Journal of Computer Science 8 (1): 61-67, 2012
ISSN 1549-3636
© 2012 Science Publications

First Token Algorithm for Searching
Compound Terms Using Thesaurus Database

YYousef Abuzir andThabit Sabbah
'Department of Computer Information Systems,
Al Quds Open University, Salfeet, Palestine,
ICTC Center, QOU, Ramallah, Palestine

Abstract: Problem statement: Searching text materials is the one of the mogtoitant operations
that carried out by search engines either on webesktop applications, searching algorithms are
required sometimes to find a specific word intoeat,t others to find a multi word term (pattern
matching) into a text. Searching for term into asurus database can be carried out using many
searching algorithm such as brute-force algoritimh athers Approach: We addressed several issues
concerning developing a searching algorithm tharcke terms into thesaurus database. Two exact
algorithms were discussed and compared. The fgstitom, brute-force algorithm and the second one
were proposed by this study to enhance brute-falgarithm. Results: We proposed an efficient search
algorithm and compare it with brute force techniqg@emputational results showed that our algorithm
can provide an efficient search algorithm that oeguthe number of queries and the total time reduir
to finish the required tasikConclusion: Our study showed an optimum solution for largee of the
studied problem with much less processing time thiza brute-force algorithm. The modified
algorithm has a higher efficiency to deal with Ténesis Database searching problems.

Key words. Brute-force, pattern matching, information retrieveompound terms searching, First
Token (FT), thesaurus database, training thesaurus

INTRODUCTION the list. It is used for indexing, classifying, sgdng
and text mining. Terms in thesaurus are listed
Searching is the basic process in Informationalphabetically and some are hierarchically, this
Retrieval (IR) science. Documents, data withinhierarchically indicates the relation between terthe
documents, relational databases, Schemas and Ww¥oader term “BT” represent the super class oft¢hen
are the main sources where information can bd&vhile the narrower term “NT” represents the subglas
(es) of the term. Some thesauri have the USE aed Us
For (UF) relations to indicate the alternation efnms
)&Robert, 2006; Abuzir, 2010).
Searching about text into a thesaurus databaeseyor
ther data sources require the traversing of earch or
ompound term of the text. Our objective is toddtice

retrieved. Searching information needs a searcinesg
types and different data sources. Text search egsgin
are the most common search engines type, Full-te
search is the process of examining all of the wamnds
computer-stored document(s) or database to matc

search words supplied by the user. Full-text séageh .an efficient search algorithm within the thesaurus

techniques become widely common and supported IHatabase; this search algorithm can be used iereith

either web ~applications —or ~ desktop appl'cat'onindexing or information retrieval applications. Thext

programs. Text search is applicable in e'busme_s%gections are an overview over the problems we asidre
h””_‘a” resources departme_nts and others. Also,at 'S Brute-force algorithm and our enhanced algorithmstFi
basu_: s_upported fea_lture in any word ProcessNGryyen (FT) Algorithm. Finally,discussion, results and
application such as Microsoft Word or databaserexgi conclusion are presented in the last sections.
like Oracle (Douget al., 2011), MySQL and SqlServer.

A Thesaurus is a list of very important term Background: Searching for text in database or any
(single-word or multi-word) in a given domain of other data source based on string searching aigusit
knowledge and a set of related terms for each tarm These Algorithms check the existence and the looati

Corresponding Author: Yousef Abuzir, Department of Computer Informatioys@ms, Al-Quds Open University (QOU),
P.0.Box 51800, PostalCode 97917, Jerusalem, Palest
61

J. Computer i, 8 (1): 61-67, 2012

of a substring (also called pattern) into anothteng query the database to check the existence, thé tota

