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Abstract: Problem statement: Multicore and multithreaded CPUs have become the new approach for 
increase in the performance of the processor based systems. Numerous applications benefit from 
use of multiple cores. Unified threat management is one such application that has multiple 
functions to be implemented at high speeds. Increasing performance of the system by knowing the 
nature of the functionality and effective utilization of multiple processors for each of the functions 
warrants detailed experimentation. In this study, some of the functions of Unified Threat 
Management were implemented using multiple processors for each of the functions. Approach: 
This evaluation was conducted on SunfireT1000 server having Sun UltraSPARC T1 multicore 
processor. OpenMP parallelization methods were used for scheduling the logical CPUs for the 
parallelized application. Results: Execution time for some of the UTM functions implemented 
was analyzed to arrive at an effective allocation and parallelization methodology that is dependent 
on the hardware and the workload. Conclusion/Recommendations: Based on the analysis, the type 
of parallelization method for the implemented UTM functions are suggested. 
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INTRODUCTION 
 
 Network security is one of the most critical 
issues facing today’s internet. Traditionally, for an 
enterprise, a firewall was used as a first line of 
defense. With more complicated network 
environment and mature attack means, the traditional 
firewall strategy cannot meet the demands of 
security. For the combined protection against 
complex and blended threats, multiple security 
features are integrated into a unified security 
architecture that results in a Unified Threat 
Management (UTM) appliance. Unified Threat 
Management products integrate multiple security 
features, such as firewall, VPN, intrusion detection 
and prevention systems, antivirus, spam blocking, 
URL filtering, content filtering and network 
monitoring into a single secure appliance (Qi et al., 
2007). The design challenges of implementing a 
UTM are: the performance of multiple functions, 

cost effectiveness, scalability and co-existence with 
third party software. 
 With the increase in the network speeds and also 
the increase in the security threats, the 
implementation of high performance UTM is 
essential. Multi-core technology offers high 
performance, scalability and energy efficiency. UTM 
processing can be decomposed into parallel activities 
such as per packet, per flow or type of processing.  
 A multicore processor (or Chip-level 
Multiprocessor, CMP) combines two or more 
independent cores into a single Integrated Circuit 
(IC) and performs multiprocessing (Lee and Shakaff, 
2008). Multicore architecture has become more and 
more widely used in intensive computing 
applications as well as in computer networking 
systems. The amount of improvement in performance 
by the use of a multicore processor is dependent on 
the software algorithms and their implementation. 
Scheduling of parallel activities on the multicore 



J. Computer Sci., 8 (1): 68-75, 2012 
 

69 

processor is very vital to improve the performance of 
the system. The underlying hardware of the multicore 
processor has to be effectively used to obtain the 
optimum performance of the system.  
 The per chip core counts are increasing 
significantly. For example, Oracle’s SPARC T3 
processor features up to 16 cores and 128 threads on 
a single chip with integrated logic for 1GbE 
networking and cryptographic coprocessor engines. 
octeon II CN6880 of Cavium Networks is a 32 core 
processor with over 85 application acceleration 
engines that provides high-performance, high 
throughput solution for intelligent networking 
applications (Cavium Networks, 2011).  
 Programming of the multithreaded multicore 
processor needs a thorough understanding of the 
hardware and the effective use of the Application 
Program Interface (API) for parallel programming. 
The task partitioning and CPU allocation in 
multicore processors is done based on the application 
requirement and the time taken for execution of these 
tasks. OpenMP API is one of the parallel 
programming models used to exploit the available 
parallelism of multicore processors. 
 In a multicore environment, CPUs or a set of CPUs 
can be assigned to a particular process. Proper 
performance indicators need to be used for 
simulation, testing and realization of multicore 
implementations. Parallelization of UTM functions is 
considered for generating the load and analyzing the 
performance of the system. 
  
