Journal of Computer Science 8 (1): 68-75, 2012
ISSN 1549-3636
© 2012 Science Publications

Effective Utilization of Multicore
Processor for Unified Threat Management Functions

Sudhakar Gummadi and Radhakrishnan Shanmugasundaram
Department of Computer Science and Engineering
Arulmigu Kalasalingam College of Engineering
Anand Nagar, Krishnankoil-626190
Tamil Nadu, India

Abstract: Problem statement: Multicore and multithreaded CPUs have become #ve approach for
increase in the performance of the processor bagsttms. Numerous applications benefit from
use of multiple cores. Unified threat managementome such application that has multiple
functions to be implemented at high speeds. Inimnggserformance of the system by knowing the
nature of the functionality and effective utilizai of multiple processors for each of the functions
warrants detailed experimentation. In this studgme of the functions of Unified Threat
Management were implemented using multiple proassfar each of the functiong\pproach:
This evaluation was conducted on SunfireT1000 sehaving Sun UltraSPARC T1 multicore
processor. OpenMP parallelization methods were dsedcheduling the logical CPUs for the
parallelized applicationResults: Execution time for some of the UTM functions impiented
was analyzed to arrive at an effective allocatiad parallelization methodology that is dependent
on the hardware and the worklodbnclusion/Recommendations. Based on the analysis, the type
of parallelization method for the implemented UTivhétions are suggested.

Key words. Logical CPUs, OpenMP, packet processing, performantalysis, URL filtering, spam
filtering, Unified Threat Management (UTM), pardiltation method

INTRODUCTION cost effectiveness, scalability and co-existencth wi
third party software.
Network security is one of the most critical With the increase in the network speeds and also

issues facing today’s internet. Traditionally, fan the increase in the security threats, the
enterprise, a firewall was used as a first line ofimplementation of high performance UTM s
defense. With more complicated network essential. Multi-core technology offers high
environment and mature attack means, the traditiongerformance, scalability and energy efficiency. UTM
firewall strategy cannot meet the demands ofprocessing can be decomposed into parallel acviti
security. For the combined protection againstsuch as per packet, per flow or type of processing.
complex and blended threats, multiple security A multicore processor (or Chip-level
features are integrated into a unified securityMultiprocessor, CMP) combines two or more
architecture that results in a Unified Threatindependent cores into a single Integrated Circuit
Management (UTM) appliance. Unified Threat (IC) and performs multiprocessing (Lee and Shakaff,
Management products integrate multiple security2008). Multicore architecture has become more and
features, such as firewall, VPN, intrusion detectio more widely used in intensive computing
and prevention systems, antivirus, spam blockingapplications as well as in computer networking
URL filtering, content filtering and network systems. The amount of improvement in performance
monitoring into a single secure appliance @aial., by the use of a multicore processor is dependent on
2007). The design challenges of implementing athe software algorithms and their implementation.
UTM are: the performance of multiple functions, Scheduling of parallel activities on the multicore
Corresponding Author: Sudhakar Gummadi, Department of Computer Sciert&agineering, Arulmigu Kalasalingam

College of Engineering, Anand Nagar, Krishnank@6826, Virudhunagar District, Tamil Nadu,
India Tell: +91-4563-289129

68

J. Computer <ci., 8 (1): 68-75, 2012

processor is very vital to improve the performanée (64B lines). The L2 cache connects to 4 on-chip
the system. The underlying hardware of the mulécor DRAM controllers, which directly interface to
processor has to be effectively used to obtain th© RAM interface.
optimum performance of the system. Figure 1 show a simplified block diagram of the
The per chip core counts are increasingmulticore processor wherein each core has sephiate
significantly. For example, Oracle’s SPARC T3 jnstruction cache and L1 data cache. All the cetese
processor features up to 16 cores and 128 threads ¢he common L2 cache with external shared memory.
a single chip with integrated logic for 1GbE Each hardware thread of UltraPSARC T1 processor has
networking and cryptographic coprocessor enginesa unique set of resources in support of its exenuti
octeon Il CN6880 of Cavium Networks is a 32 coreThe per-thread resources include registers, aquodf
processor with over 85 application acceleration|-fetch data path, store buffer and miss buffer ltidle
engines that provides high-performance, highthreads within the same SPARC core share a set of
throughput solution for intelligent networking common resources in support of their execution. The
applications (Cavium Networks, 2011). shared resources include the pipeline registersiatat
Programming of the multithreaded multicore path, caches, Translation Lookaside Buffers (TLBJ a
processor needs a thorough understanding of thexecution unit of the SPARC core pipeline due to
hardware and the effective use of the Applicationwhich the performance of a thread is also affedtgd
Program Interface (API) for parallel programming. other threads running on the same core.
The task partitioning and CPU allocation in UltraSPARC T1 processor has one Modular
multicore processors is done based on the appdicati Arithmetic Unit (MAU) per core that supports modula

requirement and the time taken for execution os¢he Multiplication and exponentiation. The hardwaree#ut
tasks. OpenMP APl is one of the parallel that initiated the MAU stalls for the duration dfet

programming models used to exploit the ava”ableoperanon, but the other three threads on the care