(Lin, 2009; Chen et al., 2011; Sleit et al., 2009) number of queries in this case is (t) times. Suppbat
Many algorithms of string matching were the terms in database field are of length (I-1)etwk

introduced as an enhancement of the simplest stringhat is mean we can form a compound terms of length

matching algorithm. The Naive search (brute-foise) (). The total numbers of queries to search for the

the simplest and the less efficient algorithm amsigg ~ coMpound terms can be calculate by Eq. 1:

matching algorithms (Lokman and Zain, 2010). Brute- , -

force algorithm is simple to implement, need no 2"~ XN 1)

preprocessing of text and always find the result if

is exists. It based on making a comparison at each The following Fig. 1-3 explains the growth rate in

and every possible point while sliding the windofv o the number of queries with respect to text size tied

search (Christian and Robert, 2000). maximum count of tokens in the database field.
Knuth-Morris-Pratt (KMP) and Boyer-Moore To explain the previous formula and graphs,

(?M)_?‘Igori_thms. (Lin, 20;)9) are tr?e comm?n%eused consider the following text. “Information RetrievdR)
algorithms in string matching. Both are S”T,"a” 8 is the science of searching for documents, or
used, time complexity and both don't perform.

complicated arithmetic on characters. BM algoritism mforma_\tlon W't_h'n document as well as that O_f
more complicated than KMP but it is a little faster ~S€arching relational databases and the World Wide

practice. Finite State Machine (FSM) (Cormen, 2001)/Veb”. Also consider the following list of terms:
was introduced as a base for string matching alyuori

this algorithm firstly builds a state table themslate it Ild 'll'efrm i rieval Tok2en5 count
on the input text. The bitap algorithm (Shift-ohifs > lrFLorma lon retrieva |
and or Baeza-Yates-Gonnet algorithm) is a fuzzpgtr .

; ; ; ; - 3 World Wide Web 3
matching algorithm, this algorithm adapts easily to4 Information technology standards 3

approximate string matching and uses the bitwis
techniques, it is efficient if the pattern length no

D

100007

longer than the memory-word size of the machine 50001
(Manber and Wu, 1992). 8000

Benjamin et al., (2006) described XTM system g o
which has the ability to search for text that magla :% <000
set of rules or patterns “regular-expression”, kkeial- 40001
security numbers, email addresses, phone numbleis. T 20007
regular-expression matching can be performed oo
concurrently for up to 50 rules. In recent yeargwad 0

0 200 400 600 800 1000
Text length (Tokens)

search over semi structured and structured datdéers
extensively studied by Fredriksson (2010); Al-mazmad
Rashid, 2011); Alajlan et al. (2009. Other reseznsh Fig. 1. Growth rate in number of queries related to

Agrawal et al. (2002); He et al. (2007); Carmelakt growth of text size with constant count of
(2003); Vu et al. (2008); treated keyword search in tokens in database field (10 tokens)
databases as a graph. These approaches are

computationally expensive. (Al-mazroi and Rashiail) 25000 -

proposes the combination of two algorithms namely

Berry-Ravindran and Skip Search Algorithms to faam 200001

hybrid algorithm in order to boost search perforogan

15000

Queries

MATERIALSAND METHODS 10000 |
Brute-force algorithm (Lin, 2009) is simple to 0
implement no need of preprocessing of text and ydwa 0 . ‘ ‘ :
find the result if it is exists. However this teddume is 0 s 10 15 20

Term length (Tokens)

proportionally cost growth to the problem size gtiow
for example consider the problem of finding the bem
of occurrences of each word within a document &nat Fig. 2: Growth rate in queries related to growtiurtt
exists in a database field which is one word tettm, of tokens in database field with constant text
brute force technique will traverse all tokens gt)d size (1000 tokens)

62

J. Computer i, 8 (1): 61-67, 2012

7 As a result the total number of queries can be

.| O b expressed by the following formula (4):

15 4 11145 ! s
| 2.n-
@ Queries
n=1 n=1
104 0 4955

From Eq. 4 and based on our text sample we can

n (4)

Text length

54 @ 1240 ;
calculate the total number of queries for Brutezéor
o +2 ; algorithm. The text contains 14 tokens (t) (tokaresin
0 R ey Bold, the rest are stop words and will be ignorgdhe

system) and the maximum number of Token Count (1)
Fig. 3: Growth rate in queries related to growtlbofh: in a term is 3. We can find that the total numbér o
count of tokens in database field and text sizequeries is equal to 39 queries:
The volume of bubble in graph represents the

number of queries fn—1§3n=l4(14+ D, 1ax 9 105 — 66= 3¢
n=1 n=1 2 2

Token_ID The proposed approach-First Token (FT): In this
study we proposed an enhanced algorithm to Brute-
force algorithm called (FT).