Multithreaded multicore processor architecture: 
The UltraSPARC T1 is a chip multicore/multi-threads 
processor that contains 8 cores and each of the 
SPARC cores has 4 hardware threads. A single 
pipeline processes instructions from four threads and 
completes one instruction in each cycle. All together, 
the chip handles 32 hardware threads and is addressed 
as 32 logical CPUs (Weaver, 2008; Leon et al., 2006). 
 Each SPARC core has a 16 KB, 4-way 
associative, 32B line size of Level 1 instruction 
cache (I Cache), 8 KB, 4-way associative, 16B line 
size of Data Cache (D Cache), 64-entry fully 
associative instruction TLB (Translation Look aside 
Buffer) and 64-entry fully associative data TLB that 
are shared by the four hardware threads. The eight 
SPARC cores are connected through a crossbar to an 
on-chip unified 3 MB, 4-way associative L2 cache 

(64B lines). The L2 cache connects to 4 on-chip 
DRAM controllers, which directly interface to 
DRAM interface.  
 Figure 1 show a simplified block diagram of the 
multicore processor wherein each core has separate L1 
instruction cache and L1 data cache. All the cores share 
the common L2 cache with external shared memory. 
Each hardware thread of UltraPSARC T1 processor has 
a unique set of resources in support of its execution. 
The per-thread resources include registers, a portion of 
I-fetch data path, store buffer and miss buffer. Multiple 
threads within the same SPARC core share a set of 
common resources in support of their execution. The 
shared resources include the pipeline registers and data-
path, caches, Translation Lookaside Buffers (TLB) and 
execution unit of the SPARC core pipeline due to 
which the performance of a thread is also affected by 
other threads running on the same core. 
 UltraSPARC T1 processor has one Modular 
Arithmetic Unit (MAU) per core that supports modular 
multiplication and exponentiation. The hardware thread 
that initiated the MAU stalls for the duration of the 
operation, but the other three threads on the core can 
progress normally. 
  
Open MP: The OpenMP Application Program 
Interface is a portable, parallel programming model for 
shared memory multithreaded architectures (Sun 
Microsystems, 2009; Chapman et al., 2009). OpenMP 
specification version 3.0 introduces a new feature called 
tasking. By using the tasking feature, applications can 
be parallelized where units of work are generated 
dynamically, as recursive structures or while loops. The 
task directive defines the code associated with the task 
and its data environment. The task construct can be 
placed anywhere in the program and whenever a thread 
encounters a task construct, a new task is generated. 
 

 
 
Fig. 1: Simplified block diagram of multicore 

processor with external shared memory 
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 Ayguade et al. (2009) have evaluated the 
performance of the runtime prototype with several 
applications using OpenMP tasking feature and have 
measured the performance in terms of the speedup for 
different number of CPUs and have proved that OpenMP 
task implementation can achieve very promising 
speedups when compared to other established models 
like OpenMP nested, task queues and Cilk. 

   
Packet processing and parallelization: Packet 
processing functions have to be done in real time at 
network line rates. When packet processing functions 
are implemented in multicore processor based system, 
the packet processing rate is dependent on the number 
of threads and cores used for processing and the 
effective utilization of the hardware resources by the 
application programs. Packet processing workload is 
characterized by a large number of simple tasks and 
large amounts of input/output operations. Typical 
packet processing applications include forwarding of 
packets, packet classification, packet scheduling, packet 
statistics and monitoring and security application. 
Gigabit data rates that have to be handled by network 
systems generate significant performance demands 
(Weng and Wolf, 2009). The overall packet processing 
tasks are split into three different tasks, namely, 
receiving, processing and transmitting. Time critical 
functions take place in the processing task and the 
nature and extent of parallelism for the processing task 
and the processor architecture determines the system 
performance (Sleit et al., 2009). 
 The processing demands on the packet processing 
system are affected by computational characteristics of 
all tasks in the system; and by network traffic that 
exercises the processing system. To derive an optimal 
allocation of tasks to processing resources at runtime, 
these factors have to be quantified and considered in the 
mapping process (Wu and Wolf, 2008). 
 Weng and Wolf (2009) presented the analytic 
performance model that could be applied for 
understanding tradeoffs in the network processor design 
space to determine suitable network processor 
topologies and multithreading configurations. 
 The design challenges of implementing a UTM are: 
the performance of multiple functions, cost 
effectiveness, scalability and co-existence with third-
party software. Multiple functions of UTM are to be 
performed simultaneously at required performance 
levels. Hui (2008) discussed the concept of defining the 
policies for the flow based on the classification and the 
implementation of the different policies for the first 

packet and subsequent packets of the same flow. 
Classification, rule based policy enforcement and 
signature based policy enforcement are some of the 
common processes for UTM. Pattern matching is used 
in content filtering, URL filtering, spam filtering and 
intrusion detection functions.  
 In this study, we present the performance analysis 
of UTM functions by varying the assignment of CPUs 
of Sun Microsystems UltraSPARC T1 processor. 
OpenMP is used for parallelizing the code for execution 
on the hardware threads referred as CPUs. We also 
proposed the type of parallelization based on the UTM 
function for better throughput. 
  