. . progress normally.
parallelism of multicore processors.

In a multicore environment, CPUs or a set of CPUOpen MP: The OpenMP Application Program
can be assigned to a particular process. Propeénterface is a portable, parallel programming mddel
performance indicators need to be used forshared memory multithreaded architectures (Sun
simulation, testing and realization of multicore Microsystems, 2009; Chapmah al., 2009). OpenMP
implementations. Parallelization of UTM functiorss i specification version 3.0 introduces a new feataled
considered for generating the load and analyzirg thtasking. By using the tasking feature, applicaticas
performance of the system. be parallelized where units of work are generated

dynamically, as recursive structures or while lodse
Multithreaded multicore processor architecture: task directive defines the code associated withtahk
The UltraSPARC T1 is a chip multicore/multi-threadsand its data environment. The task construct can be
processor that contains 8 cores and each of thplaced anywhere in the program and whenever adhrea
SPARC cores has 4 hardware threads. A singlencounters a task construct, a new task is gemerate
pipeline processes instructions from four threandd a
completes one instruction in each cycle. All togeth
the chip handles 32 hardware threads and is adsttess

Processor

as 32 logical CPUs (Weaver, 2008; Lestral., 2006). Cote 0 t:'Ll Cache
Each SPARC core has a 16 KB, 4-way | e I O Shar
Tati H ; : : L1[Cache - ared
associative, 32B line size of Level 1 instruction | Core 1 tjml | F2eache memory

cache (I Cache), 8 KB, 4-way associative, 16B line
size of Data Cache (D Cache), 64-entry fully _
associative instruction TLB (Translation Look aside | Coren ffﬁé;i
Buffer) and 64-entry fully associative data TLB tha
are shared by the four hardware threads. The eight
SPARC cores are connected through a crossbar to #ig. 1: Simplified block diagram of multicore
on-chip unified 3 MB, 4-way associative L2 cache processor with external shared memory
69

J. Computer <ci., 8 (1): 68-75, 2012

Ayguade et al. (2009) have evaluated the packet and subsequent packets of the same flow.
performance of the runtime prototype with severalClassification, rule based policy enforcement and
applications using OpenMP tasking feature and havéignature based policy enforcement are some of the

measured the performance in terms of the speedup fGOMMON processes for UTM. Pattern matching is used

different number of CPUs and have proved that O[ﬁnM?n content filtering, URL filtering, spam filteringnd

task implementation can achieve ver romisin intrusion detection functions.
P y P 9 In this study, we present the performance analysis

speedups when compared to other established model$ yTm functions by varying the assignment of CPUs

like OpenMP nested, task queues and Cilk. of Sun Microsystems UltraSPARC T1 processor.
OpenMP is used for parallelizing the code for exiecu

Packet processng and parallelization: Packet on the hardware threads referred as CPUs. We also

processing functions have to be done in real titne E?rop(_)sed the type of parallelization based on tfiéU
network line rates. When packet processing funstion unction for better throughput.

are implemented in multicore processor based system MATERIALSAND METHODS

the packet processing rate is dependent on the erumb

of threads and cores used for processing and the The performance evaluation is done on SunFire
effective utilization of the hardware resourcesthg 11000 server having Sun Microsystems UltraSPARC
application programs. Packet processing workload id 1 Processor. Sun Studiol2 Update 1 Integrated

characterized by a large number of simple tasks ang€Velopment Environmegt ((;DE)l onh Solaris 10
large amounts of inputioutput operations. TypicalOPerating System was used to develop the progra@s |

packet processing applications include forwardirig oﬁg?ﬁ;%e;gdJgégsgrﬁrﬁr?gﬁginope:r'\éllil?sar?"ﬁiltih
packets, packet classification, packet schedufiagket P 9p

statistics and monitoring and security application.eaCh process. Libpcap Application Program Interface

o (API) is used for reading the packets from the pats
Gigabit data rates that have to be handled by m&two ;. ¢ o o writing the packets to the physical

systems generate significant performance demandgierface. Furthermore, POSIX.1b Real-time Extemsio

