
Journal of Computer Science 8 (6): 957-964, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Wael A. Murtada, Department of Satellite Communications and Ground Stations,
 Space Sciences and Strategic Studies Division, National Authority for Remote Sensing and Space Sciences,
 Cairo, Egypt

957

Impact of the Use of Object Request Broker Middleware

for Inter-Component Communications in C6416 Digital Signal
Processor Based Software Communications Architecture Radio Systems

1Wael A. Murtada, 2Mohamed M. Zahra,

3Magdi Fikri, 2Mohamed I. Yousef and 4Salwa El-Ramly
1Department of Satellite Communications and Ground Stations,

Space Sciences and Strategic Studies Division,
National Authority for Remote Sensing and Space Sciences, Cairo, Egypt

2Department Electronics and Communications Engineering,
Faculty of Engineering, Al-Azhar University, Cairo, Egypt

3Department Electronics and Communications Engineering,
Faculty of Engineering, Cairo University, Cairo, Egypt

4Department Electronics and Communications Engineering,
Faculty of Engineering, Ain Shams University, Cairo, Egypt

Abstract: Problem statement: This study presents an in-depth analysis of the performance of
Software Communications Architecture (SCA) component-based waveform applications in terms of
inter-component communications. The main limitation with SCA, in the context of embedded systems,
is the additional cost introduced by the use of Object Request Broker (ORB) middleware. The ORB
middleware handles the interaction between components and objects in SCA distributed environment.
This interaction should be highly efficient, due to the real time nature of SCA systems and transparent
to the application programmer. Approach: We can achieve high efficiency in SCA systems by
enhancing the Inter-Process Communications (IPC) mechanisms in Operating systems (OS) micro
kernels, while we achieve transparency through Interface Definition Language (IDL). Different
encoding mechanisms like “External Data Representation (XDR), Network Data Representation
(NDR) and Common Data Representation (CDR) facilitate inter-component communication
transparently and efficiently”. Marshalling procedures format data from the local machine
representation to common network representations. A most common encoding mechanism for
Common Object Request Broker Architecture (CORBA) systems is CDR representation.
Measurements have been performed with ORBExpress DSP as a CORBA distribution and Open
Source SCA Implementation Embedded (OSSIE) for SCA implementation. In order to perform these
measurements we proposed two metrics for profiling the ORB that are invocation and marshalling. In
addition, we propose three elements of data types to evaluate the performance of ORB middleware that
are, Basic, Array and Sequence data types. Results: The CORBA bus is really the part, which brings
an overhead to the SCA radio systems. This overhead is due to method invocations that have been
carried out by ORB middleware. Conclusion: Performance benchmarks of ORBExpress DSP
middleware show that, although using CORBA for inter-component communications introduces delays and
overheads, the overall effect can be reduced by sending packets of data instead of basic data type elements.

Key words: Software Communications Architecture (SCA), ORB middleware, ORBexpress DSP,

inter-component communications, stub code, encoding, marshalling

INTRODUCTION

 Time delays are an inevitable aspect of any real
world communication system. As radio applications

and underlying hardware becomes increasingly
complex, however, these latencies become more and
more difficult to predict and understand (Tsou et al.,
2007). Predictable latencies and deterministic behavior

