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Abstract: Problem statement: This study discusses the implementation of adwhnogistic belief
Neural Network for robot arms contrépproach: Given the desired trajectory of the end-effectars i
space, the logistic function is used to computecibreditional probability of the neurons being aetiv
in response to its induced field. The computatimihsonditional probabilities are performed undeotw
different null conditions. (1) for all vectors nbélonging to the parent of element node i and rjode
(2) for node i greater than node j, which followsrh the fact that the network is acyclResults: The
test results proved the merit of the proposed ntethee to the fact that the robot arms move in the
expected desired trajectory position within the oadited time set for each action.
Conclusion/Recommendation: Our future work will be to improve this method fids use in the
industrial robot arms.
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INTRODUCTION and goal of which the controller should determine a
series of joint angle that move the end-effectomira

Artificial Neural Network (ANN) has emerged given starting position to a desired final position
over the years and has made remarkable contribtdion wjthout colliding with the obstacle. Massegt al.

the advancement of various fields of endeavor @i ¢ (2006) proposed an evolutionary technique for

be defined as a distributed computing system coe®hos geveloping a neural network based controller for
of a number of individual processing element operat  anthromorphic robot arm with four Degrees of Freado
largely in parallel. Interconnected according tanea (4-DOF). In the authors proposed method, the neural
specific architecture and having the capabilitysédf-  controller consists of a feed forward neural networ
modify connection strengths and processing elemenjith three sensory neurons directly connected to 4
parameters. It can function at all to do usefuh@Siby  motor neurons of which are updated on the basés of
being incorporated into systems containing mores8  standard logistic function. The genotype of evolyin
conventional elements so that they can solve realdw individuals encodes the connection weights of the

problems economically. Rabelo and Avula (1991) usegeural controller. So where the neural network does
two different artificial neural networks systems come from?

associated with the prototype of a scheme whicls use  The Artificial Neural Network is inspired by

the integration of artificial neur_al networks and yuman brain (highly information-processing system)
knowledge-based systems for motion control of a 2Opat performs the formidable task of storing a
arm robot. The system involved a plan generateth®y .y 16,5 flood of sensory information receiveoir
higher order element which includes the kind ofirdels th . .- the del F trivia it "
trajectory to follow. Velagicet al. (2010) introduced a € environmént. From (he deluge ot 1rivia, It mus
recurrent neural network for controlling the mobile extract vital qurmatl(_)n, act upon it and filesaikay in
robot with nonholonomic constraints. The network is!0Ng memory in which large numbers of cells that
trained online uses back propagation optimizatiorindividual functions faster, perfectly and colleety
algorithm with an adaptive learning rate which exy  Performs tasks that even the largest computer at ou
effective for real-time control requirements. Kéyal.  disposal today cannot be able to match. The foligwi
(1996) presented a Neuro-fuzzy control for plannirg  is the brief description of the human brain the raku
trajectory of a three link robot arm in the presentan  network drives. The human nervous system can be
obstacle. The robot arm operates in two dimensions viewed as a three-stage system shown in the block
an environment containing a randomly placed obstacldiagram of Fig. 1.
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chosen the evolving neural network controller for a

L'Ir?:.har.lr?éu:xt.} w Receptors robotic arm that grasp objects on the basis ofiléact
Z sensors. By their method each individual in theraleu
'- Brain ;’ controller is controlled by the fully connected redu
network with 15 sensory neurons and 9 motor neurons
Neural Neurons are updated by the logistic function. The
Merye sensory neurons encode the angular position ofitre
‘.‘ 'g' Degrees of Freedom (9-DoF) of the joints and thgest
= qf the six contact sensors located in the arm arttie
‘ Response fingers. The motor neurons control actuators of 9
(Output) corresponding joints. The output of the neurons in