(Weng and Wolf, 2009). The overall packet procassin | jhrary is used for message passing, process stihgdu
tasks are split into three different tasks, namelygng timer options. System V message queues are used
receiving, processing and transmitting. Time caitic for queuing the packets between various stages.
functions take place in the processing task and the |mplementation of UTM requires multiple
nature and extent of parallelism for the procestas independent processes. Data is communicated between
and the processor architecture determines the mystethese processes by use of message queues. Sensaphore
performance (Slekt al., 2009). are used wherever synchronization is necessark For
The processing demands on the packet processirfgnction is used to create the required independent
system are affected by computational charactesistic processes and the processor sets are bound tooéach
all tasks in the system; and by network trafficttha these processes. PSet_assign function is usechéor t
exercises the processing system. To derive an aptimassignment of the CPU to a particular processar set
allocation of tasks to processing resources atiment One processor set each is bound to each of the
these factors have to be quantified and considergee ~ Processes. Figure 2 shows the conceptual diagram of
mapping process (Wu and Wolf, 2008). aIIocgUon of processor sets for different UTM
Weng and Wolf (2009) presented the analyticfuncnons' Seven processor sets are created and CPU

performance model that could be applied forareassignedtoeach of these processor sets.

understanding tradeoffs in the network processesigde rocézsc?rhggnP In Frlgt]r.]ezr,ecoer;\(/ee CF;gkeltSs afc:)slcgegzdth;
space to determine suitable network processop Selb P P

topologies and multithreading configurations. receives the packets from the physical interfacd an

. : : enquires the packets to the appropriate queuesl lnese
The design challenges of w_nplementmg aUTm Ar€4he classification. Another CPU is assigned to pssor
the performance of multiple functions, cost

. hy) _ set PSatfor transmit_packets process that dequeues the
effectiveness, scalal_alhty and_co-eX|stence withrdth packets from the queues and transmits the packets t
party software. Multiple functions of UTM are to be the physical interface. For implementation of tHENU
performed simultaneously at required performancqynctions like the VPN, spam filtering, URL filtex,
levels. Hui (2008) discussed the concept of defiite intrusion detection and virus detection, five presm
policies for the flow based on the classificatiodhe sets PSegt to PSet are bound to five different
implementation of the different policies for thesfi independent processes.

70

J. Computer <ci., 8 (1): 68-75, 2012
UTM function
111 R R

————

Spam filter
s T H—
MMy See e = T

. 1 .

TAtEERa Clﬁssﬁy anq \irus detection] Transmit |[pterface
—3 enforce flow j]]]]_) PScts -.——)]]In allowed N
policies PSety, =2 packets PSety
—

Intrusion

)]I[]]> detection "_:’]]ID_)

PSety

[—

VPN

>:]]IH) encrypt/decrypt s
e T

il

Fig. 2: Allocation of processor sets for UTM furmctality

Interface | Receive Classify Extract Pattern LS Policy Transmit | Interface
2 packets —> packets —> URL > match Mgmt [packets [

Extract Compile Store in
suspicious|—>»| toregex 2| arrays
URLs format

Fig. 3: Block diagram for URL filtering

Incoming packets are first classified and theastre format and stored in an array. The number of arfays
index number is allocated for the packets. All mask storage of URLs of suspicious sites is equal to the
belonging to the same stream will have the saneaustr number of CPUs used for parallelization of URL
index value. Policies are defined for the firsthtcof ~ Processing. For testing the performance of URL
the stream index based on the five-tuple classifioa filtéring, a maximum of four CPUs are assignedtte t
Subsequent packets of the same stream would haygocessor set. Regex functions are used for magchin

specific policies enforced. Based on these politdse each of the URLs extracted from the packet with the

enforced, the packets are appropriately enqueued foURLs stored in the arrays. If there is a match, the

o . . acket is tagged for being dropped; else the paisket
specific UTM function processing or forwarded difpc 'E)agged for bgegi]ng transmittged. PF;F():kets to be trglmi
to the transmit processor set.