J. Computer Sci., 8 (6): 957-964, 2012

958

are necessary in order to meet the requirements of a
wide range of today’s communication needs. The
advent of software defined radio and the use of the
Digital Signal Processor (DSP) as a suitable device for
radio communications further complicates these issues.
Traditionally, timing information and latency
characteristics could be determined by examining
hardware designs and specifications. With current
software radio designs, however, Operating System
(OS) behavior, middleware and multi-threaded
environments are some of the issues that factor into
latency behavior (Balister et al., 2006). In this study,
we focused on middleware latency that has a major
impact of software latency behavior.
 The Software Communications Architecture (SCA)
is a component based software specification developed
for the Joint Tactical Radio System (JTRS) that seeks to
address many design issues in developing interoperable
software radios. In order to achieve interoperability and
portability of applications, the specification defines a
number of operating environment requirements for
compliant implementations such as POSIX OS
standards and the use of Common Object Request
Broker Architecture (CORBA) as middleware. CORBA
is a standard released by the industry consortium Object
Management Group (OMG) and defines the
communication between the distributed components of
a SCA radio waveform OMG. The SCA and its
underlying standards are specifications only and require
appropriate implementations for actual use.
 Open-Source Implementation: Embedded (OSSIE)
 PrismTech is an implementation of the SCA created at
Virginia Tech for educational use as well as for
research applications with software defined radio.
OSSIE relies on a number of other open-source projects
in order to address the standard. The original
implementation runs on Linux and utilizes omniORB
(Grisby et al., 2009) as the CORBA middleware
implementation. We ported OSSIE on TI C6416 DSP
and relied on ORBExpress DSP as an embedded
CORBA middleware implementation for our
measurements (Murtada et al., 2011). Additionally,
TinyXML PrismTech is used for parsing the XML used
in SCA profiles. In addition, OSSIE applications rely
on a reusable interface library known as Standard
Interfaces that simplifies the interaction of signal
processing code portions with the implementation
details of CORBA IDL.
 This study introduces the middleware latency that
contributes to inter-component latency in an OSSIE
waveform. It is assumed that components reside on the
same processor. Distributed radio applications that span
multiple nodes present additional factors and are not

examined in this study. While a typical TI C6416 DSP
is used as a test case in this study, an effort is made
such that the general concepts presented are applicable
to other platforms. Timing measurements were
performed on a test system contains TI C6416 as a
Digital Signal Processor, Code Composer Studio IDE
as a test environment, DSP/BIOS as a non POSIX Real
Time Operating System (RTOS) and ORBExpress DSP
as an embedded middleware CORBA distribution.

Software description: The efficiency of marshalling or
stub code plays a vital role in SCA distributed
environment. Improvement in application performance
relies necessarily on efficient stubs (Puder et al., 2006).
The performance of local client/server invocations and
hence inter-component communications in SCA
systems depend on efficient stub code when high-speed
IPC mechanisms are used. Some of the encoding
schemes like CDR, XDR and NDR facilitate the
efficiency and transparency of inter-component
communications (Tari and Bukhres, 2004).
 We generate the stub code using Interface
definition language (IDL) to C++ compiler from
Interface definitions in IDL file. The client marshals
parameters using stub code, uses OS kernel primitives
to access the server skeleton, un-marshals these
parameters at the server side and calls the associated
server procedure (Henning and Vinoski, 1999). The
server procedure marshals the result back to the client.
Figure 1 illustrates the marshaling process between
distributed client/server CORBA objects. The main
advantage is that the programmer can determine and
use the IDL remote interfaces like local interfaces. Stub
code has two important features that are Portability and
adaptability.
 IDL compiler converts interface specifications,
from the user code, into stub code. Generally, the stub
code marshaling data into CDR, which is a CORBA
standard mechanism for data encoding. CDR provides a
“receiver-makes-it-right” approach to byte ordering
(Ruh et al., 2000). Its functionality is to marshal the
data between various computer architectures like
Embedded C6416 DSPs, IBM personal computers, Sun
workstations, Cray machines and VAX. It satisfies the
ISO presentation layer specifications (Puder et al.,
2006). CDR assumes that the basic and portable unit of
encoding is the byte or octet. It encodes the data bytes
in such away that any other decoders can decode the
marshaled octets without loss of meaning (Tari and
Bukhres, 2004). Generally, CDR encodes the stream of
octets in both “little-endian” or “big-endian”
representations. The marshaled octet stream in CDR
encoding should be in multiples of four octets.

J. Computer Sci., 8 (6): 957-964, 2012

959

Fig. 1: Marshaling process between distributed client/server CORBA Objects

Fig. 2: The creation of CORBA application

Fig. 3: Communication between client/server CORBA

objects

When the marshaled data are not aligned as multiples of
four octets, then it is padded with zeros. However, in
ORBExpress middleware, the data buffer is in multiples of
eight octets OIS. Similarly, when the marshaled data are
not aligned as multiples of eight octets, then it is padded

with zeros. Furthermore, ORBExpress DSP implemented
a custom encoder, like CDR but it has some differences
to improve the ORB performance, for use in marshaling
process. Figure 2 illustrates the creation of CORBA
based application using IDL compiler.
 The CORBA specification defines the General
Inter-ORB Protocol (GIOP) as its basic interoperability
framework. GIOP is not a concrete protocol that is used
directly to communicate between ORBs. Instead, it
describes how specific protocols can be created to fit
within the GIOP framework. Internet Inter-ORB
Protocol (IIOP) is one concrete realization of GIOP as
shown in Fig. 3. The GIOP specification fits into three
ISO layers that are application, presentation and
session. It consists of the following major
elements: CDR, Message formats and IDL mapping.