Our study based on the existing approach and the

Fig. 4: ER diagram shows the relation betweenab&@t yn4)ysis of the effectiveness of different sourceshe

In our first test, we used our sample text aboufotal number of queries and on the total time. We
information retrieval. To search the text usingteru described the structure of the databases and erplai
force algorithm, the text should be traversed 3eim how our approach reduced the number of queries and
which is the maximum number of tokens in the list. the total time required to finish the required task
the first phase the algorithm will search for agtn
term (token), each word in the text will be usedjbery Database structure: The proposed enhancement
the database. In this case, the number of quegieale depend on creating two other tables related tarthin
the number of tokens count in the term. In secondist of terms in the databases, the first one edihtain a
phase, a compound term of two words will belist of first token of each terms, while the otheil
considered as one term and this term will be used tcontain the Id of terms that begins with specified
guery the database. So, the first term in our examp Token. The following Entity-Relation diagram E-R
will be “Information retrieval “while the second en Diagram (Fig. 4) illustrates the relations betwésrles.
will be “retrieval IR” and so on, this will yield &-1) Table-1 shows an instance of the database from
terms in this round. Third phase will use a termsist our sample example. The flowchart in Fig. 5 exgain
of three tokens, starting from the term “Informatio how to use the E-R Diagram in Fig. 4 and Table 1.
retrieval IR” and the last term will be “World Wide
Web”. The number of queries in this round is (tB)e
total number of queries in all the three phasestn
example can be calculated using the following Eq. 2

Token

The proposed algorithm: Fig. 5 shows the main steps
in searching for a term in the databases. The psocé
searching text terms in the database can be pexfbrm
by traversing the text tokens for one time. In thiigse
(t+ (t-1) + (t-2)) (2) each token of the text will be used to query theetaf
. (Tokens) from the new model.
I_n general, the total number qf queries of text If the system returns a (TokenID) from Tokens
consists of (t) tokens and (I) the maximum tokemsnt (516 this means that two extra queries are neeted
in terms in the database is Eq. 3: first one is querying the Terms_Tokens table, toagje
(TermIDs) that begins with the specified (TokenlID).
THELH L2463+ (H2) + (D) + B The second one is querying Terms table to get a
Consider the following series: Temporary List of (Tokens count) for that term Id
(TermIDs) and the list of the terms in the thesauru
14243+ ...+ (t)+ (t-+41) + (t-1+2) + ... +t-3 t-2 database (Terms List). The (Tokens count) of terms
Ft1 +1t :i” used to determine the length of the compound teah t
=1 our system can extract from text collection.
63

J. Computer <ci., 8 (1): 61-67, 2012

Table 1: The new relationships

Token Terms-Token Terms
Token ID Token Token ID Term ID Terms ID Term Bokcount
1 Information 1 1 1 Information retrieval 2
2 IR 1 4 2 IR 1
3 World 2 2 3 World Wide Web 3
3 3 4 Information technology standards 3

TokenlD TermlID
1 1
1 4

Text has more
takens

Now, we query Terms Table for TermIDs 1 and 4.
The result of this query will contain the terms &tsl
(TokensCount) as follows:

Get (Token)

Query (tokens) table using (token) to get

(tokenID) TermID Term Tavls Count
1 Information retrieval 2
- 4 Information technology standards 3
Query (terms_tokens) table using (tokeniD) Based on the previous result, the system build

to gat (termsID)

terms from text collection starting with the curren
token and length of 2 and 3 tokens, the builtvigk be