MATERIALS AND METHODS 
 
 The performance evaluation is done on SunFire 
T1000 server having Sun Microsystems UltraSPARC 
T1 processor. Sun Studio12 Update 1 Integrated 
Development Environment (IDE) on Solaris 10 
Operating System was used to develop the programs in C 
language and to test the programs. OpenMP parallelizing 
features are used for implementing parallelism within 
each process. Libpcap Application Program Interface 
(API) is used for reading the packets from the physical 
interface or writing the packets to the physical 
interface. Furthermore, POSIX.1b Real-time Extension 
Library is used for message passing, process scheduling 
and timer options. System V message queues are used 
for queuing the packets between various stages. 
 Implementation of UTM requires multiple 
independent processes. Data is communicated between 
these processes by use of message queues. Semaphores 
are used wherever synchronization is necessary. Fork 
function is used to create the required independent 
processes and the processor sets are bound to each of 
these processes. PSet_assign function is used for the 
assignment of the CPU to a particular processor set. 
One processor set each is bound to each of the 
processes. Figure 2 shows the conceptual diagram of 
allocation of processor sets for different UTM 
functions. Seven processor sets are created and CPUs 
are assigned to each of these processor sets. 
 As shown in Fig. 2, one CPU is assigned to 
processor set PSetR for the receive_packets process that 
receives the packets from the physical interface and 
enquires the packets to the appropriate queues based on 
the classification. Another CPU is assigned to processor 
set PSetT for transmit_packets process that dequeues the 
packets from the queues and transmits the packets to 
the physical interface. For implementation of the UTM 
functions like the VPN, spam filtering, URL filtering, 
intrusion detection and virus detection, five processor 
sets PSet1 to PSet5 are bound to five different 
independent processes. 
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Fig. 2: Allocation of processor sets for UTM functionality 
 

 
 

Fig. 3: Block diagram for URL filtering 
 

 Incoming packets are first classified and the stream 
index number is allocated for the packets. All packets 
belonging to the same stream will have the same stream 
index value. Policies are defined for the first packet of 
the stream index based on the five-tuple classification. 
Subsequent packets of the same stream would have 
specific policies enforced. Based on these policies to be 
enforced, the packets are appropriately enqueued for 
specific UTM function processing or forwarded directly 
to the transmit processor set.  
 For parallelization and execution by multiple CPUs 
assigned to a processor set, OpenMP parallelizing 
directives are used.  
  
URL filtering: For URL filtering, URL that is 
extracted from the ftp or the http header field is 
compared with the list of suspicious sites. Block 
diagram for URL filtering is shown in Fig. 3. During 
the initialization phase, each of the 80,000 suspicious 
URLs are extracted from the file, converted to regex 

format and stored in an array. The number of arrays for 
storage of URLs of suspicious sites is equal to the 
number of CPUs used for parallelization of URL 
processing. For testing the performance of URL 
filtering, a maximum of four CPUs are assigned to the 
processor set. Regex functions are used for matching 
each of the URLs extracted from the packet with the 
URLs stored in the arrays. If there is a match, the 
packet is tagged for being dropped; else the packet is 
tagged for being transmitted. Packets to be transmitted 
are queued in the transmit queue for being transmitted 
by the transmit_packet process. 
 Parallelization using OpenMP sections feature is 
used for URL filtering. The number of threads and the 
number of logical CPUs are set to be equal to the 
number of OpenMP sections. URLs are extracted from 
the packet headers and queued for URL filtering. Each 
CPU in the parallel region compares the URL that is 
extracted   from the   queue with   each of   the patterns 
stored   in   the   corresponding    array    concurrently.  
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Fig. 4: Block diagram for spam filtering 
 
Once there is a match in any one of the sections, further 
comparison in all the sections are aborted and the 
execution time recorded for the matching process. 
  