J. Computer Sci., 8 (6): 957-964, 2012

960

Fig. 4: SCA software structure

Commercial ORBs like ORB express DSP OIS, e*ORB
PrismTech and omniORB (Grisby et al., 2009) use
IIOP (Ruh et al., 2000) to communicate between
distributed CORBA objects.
 Here, we give an overview of a SCA system
specifying the software architecture requirements and
software components responsible for the deployment,
configuration and control of the waveforms on the TI
C6416 DSP hardware. The software infrastructure
provided by SCA for the distributed application
deployment is based on the CORBA software bus.

SCA: The Software Communications Architecture
defined by the JTRS specifies an Operating
Environment. It allows for the abstraction between
software and hardware. In an ideal view, we can install
any waveform application on any platform. The
waveform development is a component based software
design. For maximum reuse and reconfiguration, the
SCA defines waveforms and platforms as a set of
interconnected components (Bard and Kovarik, 2007).
These components can be reused and are independent.
They encapsulate their behavior and provide certain
functionality, exposed through interfaces. We divide
this system into three main parts as shown in Fig. 4:

Core Framework (CF), CORBA ORB middleware and
an Operating System.
 The ORB and the Operating System depend on the
underlying hardware system but all the Core
Framework must have the same function.
 It provides:

• Collection of services used by the waveforms and

the other applications
• Software, which enables the installation,

configuration, management and the control of
waveforms

• File system to manage the waveforms
• Hardware interfaces to enable the abstraction of the

platform

 As shown in Fig. 5, we can divide the CF into
components (Bard and Kovarik, 2007). It is also
important to know that every entity in SCA has a
Universally Unique Identifier (UUID) as defined by the
DCE UUID standard adopted by CORBA OMG. This
UUID allows for the identifying of every entity when
the CF discovers the platform resources, hardware
devices and software components, using the CORBA
services.

J. Computer Sci., 8 (6): 957-964, 2012

961

Fig. 5: SCA architecture

CORBA performance: As the real-time system
behavior and memory footprint are important for real-
time embedded developers, ORB performance is crucial
for selecting a CORBA middleware. There is a
widespread belief that inserting a CORBA middleware
to a system imposes another "layer". CORBA has a
small overhead to the embedded system; this overhead
varies among CORBA implementations (Puder et al.,
2006) and the CORBA "layer" replaces the overhead
added by message processing delay which would have
been imposed anyway OIS.

Benchmarking ORB performance: One of the
important factors of ORBs benchmarking is the time it
takes to complete message invocation. Message transfer
time using TCP/IP socket program without ORB
represents an important measurement. For a precise
calculation of the CORBA overhead time, we can get
the difference between TCP/IP socket time and ORB in
the loop time (Ruh et al., 2000).

CORBA overhead types: Space and Time are the two
major CORBA overheads in the embedded systems. We
define the CORBA "Space" overhead as the number of
bytes required for the data that constructing CORBA
message at GIOP or IIOP in TCP/IP networks (Ruh et
al., 2000). There are additional overheads associated
with TCP/IP systems such that:

• Ethernet imposes 26 bytes per each frame
• IP inserts 12 bytes per each packet
• TCP inserts 24 bytes (plus options field) per each

packet

 Furthermore, the CORBA IIOP protocol imposes
between 40-80 bytes per each CORBA message to this
overhead. The major component of the system overhead
comes from how the system developers define the

interfaces (Henning and Vinoski, 1999). From
performance perspective in CORBA IIOP protocol, it is
important to note that if we send a fewer big messages,
the system performance increases than the case of
sending many small ones.
 We define another CORBA overhead, which is
"Time", as the time that ORB takes for processing each
message (Ruh et al., 2000). This overhead is divided into
two main components that are fixed and Variable
components OIS. When benchmarking different CORBA
implementations, we should study both overheads.