Query (terms) table using (termsIDs) to get

(termslist) as follows:
v
Extract temporary set of (tems .
tokens count) Built terms:
+ Information retrieval
Build list of terms from text with lengths Information Retrieval (| R)
found in temporary set
Check t‘mftfﬂff;flﬁf_f;?:s list) within the The final step is to check the existence of terms
g' from query result table within the Built Terms list
S

Numerically, our example need to make 13 queries to
the Tokens table, with 3 extra 2 queries when E®ce
the tokens “Information”,”IR”,"World”. While the

The system parsed our sample text collections usieg Prute force technique need to perform 39 queriée T
tokens counts and constructs a list of compouneister following pseudo code listing of the proposed aion
(Build List) start with the term in query. Finallghe illustrates the proposed enhancement approach.

system use the list of the terms returned by oaryq(list _ _ _ _
of thesaurus terms from the database) to searcthéor First Token Algorithm: Searching terms into
occurrence of these terms in the compound termasatetl ~ thesaurus database using First Token (proposed name
and build by our system from the text collection. of method) technique:
This model automated and restricted the _
. For | = 1 to text.tokensCount
construction process of the compound terms from the el
. X) For j = 1 to tokens.count
text collection. It is clear how long is the compdu —_— .
d1th . If tokens[j] = Text]i]
term and the starting term. ,) L = list of distinct # of tokens for terms starts
Back to our example, starting with token ith Text[i]
“Information”, we query the Tokens Table, this gives For each length in L
the (TokenID = 1), meaning that we need to perform TempTerm =
two extra queries, first we use (TokenID = 1) teeiqu buildTermfromtextoflength(length)
Terms_Tokens Table, resulting the following list of For = 1 to
TokenlIDs and TermIDs: termsStartswithToken][j].Count

64

Fig. 5: Searching for a term in the databases imode

J. Computer <ci., 8 (1): 61-67, 2012

_ I field of vocational education and training. We used
(termsStartswithToken([j]).[k] = tempTerm our Tool ThesCov to built this Thesaurus from Web
Append thesaurusfi] to result array site related to the domain of Training. The other

Breack to next length . .
End for k thesal_m were constructed using our Tool ThesCov

Edn for each (Abuzir, 2010).
End for j DISCUSSION
End for |

In Table 3 the average time (normalized) for both
RESULTS algorithms was calculated. Comparing our resultbifote
.)) ~ force algorithm and First Token (FT) algorithm, wen
An experiment: Our data collections consist of five conclude that FT algorithm is more efficient in diron all
different thesauri. Table 2 gives a summary of éhes jcas of token length, especially for large numtfer
thesauri. A sample of 15 text collections was.uwe. tokens matching. The graph in Fig. 6 shows the time
test our systgm with these dgta collections. Werequired for each algorithm using the first thesaur
experiment with these collections and databases We repeated the test with the other four thesandi
different length of tokens. The variable lengthtbé different data collections. A Summary of the avertige
tokens ranges were from 50-991 tokens. The SyStequuired for both Brute l'=orce and First Token aflgors

uses §top list to remove noisy terms from the tex o search terms of different length from our tedltection
collections. We ran both algorithms Brute Force and . -)
using thesauri is shown in Table 3.

First Token (FT) using our data collections and Figure 7 and 8 show time required for BF and FT

thesauri. In each experiment we found the aVeragglgorithms respectively using the different thesaur

proces;ing timg for each algorithm based on th(?:igure 9 shows time required for BF and FT algonish
dynamic changing of the length of tokens that rang%sing the different thesauri.

from 50-991. We plotted and compared the result for Tha worst case of the proposed enhancement
each experiment. . algorithm occurs when each token of the text foimd
In the first eXperlment we used the first thesauru Tokens table that means we need more two extra

(Training Thesaurus). The Training Thesaurusqueries. Here we need the same total number ofeguer
constitutes the controlled vocabulary of refereincthe as brute force algorithm.