normalized within the range of the movement of the
Fig. 1: Overview of human nervous system repretienta  corresponding joint. Oyamet al. (2005) applied the
inverse kinematics learning for robotic arms by the
Central to the system is the brain represented byhodular neural network system. Their proposed ntetho
the neural nerve, which continually receivesconsists of a number of experts, with each expert
information, perceives it and makes appropriateapproximates a continuous region of the inverse
decisions. Two sets of arrows are shown in theréigu function. The forward model in the system
Those pointing from stimulus to response (blue)approximates the forward kinematics of the roban ar
indicate the forward transmission of the informatio and the performance index of each expert is the
bearing signals through the system. Those pointingredicted end-effector. Position and orientatioroer
from effectors to receptors (red) indicate the enee  are calculated by using the forward model. The expe
of feedback in the system. The receptors convienutit ~ selector chooses one approximate expert by usiag th
from the human body (internal stimulus) or externalexpected performance of the experts. At this stage
environmental (external stimulus) into electrical system can learn a precise inverse kinematics mufdel
impulses that convey information to the neural merv the robot arm with equal or more degrees of freedom
(brain). The effectors convert electrical impulsesthan that of its end-effector. However there ai#t st
generated by the neural network in discerniblearsp  some robot arm with few degrees of freedom that the
as a system outputs. But the various Artificial Néu system cannot lean at the present stage and toawer
Networks that are currently in fashion differ ineth  this problem they adopted a modified Gauss-Newton
ability to make accurate distinctions, their apilio ~ method for finding the least-squares solution. Baonig
learn new things without erasing the previousand Shanahan (2010) introduce a training spiking
information that has been learned and they'reieffic neural network to control a 4-DoF robotic arm based
(Tavoosiet al., 2011). In this study the implementation Spike training-dependent plasticity. The proposed
of advanced logistic belief Neural Network for robo Nneural network consists of spiking neurons whicé ar
arms control is discussed. Given the desired trajgc Organized into seven input layers and four outputs
of the end-effector in space, the logistic functimsed ~Which used a population of 1200 neurons in eachtinp
to compute the conditional probability of the nexgo layer and a population of 800 neurons for each uiutp

being active in response to its induced field. Iayer_. F(_)ur of the inp_ut Iay_ers encode t_h_e inforamat
that is given by proprioception and the firing patt at
MATERIALSAND METHODS each one of them indicates the angle of the reisgect

] ] joint. The four joints of interest are located &et
Literature review: The neural networks are one of the shouylder (roll, pitch and yaw) and the elbow of #nn.
most control system used in the control engineeti®  The network encodes these angles after discretizing
to its efficiency and it is about to take the fidace  them into bins with five degree resolution. The
over the so far well-known control system, suctPt3  remaining three input layers represent the spatial
control, fuzzy logic, fuzzy control or genetic atdbm.  direction that the end-effector should move atribat
The number of control topics involving neural netwo time step, with each layer encoding the projectibthe

is s0 huge that someone can spend one week even 081§ directional vector to one of the world axes.
month reading books, articles without finding thestb

control method that fits his system. In spite oé th The target robot system: The robot used in this
number of the articles in the open literature, ¢hbas experiment shown in Fig. 2 is a prestige robot veth
been so far no attempt to apply the belief logisticrugged wheeled Wi-Fi equipped with two gripping
network to control the robot arm. But as far as itarms that optionally provide the robot with one sixi
concerns robot arm control using neural networksmounted Complementary Metal-Oxide Semiconductor
Raffaele and Stefano (Bianco and Nolfi, 2004) havegCMOS) camera installed on its right arm.
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“4—Aﬁﬂaﬂdeipp6f hand side of the robot are integrated. The middiatf
V) sensor is used for detecting obstacle, while thmse