Fixed overhead: We define fixed overhead as the
overhead due to ORB message invocation with null
arguments. The major components of fixed overhead
are ORB demultiplexing time, performing up-call, OS
context switching, OS system calls and other similar
tasks occurs every message transfer. Locating objects
quickly, invoking operations on objects and avoiding
unnecessary OS context switching and OS system calls
are the main parameters for minimizing the fixed
overhead (Tari and Bukhres, 2004).

Variable overhead: We define this overhead by
marshaling and un-marshaling times, which varies in
terms of number of parameters and parameters’ data
type of a given message. The ORB must quickly
marshal and un-marshal data; efficiently use a transport
and avoid building a multiple copies of data (Henning
and Vinoski, 1999).

MATERIALS AND METHODS

Profiling ORBExpress DSP ORB middleware: The
performance of the ORB has a great impact on the
overall performance of the distributed SCA radio
system. This is because all inter-component
communications are established using CORBA
messages OMG. We propose two specific test
scenarios to generate profiling results:

Invocation: Measures the roundtrip cycle count for a
simple method invocation with no arguments.

Marshaling: Measures the roundtrip cycle count for a
simple method invocation with basic arguments.
 In addition, we propose three different argument
types to evaluate ORBExpress DSP middleware
performance:

• Basic Data Type
• Array
• Sequence

J. Computer Sci., 8 (6): 957-964, 2012

962

Fig. 6: The encoded array

Fig. 7: Encoded unbounded sequence element with four

bytes length identifier

Table 1: CPU clock cycles needed to characterize ORBExpress DSP

marshaling profile
 Octet Short Float Double
Basic marsh. 8427 8253 8075 7798
Array marsh. 24609 37566 67461 125708
Sequence Marsh. 24940 40826 73456 121013

 Assuming that, both array and sequence data types
are with a length of 1024 elements and all method
implementations were empty. In the evaluation process,
we should pass a CORBA Environment variable as an
argument on each request due to the lack of exception
support in embedded C++ language under Code
Composer Studio (CCS) IDE. We should make this
even for interfaces with no arguments defined in their
IDL definitions. Client and Server where launched as
different tasks with priorities two and one, respectively
(Murtada et al., 2011). We summarize the ORBExpress
DSP profiling results for different data types in Table 1.
 ORBExpress DSP middleware has a custom
encoding mechanism that differs from the CDR
encoding. It assumes eight bytes buffer for data
marshaling process OIS.
 Fixed-length arrays of elements starting from 0
through (n-1) are encoded by checking the number of
elements (n) if it is a multiple of eight. In case of it is not
a multiple of eight, the array is padded with zero bytes.
 Counted arrays provide the ability to encode
variable-length arrays; it is called sequences, of
homogeneous elements. The sequence is encoded as
the element count n, an unsigned Long integer
identifier, followed by the encoding of each of the
sequence elements and starting with element 0 and then
progressing through element (n-1). Sequences are

variable-length vectors, or open arrays. Sequences can
contain any element type and can be bounded or
unbounded. An unbounded sequence can hold any
number of elements up to the limits of unsigned Long
integer. In addition, bounded sequence can hold any
number of elements up to the maximum bound. In case
of bounded sequence, there is an additional four bytes
to represent the maximum bound of the bounded
sequence. To describe the encoding process in Arrays
and Sequences respectively, see Fig. 6 and 7.
 For an ORB, the very first time a client makes a
request to a server; the execution is longer than
subsequent requests PrismTech. This extra delay is due
to the binding of new connections, which is a one-off
overhead. However, subsequent calls do not need this
overhead. In ORBExpress DSP ORB middleware, when
we establish the mirror transport; which we used for
transport between client and server in our study; all
subsequent requests between client and server have the
same time OIS. In addition, what time an ORB
establishes a connection and how many connections
have been used between processes is different with
different ORBs (Puder et al., 2006). ORBExpress DSP
multiplexes invocations over a single connection
between client and server. This is true even if multiple
threads within the same client are all talking to the same
server process. Other ORBs may use
additional connections, which will cause usage of
additional resources and thus limiting the scalability of
certain ORBs (Tari and Bukhres, 2004) .