Table 2: A summary of thesauri
Thesaurus name # Terms #Distinct first tokens Tlength average (token) Max term tokens count Seraf tokens counts

Thesaurus 1 2522 1749 1.874 12 1, 2,334,561
Thesaurus 2 3564 2363 1.844 8 1,2,3,45,6,8

Thesaurus 3 5800 3475 1.857 7 1,2,3,4,5,6,7

Thesaurus 4 69794 45042 1.903 9 1,2,3,45,6,7,89
Thesaurus 5 19726 10287 2.183 15 1,2,3,4,5,6,1(814,12,14,15

Table 3: Time elapsed to search terms of diffel@mgth from our text collection in seconds using different Thesauri

Thesaurus 1 Thesaurus 2 Thesaurus 3 Thesaurus 4 Thesaurus 5
Text length
(token) BF average FT average BF average FT averagBF average FT average FT average BF average Fagee BF average
50 0.002 0.000 0.001 0.000 0.002 0.000 0.000 0.001 0.00 0.002
66 0.002 0.000 0.002 0.000 0.002 0.000 0.000 0.002 0.00 0.002
94 0.003 0.000 0.003 0.000 0.003 0.000 0.000 0.003 0.00 0.003
117 0.004 0.000 0.003 0.000 0.004 0.001 0.000 0.003 0.00 0.004
163 0.006 0.000 0.005 0.001 0.006 0.001 0.000 0.005 0.00 0.006
342 0.009 0.001 0.007 0.001 0.009 0.001 0.001 0.007 0.001 0.009
317 0.012 0.001 0.010 0.001 0.012 0.001 0.001 0.010 0.001 0.012
379 0.014 0.001 0.012 0.002 0.014 0.002 0.001 0.012 0.002 0.014
410 0.015 0.001 0.013 0.002 0.015 0.002 0.015 0.013 0.013 0.015
500 0.019 0.002 0.015 0.002 0.019 0.002 0.002 0.015 0.002 0.019
635 0.024 0.002 0.020 0.002 0.024 0.002 0.002 0.020 0.002 0.024
739 0.028 0.002 0.023 0.003 0.028 0.003 0.002 0.023 0.003 0.028
836 0.032 0.002 0.026 0.003 0.032 0.003 0.002 0.026 0.003 0.032
914 0.035 0.003 0.029 0.003 0.035 0.004 0.003 0.029 0.003 0.035
991 0.38 0.003 0.310 0.004 0.38 0.004 0.003 0.031 .0040 0.038

J. Computer <ci., 8 (1): 61-67, 2012

Time

—m—FT Avg
—e—BFAvg

/

Pq

- .
| -

—

50 66 94 117 163 243 317 379 410 500 635 739 836 914 991

Fig. 6: Time required for BF and FT algorithms

Time required for BT algorithm
0.040

0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.000

a4

50 66 98 117 163 243 317 379 410 500 635 739 836 914 991

—e—BT AvgThesaurus1 BT Avg Thesaurus 2 —a— BT Avg Thesaurus 3

=BT Avg Thesaurus 4 —+—BT Avg Thesaurus5

Fig. 7: Time required for BF algorithms using ttreef

different thesauri

Time required for FT algorithm

0.02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002
0 E—a—i
50 66 94 117 163 243 317 379 410 S00 635 739 836 914 991

—+—FT Avg Thesaurusl FTAvg Thesaurus 2 —ar—FTAvg Thesaurus 3

—=FT Avg Thesaurus4 ——FT Avg Thesaurus 5

Fig. 8: Time required for FT algorithms using theef
different thesauri

Average time required for BF andFT algorithm

using the five thesauri
0.015
0.01
0.005
]
Thesaurus4
Thesaurus5

‘I'hesaurusin’
esaurus 2
Thesaurus 3

WBFAvg W FTAvE

Fig. 9: Time required for BF and FT algorithms gsin
the different thesauri
66

CONCLUSION

In summary, the proposed approach builds a new
database structure (Fig. 4). The system createse the
tables only one time. Using these new tables ts&gy
decrease the number of queries needed to search in
the database. The new structure build new index to
be used in searching thesaurus database instead of
using the whole database. The system searches for
any term in the new indexed tables instead of the
original database.