GPS Camera each side are used for assisting the six infraeedas
of which one is located at the middle front uppestj

above the middle front bottom of the ultrasonicssen

Graphic Front Light one in the upper front left, one in the upper froght,
LCD LiokiBar one in the rear middle, one in the rear left ane iorthe

rear right of the robot respectively. Two quadratur
encoders are also integrated in the robot, whexdeti
\ one uses the channel-1 and the right one uses the
A i e g??ﬁgglr ezs.tilggrz%rovtc')motor is used to steer andrdyivi
Fig. 2: Multi-DOF gripping arm robot Methodology: Robot arms, also known as robot
manipulator are mechanical structures designedautty c
loads from one point to another. They are commonly
used in the industry in which the majors’ applioas
are welding spray printing, palletizing and assgmbb
perform such action a robust control system isiredu
Qutput and one of the most robust controls is the newalork.
Fig. 3 shows the multilayer network used.
Output The neural network can be used to model the input-
_ Layer output behavior of general and specific classethef
Input Hidden system, without detailed mathematical models. hrept
Layer Layer words, the neural network is universal approximstor
the behavior of systems. This suggests that thaybea
Fig. 3: Direct logistic belief neural network used to approximate inverse kinematics without
actually performing the matrix inversions assodate
with inverse kinematics. The inverse kinematics are
- R defined as the computation of the joint coordinaied
result in a desired special position of the enegattir
0.5) (Zacharie, 2011). Given a desired trajectory ofethd-
effector in space, the goal of this control sysisnio
compute the torques and forces at the joints neéaled
il I move the manipulator (arm) through this trajectdiye
0 acyclic property of the neural network makes ityetas
perform probabilistic computations as the neural
network uses logistic function. Equation 1 is tbgistic
Combining mobility and a new ability to grasp and function used to compute the conditional probapitit
manipulate, the robot offers users broad versatiliits ~ the neurons being active in response to its indiiett
application. The wheels-based platform consists2)

1

Fig. 4: Sigmoid function f (v)

DC motors with integrated 800 counts per cycle@ti 5y -y x = x ik ) = o> : - Q)
encoder, yielding a top speed of 0.75m$he robot is 06 =X =5 ai4) MTZW“)S)
light as it weighs only 4kg with a capability torcaa i#]

maximum payload of 15 kg. Concerning the sensor . - .
types, the robot comes with ultrasonic range sansofvhere.q()is the logistic function Eq. 2:
and infrared range sensors including two-way audio 1
capability. These range sensors are for environment(u)=m ()
detection and collision avoidance, while the twoywa Pou
audio is for communication between the robot ared th
user. The collision avoidance and the sensing nuay n Where:
be corrected by information acquired from the only X varies between 1 and -1.
vision, therefore three ultrasonic sensors, withe on
located at the middle front bottom, one in the fesht = u=X%"w;x (The whole argument)
bottom hand side and one on the right front bottom %
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k vary between « and + as illustrated in Fig. 4.

. . L. 1 Joint 18e i
By differentiating Eq. 1, the need for the paotiti l ! Pomt |
function Z has been eliminated. First, we have ehos . Bu(RT) oG |
the vector V consisting of the variable Desired End |, Logistic Belicf —»
Va,,Va, Vg, MV 5 that denote the behavior of the Pasition L Actual Joinf
al a2 83 an Seqtlence . Position !
logistic belief network comprising N stochastic rems. l } :
The parents of element of node i and node j in the B e !
s . Computation
vector V are defined by Eq. 3: oot
Pa (y) = { a1 Vo VoS o © P w.
' Joint 5 Set H
1 Point 1
where, {v,,v,,v m } is the smallest subset of the P 0:(KT) 0u) b
. . . R Logistic Belief o '
vector that excites nodes for which the conditional T Newme] Network >
probability is Eq. 4: b boaor