RESULTS

 There are a couple of interesting points in
ORBExpress DSP middleware profiling results as
shown in Table 1. First, for basic data types, if the
length (in bytes) of the basic data type increases, then
the marshaling speed becomes faster. This is due to the
time needed for data padding process, for basic data
types of the size less than eight bytes, when encoding
the basic data types. For instance, the middleware
encoder is obliged to pad a data buffer that contains an
Octet data type with seven bytes to be marshaled
correctly; while six bytes padding is needed to marshal
a Short data type. When we target a high performance
in CORBA messaging, it is logical for ORBExpress
DSP middleware to enlarge the encoder buffer size to
eight bytes rather than the four bytes buffer used in
CDR encoding.
 The second point of interest is that, there is a little
difference between marshalling of arrays and
sequences. Even though they are both of the same
length, but the array marshalling is faster than the

J. Computer Sci., 8 (6): 957-964, 2012

963

sequence marshalling when the data type size is less
than eight bytes. Here, we can summarize all the cases
for marshaling the arrays and sequences as follows:

• If the sequence element length is less than eight

bytes, then it needs to be padded with zeros
• For array marshaling, the ORBExpress DSP

encoder checks for the whole array size if it is a
multiple of eight. In case of not a multiple of eight,
then the array is padded with zeros

• If the sequence element size is a multiple of eight,
then there is no padding needed. Thus, the
sequence marshaling is faster in this case. This is
due to the encoder rule that is the ORB is obliged
to marshal the whole array, but it is not mandatory
to marshal all elements in the sequence. ORB can
marshal selected elements in the sequence rather
than all elements in the case of array. For instance,
if we have consecutive zeros in an array, the ORB
is obliged to marshal all elements of the array
including consecutive zeros. Nevertheless, it is not
mandatory to marshal these consecutive zeros in
the sequence

 There is a need to characterize ORBExpress DSP
middleware for non-argument method invocation
(Balister et al., 2006). We find that, when a client
invokes the server with a simple method with no
arguments, then it takes about 10.4 microseconds at 720
MHz processor speed.
 It was not that difficult to get actually the
number of cycles involved in establishing a mirror
transport connection, so here are the cycle counts for
both ORBExpress DSP configurations as shown in
Table 2. Note that, small configuration forces the
compiler to optimize for the code size using a
specific compiler switches. In addition, fast
configuration uses the compiler switches that
optimize code for speed and making the code
potentially faster on some platforms OIS.
 From Table 1, ORBExpress DSP takes 8075
clock cycles to make a roundtrip marshalling call
with a single float, while it takes 67461 clock cycles
to send an array with 1024 floats. Actually, it only
takes 65.9 clock cycles per float element in the array.
Thus, we need the block processing in SCA radio
systems.

Table 2: Clock cycles needed for mirror transport establishment in

both ORBExpress DSP configurations
Configuration type Number of clock cycles Time (µ sec.)at 720 MHz
Small DSP configuration 9427 13.4
Fast DSP configuration 8625 11.2

DISCUSSION

Impact on data rate performance: The framework
overhead incurred during instantiation and waveform
deployment can be arranged to happen off-line,
therefore not affecting the system throughput
PrismTech. The only aspect of the SCA that impacts the
system throughput is the dependency on CORBA for
inter-component communications. The maximum
system data rate depends on many factors: algorithm
processing delays, framework delays, analog to digital
conversion rate (Balister et al., 2006). In order to isolate
the impact of the framework, we use the results shown
in Table 1 to estimate an upper bound for the system
data rate. This table shows the number of clock cycles
that takes to send a CORBA message with different
parameters to an empty interface in a collocated server.
That is, there are no processing or transport delays.
 The maximum achievable data rate is given by
1/(Tfr +Tm+Ttr), where Tfr is the delay due to interface
adapters, Tm is the delay due to middleware processing
and Ttr is the delay due to transport mechanisms. In our
system, we are only considering Tm because no
interface adapters are required and no transport
mechanisms have been developed at this time. Tm is
given by:

t s
m

p.