Spam filtering: Spam filtering is applicable to the 
packets that carry the email content and use SMTP 
protocol. The block diagram for implementation of 
spam filtering is shown in Fig. 4. During initialization, 
spam words with probability value for each of the 
words are extracted from the file, the words compiled to 
regex format and then the words along with its probability 
value are stored in the array. These words are used for 
checking the email content and for identifying the mail as 
spam. The packets that are received from the interface are 
classified and after filtering, the Email header and content 
are extracted from the packet and enqueued using the 
message queues. The spam filtering process is done in the 
subsequent stage based on which decision is taken to term 
the mail as spam. In the next stage the mail is transmitted. 
 As the time taken for the spam filtering process, 
i.e., repetitive pattern matching of all the spam words 
and accumulation of the probability value of the 
matched patterns and terming the mail as spam, takes 
relatively longer time that receiving and transmitting 
the packets, the pattern matching process is 
parallelized. The number of CPUs used for 
parallelization is defined in the initialization phase. 
 Experimentation is done using flow based 
parallelization and pattern based parallelization. In flow 
based parallelization, each packet is handled 
independently by each CPU of the processor set 
assigned for spam filtering. CPU dequeues the message, 
implements the logic for spam filtering and then 
enqueues the message. OpenMP tasking feature is used 
for implementing this flow based parallelization.  
 Experimentation is also done using pattern based 
parallelization wherein the same message is 
simultaneously handled for pattern matching by all the 
CPUs of the processor set assigned for spam filtering. 
Parallelization using OpenMP for loop feature is used 
for implementing this pattern based spam filtering. For 
each iteration of the parallelized loop, a word along 
with the probability value is extracted from the array 
and the word is compared with the email message and 

header. In each iteration, repetitive pattern matching for 
each word is done till the end of the content and for each 
match the probability value is accumulated. The summed 
up probability value of all the words is used to check with 
the threshold value to declare the mail as spam. 
 There are three scheduling methods that are used for 
implementation of OpenMP for loop parallelization for 
spam filtering, namely, static scheduling, dynamic 
scheduling and guided scheduling: 
   
• In static scheduling, the number of iterations of the 

for loop are equally distributed to the number of 
CPUs before the parallelization starts  

• In dynamic scheduling, iterations equal to the chunk 
size defined will be allocated by the scheduler to each 
CPU for parallelization. Once the CPU completes the 
assigned iterations, it picks up another chunk value 
for processing. This process continues till the total 
number of iterations is complete  

• In guided scheduling, for each of the CPU 
available for parallelization, based on the 
algorithm, the number of iterations greater than the 
chunk size is allocated initially. Progressively the 
number of iterations reduces to the chunk size. The 
advantage of guided scheduling is that the number 
of times the CPU has to be scheduled reduces 
compared to the dynamic scheduling 

 
 For both the pattern matching methods, 
experimentation is done by changing the number of 
CPUs for the parallelized code that determines the mail 
as spam or not and the total execution time is measured. 
Study was also done on the performance of the 
parallelized region by changing the scheduling 
parameters when using the OpenMP for loop feature.  
  

RESULTS 
 
Performance of URL filtering: The total execution 
time is measured by taking 80 of the 80,000 URLs as 
inputs for URL filtering. These 80 URLs are taken 
such that they occur at uniform intervals spread over 
80,000 URL records.  
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Fig. 5: Packet processing rate for URL filtering with 
varying number of CPUs 

 

 
 
Fig. 6: Packet processing rate for flow-based spam 

filtering with varying number of CPUs 
 

 
 

Fig. 7: Packet processing rate for pattern based spam 
filtering with vary number of CPUs 

 
 Packet processing rate is computed from the 
measured execution time and is as shown in Fig. 5 for 
varying number of CPUs for the parallelized process of 
dequeuing, URL filtering and enqueuing for 80 URLs. 
The execution time is measured for two sets of 
readings, first by allocating the CPUs on different cores 
and then by allocating the CPU on the same core. 
OpenMP sections feature is used for parallelization. 

Performance of flow based spam filtering: Packets of 
1000 bytes each are simulated as email header and 
content and queued for spam mail filtering. The words 
that occur in the spam mail with repetitions of some 
such words are present in the packets. These 80 packets 
are dequeued, checked for spam and later enqueued 
with the status information by the CPUs assigned to 
processor set PSet2 in the parallelized mode. 
 Figure 6 shows the throughput for flow based spam 
filtering while processing 80 packets of 1000 bytes each 
with different number of CPUs in the parallelized 
region using OpenMP tasking feature. 
 