F lelizat d ion b itinle CPU are queued in the transmit queue for being transdit
. or(;)atra elization an exe;:utlcc))n yMrTI;u t|pe" i 'Shy the transmit_packet process.
assighed 1o a processor sel, Lpen parallelizing™ parallelization using OpenMP sections feature is

directives are used. used for URL filtering. The number of threads ahd t
URL filtering: For URL filtering, URL that is number of logical CPUs are set to be equal to the
extracted from the ftp or the http header field ishumber of OpenMP sections. URLs are extracted from
compared with the list of suspicious sites. Blockthe packet headers and queued for URL filteringhEa
diagram for URL filtering is shown in Fig. 3. Dugn CPU in the parallel region compares the URL that is
the initialization phase, each of the 80,000 sugpg extracted fromthe queue with each of thitgons
URLs are extracted from the file, converted to rege stored in the corresponding array comguly.

71

J. Computer <ci., 8 (1): 68-75, 2012

Extract
mail
contents

Filter based
on mail
address

Interface | Receive

packets

Classify

packets —

— -

Interface
—>

Repetitive
pattern
match

Policy
Mgmt.

Transmit
packets

Compile span
words to
regex format

Extract spam words
with probability
values

—

[

Store words and
prabability values
in array

1
L

Fig. 4: Block diagram for spam filtering

Once there is a match in any one of the sectiamthdr
comparison in all the sections are aborted and th
execution time recorded for the matching process.

Spam filtering: Spam filtering is applicable to the

protocol. The block diagram for implementation of
spam filtering is shown in Fig. 4. During initigditton,
spam words with probability value for each of the
words are extracted from the file, the words coatpio
regex format and then the words along with its ity
value are stored in the array. These words are fmsed
checking the email content and for identifying thail as
spam. The packets that are received from the auerére
classified and after filtering, the Email headed aontent

are extracted from the packet and enqueued usig th

message queues. The spam filtering process isiddhe
subsequent stage based on which decision is takemt
the mail as spam. In the next stage the mail istrétted.

As the time taken for the spam filtering process,
i.e., repetitive pattern matching of all the spawrds
and accumulation of the probability value of the

matched patterns and terming the mail as spams take

relatively longer time that receiving and transimgt

packets that carry the email content and use SMTP

header. In each iteration, repetitive pattern niagcHor
gach word is done till the end of the content amcehch
match the probability value is accumulated. Thersadh
up probability value of all the words is used tedhwith
the threshold value to declare the mail as spam.

There are three scheduling methods that are osed f
implementation of OpenMPRor loop parallelization for
spam filtering, namely, static scheduling, dynamic
scheduling and guided scheduling:

* In static scheduling, the number of iterationshef t
for loop are equally distributed to the number of
CPUs before the parallelization starts

In dynamic scheduling, iterations equal to the &un
size defined will be allocated by the scheduleraoh
CPU for parallelization. Once the CPU completes the
assigned iterations, it picks up another chunkevalu
for processing. This process continues till theltot
number of iterations is complete

In guided scheduling, for each of the CPU
available for parallelization, based on the
algorithm, the number of iterations greater than th
chunk size is allocated initially. Progressivele th
number of iterations reduces to the chunk size. The

th ket th tt tchi i . . .

p;a||gﬁl;e§_s’ Thee nE?nbeerrn OTa %IIDnL?S pljcs)ggss fo:s advantage of guided scheduling is that the number

parallelization is defined in the initialization ae. of times the CPU has to be scheduled reduces
Experimentation is done using flow based compared to the dynamic scheduling

parallelization and pattern based parallelizatlarflow)

based parallelization, each packet is handled FoOr both the pattern matching methods,

independently by each CPU of the processor segxperimentation is done by changing the number of

assigned for spam filtering. CPU dequeues the rgessa
implements the logic for spam filtering and then
enqueues the message. OpentgiRing feature is used
for implementing this flow based parallelization.
Experimentation is also done using pattern base
parallelization wherein the same message
simultaneously handled for pattern matching byttadl
CPUs of the processor set assigned for spam fitieri
Parallelization using OpenM#r loop feature is used
for implementing this pattern based spam filteriRgr
each iteration of the parallelized loop, a wordnglo
with the probability value is extracted from theagr

CPUs for the parallelized code that determinesnibé

as spam or not and the total execution time is areds
Study was also done on the performance of the
parallelized region by changing the scheduling
parameters when using the OpenfdPloop feature.

is

RESULTS

Performance of URL filtering: The total execution
time is measured by taking 80 of the 80,000 URLs as
inputs for URL filtering. These 80 URLs are taken
such that they occur at uniform intervals spreadrov

and the word is compared with the email message angi0,000 URL records.

