in the 

comparative analysis with the proposed texture model 

OLTP and they are Texture Spectrum (TS), Local Binary 

Patterns (LBP) and Local Ternary Patterns (LTP). Like 

the proposed model OLTP, TS model also uses a ternary 

level of comparison in a 3×3 local neighborhood and it 

gives good classification results but at the cost of more 

memory space since it is using more number of patterns 

(6561) than the proposed method OLTP. Since TS 

method uses very large number of patterns to describe 

the texture in an image, the computational time is very 

high and it cannot be a useful tool for the applications, 

where time is a critical factor. Further, basically Texture 

Spectrum (TS) model is not a rotation and grey-scale 

invariant model. But at the same time, another texture 

model LBP, though it uses binary level of comparison to 

encode the patterns, it is more robust against gray-scale 

variations and rotation variations. Since LBP method uses 

only 10 numbers of patterns for texture representation, it 

needs less memory requirement and less execution time, 



Madasamy Raja, G. and V. Sadasivam / Journal of Computer Science 9 (1): 1-15, 2013 

   

14 Science Publications

 
JCS 

but it is inefficient to characterize the local regions. 

Though LBP texture model is grey-scale invariant, it is 

sensitive to noise and on the other hand, another recently 

introduced texture model LTP, is resistant to noise but it is 

not a grey-scale invariant method.  
Proposed texture method OLTP is performing better 

because, it uses 24 numbers of optimal patterns which is 
sufficiently large enough to characterize the local spatial 
relationship of a texture. Number of patterns, used in the 
proposed texture model OLTP, is more than insufficient 
LBP model and less than expensive TS model. 
Regarding LTP, though it gave nearly equal performance 
in some experiments like OLTP, it uses almost double 
the number of patterns compared to OLTP. In some 
times, using more number of patterns to describe the 
texture information may lead to poor performance and 
this is true in the case of LTP. This is the reason for LTP 
texture model for giving lower classification accuracy in 
some experiments in this study, compared to proposed 
texture model. Moreover, it is also experimentally 
proved that the optimal patterns of the proposed texture 
model OLTP are the real discriminating and active patterns 
among the uniform patterns of LTP model. So, it is 
concluded that, optimal patterns of the proposed texture 
model OLTP are the fundamental properties of a texture in 
a 3×3 local neighborhood of a digital texture image. 

5. CONCLUSION 

This study proposed a new spatial method of texture 
modeling approach called Optimized Local Ternary 
Patterns (OLTP). This study also introduced a new 
concept called, “Level of Optimality”, which is very 
simple and computationally efficient, to select the 
optimal patterns among the uniform patterns. On one 
hand, like conventional LBP approach, the proposed 
method OLTP has the properties of rotation invariant and 
gray-scale invariant. On the other hand, like LTP, it has 
the ability to withstand against the noise also. Further, it 
was also experimentally proved that this newly proposed 
texture model is histogram equalization invariant. The 
quality of the proposed approach was validated with 
many numbers of experiments to prove that this OLTP is 
robust to grey-scale variation, rotation variation, 
histogram equalization and noise. This proposed OLTP 
texture method on one side gives better classification 
accuracy than recently introduced LTP texture approach. 
On the other side, it uses only half the number of 
uniform patterns of LTP method. It was experimentally 
proved that the optimal patterns of the proposed texture 
model OLTP are the fundamental properties of textures 
and they are the dominant patterns in the uniform 

patterns of the LTP model. The experimental results 
show that the proposed method outperforms the other 
widely used texture models in terms of the classification 
accuracy under different experimental conditions. Since 
the proposed OLTP is robust in every aspect it can be a 
good replacement for both LBP and LTP.  

Regarding the future work, the proposed texture model 

OLTP can be tested for image texture segmentation 

problems. The proposed approach can also be checked for 

color texture images. This study uses only G-Statistics 

similarity measure in the classification algorithm and other 

similarity measures like Euclidean distance, Manhattan 

distance can also be used for further study.  
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