P (Xj=x{ /Pa(y)) @ ]
As there is a direct link from node i and nodas. Fig. 5: Logistic Belief Neural Net Control System

important of the logistic belief network is its hfyi to Th hitect f the ioint iti trol ti
exhibit the conditional dependencies of the undiegly sh(?warzr(i:n |Fei;: u5re o7 the Joint posiion CoNTrol systis

probabilistic model to the input data, with the
probability that the neuron is active being defirgd RESULTS
the logistic function where jwis the synaptic weight
from__neuron | to neuron j. The computations OfExperimental results: The proposed Logistic Belief
conditional probabilities are performed under two
: L Neural Network (LBNN) has been tested on a robot
different null conditions: . : ) )

with a rugged wheeled WI-fi equipped with two

« w; = 0 for all v not belonging to pa(vi), which gripped arms that optimally provide the robot waite

follows from the definition of a parent wrist-mounted complementary metal-oxide semi-
* w; = 0 for node i > node j, which follows from the conductor camera installed on its right arm. Each a
fact that the network is acyclic has five degrees of freedom and the LBNN used is a

_ multilayer network, which contains an input-layer,
As the system has five degrees of freedom, we, n ¢ javer and a hidden-layer unit. The inputeksy

have computed five desired joint positions for eaChare presented to the network and the network ositput

!nstant of time, where the mcre_ment between thes re compared to the desired actual or outputs
instants depends on the sampling rate of the arm . : .
. corresponding to the inputs. To determine how to
movement. The sampling rate must be fast enough tollocate the error not iust o the weights in thgnat
compare to the highest frequencies present to avoi? but to th . tL hidden | 9 I P d
aliasing. To do so we used the sampling rate & fov z;]\yer, du 0 | ose 'kn € hiaden alyer .aﬁ V\_/e use
ten times higher frequencies present in the system. € update rule back-propagation algorithm:
The sequence of operation of this system is a
follows: P Y Bwij=a 7= (ydj - )T’ =azj g ®)

e The initial state of the system is known and theWhere:

desired endpoint trajectory in Cartesian coordmate
(KT) is computed and sampled at the desired,
update frequency (1/T). The index K is a counter

is the output of the jth units in the hidden layer.

is the learning rate.
is the derivative of the function T(x).

for the sampling times Figure 6 and 7 are the plot results of each anmnD
» The Computation unit computes the correspondinghe training stage, a set of configurations of ahes is
desired joint angl@(kT) selected as initial position where the generatodsenotor

» The desired joint angles are used as inputs fdr eaccommands to the range of [-60°, 6@Gf] each joint and
of the five actuator servos that compute the actuatheir effect on the special position of the effdctors
joint position at each interval are computed based on the conditionalbadvdity.

968



J. Computer <ci., 8 (6): 965-970, 2012

60 [ | | | | 80 H ight Robot Arm(30° )
=40 | i i i ' ! |
= 1 40
e 30 Qutput layer error =
z : : *
: | 230
Z 20 } ;
3
| Z -
10 |
ol - 10
0 20 40 60 80 100
Time (sec) o b | - 1 .
0 20 40 60 80 100
Time (sec)

Fig. 6: Robot left arm movement at 20°
Fig. 9: Robot left and right arm movement at 30°
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Fig. 7: Robot right arm movement at 25°
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Fig. 10: Robot left and right arm movement at 35°

Two objects were placed on the left and the rigihé s

of each robot arm at 20° for left robot arm and &5°

the right arm. On the command go, both arms move at

the same time towards each object then returnedtbac

the initial position as expected and the data tesutre

analyzed. The results show a small propagationr erro

from the output layer of the left robot arm (Fig. Bo

propagate the error from the output layer back to

weights in the hidden layer we used the chain rule

differentiation by substituting the weighted inpstsns

{ for the terms zof Eq. 5.

> The resulting expression is Eq. 6:

40 60
Time (sec)

s
o

w
o
T

MNutiron (=10}

20 |

-
o

o

Alw,=axT) i(w”e T) (6)

And the test has been repeated three times anf20°
Fig. 8: Robot left arm movement at 20° without erro  which the test result is shown in Fig. 8 wheredher in
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the output layer has been eliminated. The testbeas REFERENCES
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