72

J. Computer <ci., 8 (1): 68-75, 2012

= CPUs on different cores Performance of flow based spam filtering: Packets of
%0 CPUs on same cores 1000 bytes each are simulated as email header and
3 % - content and queued for spam mail filtering. The dsor
2 70 that occur in the spam mail with repetitions of som
% 60 — .
2 50 P such words are present in the packets. These 8@{sac
£ 40 e are dequeued, checked for spam and later enqueued
30 with the status information by the CPUs assigned to
20 processor set PSét the parallelized mode.
1 2 3 4 Figure 6 shows the throughput for flow based spam
Number of CPUs filtering while processing 80 packets of 1000 byash

with different number of CPUs in the parallelized

Fig. 5: Packet processing rate for URL filteringtiwi region using OpenMRBasking feature.

varying number of CPUs o
Performance of pattern based spam filtering: Packet

CPTle on same cores processing rate measured by processing 80 packets o
"+ CPUs on different cores 1000 bytes each by varying the number of CPUsén th
2500 parallelized region for detection of spam mail iewn
, in Fig. 7. OpenMP for loop is used for the
— parallelization. The plot shows the packet processi
rate for static scheduling, dynamic scheduling and

1500
. / guided scheduling. For dynamic scheduling, the khun
1000 — size is set as 5 and for guided, the chunk sigetigs 2.

/:/ B
500

i DISCUSSION

Packets (sec)

,_.
2

3 4 3 6 For URL filtering, as the number of CPUs increase,
Number of CPUs there is reduction in the execution time. The ietat
improvement of the execution time using CPUs of the
Fig. 6: Packet processing rate for flow-based spamsame core vis-a-vis CPUs of different core is nueail
filtering with varying number of CPUs in Table 1 for different number of CPUs.
URL filtering is normally time consuming and the
—a- Scheduling: Static time taken for detecting the pattern match, if any,
i e depends on the location of the pattern in the atsRL
—— Scheduling: Guided, 2
1000 filtering is generally done for only the first paatk
00 /‘/: having the new session index. Policy is generally
// s defined such that subsequent packets of the same
500 e =X session index are not forwarded for URL filtering.
700 g Flow-based spam filtering uses OpenNHaking
o Y feature wherein each CPU dequeues one packet,
/ implements spam filtering and enqueues the packet
500 with the status word. Due to the repetitive pattern
. ‘ . ‘ ‘ matching requirement for each word, for the givest t
1 2 3 4 5 s conditions, 1,472 packets could be processed per
Number of CPUs second when six CPUs are allocated for spam filgeri
OpenMPfor loop feature is used for pattern-based
Fig. 7: Packet processing rate for pattern baseansp spam filtering wherein all the CPUs handle only one
filtering with vary number of CPUs packet in the parallelized zone but would be
implementing the repetitive pattern matching with
Packet processing rate is computed from thejifferent patterns concurrently. The time takendach
measured execution time and is as shown in Figur5 f process is non-uniform due the number of matchats th
varying number of CPUs for the parallelized proa#ss would occur for each of the pattern. In static
dequeuing, URL filtering and enqueuing for 80 URLS.scheduling, based on the initial distribution ofe th
The execution time is measured for two sets ohumber of iterations for each CPU, due to the non-
readings, first by allocating the CPUs on differeates uniformity of time for processing, there is signifint
and then by allocating the CPU on the same corewait time for all the CPUs to complete the procegsi
OpenMPsections feature is used for parallelization. that adds to the overall processing time.

73

400

J. Computer <ci., 8 (1): 68-75, 2012

Table 1: Relative improvement of execution time ngsiCPUs
belonging to the same core vis-a-vis CPUs belongprtpe
different cores

No. of CPUs Improvement factor
2 1.05
3 1.12
4 1.24

Table 2: Relative improvement using dynamic schieduhethods with
reference to static scheduling for pattern-basachdjitering

Scheduling type

No. of CPUs Dynamic, 5 Guided, 2
1 1.00 1.00
2 1.02 1.04
3 1.05 1.06
4 1.03 1.07
5 1.15 117
6 1.05 1.07

Table 3: Relative performance of spam filter usifigw based
approach and pattern based approach

Packets per second
for flow-based

Packets per second
for pattern-based

No. of CPUs spam filter spam filter
1 440.92 475.70
2 733.68 747.58
3 900.39 791.56
4 935.67 828.92
5 1248.05 951.85
6 1471.67 992.97

This delay is overcome by using the two other
scheduling methods,
scheduling. Table 2 shows the relative improveriretite

number of packets processed per second using the

dynamic and guided scheduling methods. Load balgnci

namely, dynamic and guided

appropriate for the URL filtering. For spam filtegi
flow-based and pattern-based parallelization mestheazte
tried. Parallelization using runtime scheduling moets
like the dynamic and guided were used for pattesed
spam filtering. However results show that flow-lshse
spam filtering performed better than pattern-baseamn
filtering. Future study will be done in implemergionther
UTM functions and synchronization of UTM functions.