D .ST
N n

= (1)

 From Eq. 1, Dt is the measured transfer delay as
shown in Table 1, Ss is the number of samples per
symbol, Np is the packet size and n is the number of bits
per symbol. To estimate the maximum data rate
allowed by the framework, we assume Ss = 8 and n = 1.
The clock speed in our system is 720 MHz.
Substituting these values into Equation 1 for a single
float type transfer, that according to Table 1 takes
8,075 cycles, the maximum data rate achievable is
11,145 bits per second. However, if we consider
sending an array of 1024 floats, the transfer takes
67,461 clock cycles allowing a maximum data rate of
1,366,122 bits per second. This result highlights the need
of block processing when dealing with an SCA radio
system where SDR developers have to tradeoff latency
and performance.

CONCLUSION

 This study shows the behavior of inter-
component communications in a SCA OE and
demonstrates the necessity of having good
knowledge about it to design efficient waveforms.

J. Computer Sci., 8 (6): 957-964, 2012

964

Fig. 8: ORBExpress DSP marshaling profile in terms of CPU clock cycles

In ORB marshalling profile, the latency time for basic
data types needs too many clocks compared with block
marshalling, which is a significant overhead. Thus, we
need block processing to enhance the system
performance in terms of inter-component messaging.
This leads us to consider the impact of the choice
regarding the size of data transmitted. Good Knowledge
of the communications in SCA architecture requires a
good understanding of CORBA. The challenge is to
find the good trade-off between component reusability
and system latency due to ORB communication
messages. Performance benchmarks show that,
although using CORBA for inter-component
communications introduces delays and overheads, we
can reduce the overall effect by sending packets of data
instead of single elements. On the other hand,
ORBExpress DSP introduces an eight bytes encoder
buffer that targets a large chunk of marshaled data to
increase ORB performance. From Fig. 8, using the
arrays to marshal elements, of the size less than eight
bytes, is better than using sequences. However using
the sequences to marshal elements, of the size equal to
a multiple of eight bytes, is better than using arrays.

REFERENCES

Balister, P.J., M. Robert and J.H. Reed, 2006. Impact of

the use of CORBA for inter-component
communication in SCA based radio. Proceedings
of the SDR Forum Technical Conference,
(SDRFTC’ 06), Durham Hall, Blacksburg, VA.,
pp: 1-4.

Bard, J. and V.J. Kovarik, 2007. Software Defined
Radio: The Software Communications
Architecture. 1st Edn., John Wiley and Sons Inc.,
ISBN: 0470865180, pp: 462.

Grisby, D., S.L. Lo and D. Riddoch, 2009. The
omniORB version 4.1 user’s guide. AT and T
Laboratories Cambridge, Cambridge.

Henning, M. and S. Vinoski, 1999. Advanced CORBA
Programming with C++. 1st Edn., Addison
Wesley, Reading, Mass., ISBN: 0201379279, pp:
1083.

Murtada, W.A., M.M. Zahra, M. Fikri, M.I. Yousef and
S. El-Ramly, 2011. Design and implementation of
an efficient software communications architecture
core framework for a digital signal processors
platform. Am. J. Eng. Applied Sci., 4: 429-434.
DOI: 10.3844/ajeassp.2011.429.434

Puder, A., K. Romer and F. Pilhofer, 2006. Distributed
Systems Architecture: A Middleware Approach.
1st Edn., Elsevier, Amsterdam, Boston, ISBN:
1558606483, pp: 323.

Ruh, W.A., T. Herron and P. Klinker, 2000. IIOP
Complete: Understanding CORBA and
Middleware Interoperability. 1st Edn., Addison-
Wesley, Harlow, ISBN: 0201379252, pp: 262.

Tari, Z. and O. Bukhres, 2004. Fundamentals of
Distributed Object Systems: The CORBA
Perspective. 1st Edn., John Wiley and Sons Inc.,
Hoboken, NJ., ISBN: 0471464112, pp: 424.

Tsou, T., P. Balister and J. Reed, 2007. Latency
profiling for SCA software radio. Proceedings of
the SDR Forum Technical Conference and Product
Exposition, (FTCPE’ 07), Virginia Tech,
Blacksburg, VA, USA., pp: 1-6.