Performance of pattern based spam filtering: Packet 
processing rate measured by processing 80 packets of 
1000 bytes each by varying the number of CPUs in the 
parallelized region for detection of spam mail is shown 
in Fig. 7. OpenMP for loop is used for the 
parallelization. The plot shows the packet processing 
rate for static scheduling, dynamic scheduling and 
guided scheduling. For dynamic scheduling, the chunk 
size is set as 5 and for guided, the chunk size is set as 2.  
 

DISCUSSION 
 
 For URL filtering, as the number of CPUs increase, 
there is reduction in the execution time. The relative 
improvement of the execution time using CPUs of the 
same core vis-à-vis CPUs of different core is mentioned 
in Table 1 for different number of CPUs. 
 URL filtering is normally time consuming and the 
time taken for detecting the pattern match, if any, 
depends on the location of the pattern in the array. URL 
filtering is generally done for only the first packet 
having the new session index. Policy is generally 
defined such that subsequent packets of the same 
session index are not forwarded for URL filtering.  
 Flow-based spam filtering uses OpenMP tasking 
feature wherein each CPU dequeues one packet, 
implements spam filtering and enqueues the packet 
with the status word. Due to the repetitive pattern 
matching requirement for each word, for the given test 
conditions, 1,472 packets could be processed per 
second when six CPUs are allocated for spam filtering.  
 OpenMP for loop feature is used for pattern-based 
spam filtering wherein all the CPUs handle only one 
packet in the parallelized zone but would be 
implementing the repetitive pattern matching with 
different patterns concurrently. The time taken for each 
process is non-uniform due the number of matches that 
would occur for each of the pattern. In static 
scheduling, based on the initial distribution of the 
number of iterations for each CPU, due to the non-
uniformity of time for processing, there is significant 
wait time for all the CPUs to complete the processing 
that adds to the overall processing time.  



J. Computer Sci., 8 (1): 68-75, 2012 
 

74 

Table 1: Relative improvement of execution time using CPUs 
belonging to the same core vis-à-vis CPUs belonging to the 
different cores 

No. of CPUs  Improvement factor 
2 1.05 
3 1.12 
4 1.24 

 
Table 2: Relative improvement using dynamic scheduling methods with 

reference to static scheduling for pattern-based spam filtering 
 Scheduling type 
 --------------------------------------------------------- 
No. of CPUs Dynamic, 5 Guided, 2 
1 1.00 1.00 
2 1.02 1.04 
3 1.05 1.06 
4 1.03 1.07 
5 1.15 1.17 
6 1.05 1.07 

 
Table 3: Relative performance of spam filter using flow based 

approach and pattern based approach 
 Packets per second Packets per second 
  for flow-based  for pattern-based 
No. of CPUs spam filter spam filter 
1 440.92 475.70 
2 733.68 747.58 
3 900.39 791.56 
4 935.67 828.92 
5 1248.05 951.85 
6 1471.67 992.97 
 
This delay is overcome by using the two other 
scheduling methods, namely, dynamic and guided 
scheduling. Table 2 shows the relative improvement in the 
number of packets processed per second using the 
dynamic and guided scheduling methods. Load balancing 
is done effectively by these dynamic and guided 
scheduling methods which show an improvement in 
performance as compared to static scheduling. 
 For the same set of conditions, the comparison is 
done for spam filtering using flow-based and pattern-
based approach. Table 3 shows the relative performance 
of flow-based spam filtering as compared to the pattern-
based spam filtering. As the number of CPUs increase, 
the number of packets processed per second in the 
flow-based spam filtering is greater as compared to the 
pattern-based. This is due to the dynamic scheduling 
overhead for allocation of the number of iterations to 
each CPU and the overheads in handling multiple CPUs 
in OpenMP for loop parallelization.  
  

 CONCLUSION 
 
 Various functions of UTM were studied and the 
URL filtering and spam filtering were implemented 
using the CPUs of the multicore processor. Different 
OpenMP parallelization features were tried for URL 
and spam filtering. OpenMP sections feature is 

appropriate for the URL filtering. For spam filtering, 
flow-based and pattern-based parallelization methods were 
tried. Parallelization using runtime scheduling methods 
like the dynamic and guided were used for pattern-based 
spam filtering. However results show that flow-based 
spam filtering performed better than pattern-based spam 
filtering. Future study will be done in implementing other 
UTM functions and synchronization of UTM functions. 
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