ACKNOWLEDGMENTS

The researchers acknowledge TIFAC-CORE in
Network Engineering (established under the Mission
REACH program of Department of Science and
Technology, Govt. of India) for providing necessary
facilities for working on this project.

REFERENCES

Ayguade, E., N. Copty, A. Duran, J. Hoeflinger and
Lin et al., 2009. The design of OpenMP tasks.
IEEE Trans. Parallel Distrib. Syst., 20: 404-418.
DOI: 10.1109/TPDS.2008.105

Chapman, B., L. Huang, E. Biscondi, E. Stotzer And

Shrivastavaet al., 2009. Implementing OpenMP on

a high performance embedded multicore MPSoC.

Proceedings of the IEEE International Symposium

on Parallel and Distributed Processing, May 23-29,

IEEE Xplore Press, Rome, pp: 1-8. DOL:

10.1109/IPDPS.2009.5161107

is done effectively by these dynamic and guidedCavium Networks, 2011, Octeon I CN68XX Multi-

scheduling methods which show an improvement in

performance as compared to static scheduling.

done for spam filtering using flow-based and patter
based approach. Table 3 shows the relative perfozena
of flow-based spam filtering as compared to thégpat

based spam filtering. As the number of CPUs in&@gas

Core MIPS64 Processors Product Brief.

.) Hui, M., 2008. Designing UTM with a Multi-Core
For the same set of conditions, the comparison is

Processor.

Lee, W.F. and A.Y.M. Shakaff, 2008. Implementing a
Large Data Bus VLIW Microprocessor. Am. J.
Applied Sci., 5: 1528-1534. DOI:

the number of packets processed per second in the 10.3844/ajassp.2008.1528.1534

flow-based spam filtering is greater as comparethéo
pattern-based. This is due to the dynamic scheglulin
overhead for allocation of the number of iteratidas
each CPU and the overheads in handling multiple <PU
in OpenMPfor loop parallelization.

CONCLUSION

Various functions of UTM were studied and the
URL filtering and spam filtering were implemented
using the CPUs of the multicore processor. Differen
OpenMP parallelization features were tried for URL
and spam filtering. OpenMPsections feature is

74

Leon, A.S., B. Langley and J.L. Shin, 2006. The
UltraSPARC T1 processor: CMT Reliability.
Proceeding of the IEEE Custom Integrated Circuits
Conference, Sept.10-13, IEEE Xplore Press, San
Jose, pp: 555-562. DOl:
10.1109/CICC.2006.320989

Y., B. Yang, B. Xu and J. Li, 2007. Towards
system-level optimization for high performance
unified threat management. Proceedings of the 3rd
International Conference on Networking and
Services, Jun. 19-25, IEEE Xplore Press, Athens,
pp: 7-7. DOI: 10.1109/ICNS.2007.126

Qi,

J. Computer <ci., 8 (1): 68-75, 2012

Sleit, A., W. AlMobaideen, M. Qatawneh and H. Weng, N. and T. Wolf, 2009. Analytic modeling of
Saadeh, 2009. Efficient processing for binary network processors for parallel workload mapping.
submatrix matching. Am. J. Applied Sci., 6: 78-88. ACM Trans. Embedded Comput. Syst., 8: 1-29.
DOI: 10.3844/ajassp.2009.78.88 DOI:10.1145/1509288.1509290

Sun Microsystems, 2009. Sun Studio 12 Update 1_Nu, Q. ‘F.md T. Wolf, 2008. On_ runtime management in
OpenMP APl User's Guide 1st Edn. Sun multi-core packet processing systems. Proceedings

P . " of the 4th ACM/IEEE Symposium on Architectures
Microsystems, Inc, USA., pp: 73.

for Networking and Communications Systems,
Weaver, D., 2008. OpenSPARC Internals. 1st Edm, Su (ANCS’ 08), ACM, New York, USA., pp: 69-78.

Microsystems, Inc, USA., ISBN: 978-0-557- DOI: 10.1145/1477942.1477953
01974-8, pp: 369.

75