In this study we proposed a string searching
algorithm called First Token (FT) as an improvement
of the brute force algorithm. Our experiments and
data collections showed that the proposed algorithm
is efficient. Our algorithm can perform in a faster
and more efficient manner than brute force
algorithm. Our algorithm decrease the number of
queries required to query the databases and stareh

REFERENCES

Doug, G., C. Karen, C. Patrick, G. S. Martin an#l.S.
Timothy, 2011. Beginning Oracle Application
Express 4. 1st Edn., Apress Publicatiddew
York, ISBN: 978-1430231479, pp: 440.

Robert, L.M., 2006. Decisions in thesaurus consimac
and Use. Inform. Proc. Manage., 43: 958-968.
DOI: 10.1016/j.ipm.2006.08.011

Abuzir, Y., 2010. Constructing the medical thesawaa
a tool for indexing, J. AL-Quds Open Univ. Res.
Study, Palestine.

Lin, J., 2009. Brute force and indexed approacloes t
pairwise document similarity comparisons with
MapReduce. Proceedings of the 32nd International
ACM SIGIR Conference on Research and
Development in Information Retrieval, July 19-23,
ACM, New York, USA., pp: 155. DOI:
10.1145/1571941.1571970

Chen, Y., Wang W. and Liu Z., 2011. Keyword-based
search and exploration on databases. Proceeding of
the IEEE 27th International Conference on Data
Engineering,Apr. 11-16, IEEE Computer Society
Washington, USA., pp: 1380-1383.
DOI: 10.1109/ICDE.2011.5767958

Sleit, A., W. AlMobaideen, M. Qatawneh and H.
Saadeh, 2009. Efficient processing for binary
submatrix matching. Am. J. Applied Sci., 6: 78-88.
DOI: 10.3844/ajassp.2009.78.88

Lokman, A.S. and J.M. Zain, 2010. One-match ahd al
match categories for keywords matching in

J. Computer i, 8 (1): 61-67, 2012

chatbot. Am. J. Applied Sci.,, 7: 1406-1411. Agrawal, S., S. Chaudhuri and G. Das, 2002.

DOI: 10.3844/ajassp.2010.1406.1411.
Christian, L. and H.B. Robert, 2000. Fast exadhgtr
pattern-matching algorithms

Investig., 7 378-391. DOl:
10.1136/jamia.2000.0070378.

Cormen, T.H., 2001. Introduction to Algorithms. 2rd

Edn. MIT Press/McGraw-HillNew York ISBN-
13: 978-0262033848, pp: 1180.
http://books.google.com.pk/books?id=NLngYyWF
|_YC&dg=Introduction+to+Algorithms&Ir=&sour
ce=gbs_navlinks_s

Manber, U. and S. Wu, 1992. Fast text search atigwi
errors. Commun. ACM., 35: 83-91.
DOI:10.1145/135239.135244

Benjamin, C.B., D.E. Taylor and R.K. Cytron, 20@6.

scalable architecture for high-throughput regular-
expression pattern matching. Proceeding of the

International Symposium on Computer

Architecture, (ISCA '06), IEEE Xploor, Boston, Vu,

pp: 191-202. DOI: 10.1109/ISCA.2006.7
Fredriksson, K., 2010. On building minimal autonmato

for subset matching queries. J. Inform. Proc. Lett.

110: DOI: 10.1016/j.ipl.2010.09.014
Al-Mazroi, A.A. and N.A. Rashid, 2011. A fast hytbri

algorithm for the exact string matching problem.

Am. J. Eng. Applied Sci, 4:
DOI: 10.3844/ajeassp.2011.102.107
Alajlan, N., 2009. Solving square jigsaw puzzlesgs
dynamic programming and the

DOI: 10.3844/ajassp.2009.1941.1947.

67

adapted to the
characteristics of the medical language. Orig.

hungarian
procedure. Am. J. Applied Sci., 6: 1941-1947.

DBXplorer: A System for Keyword-Based Search
over Relational Databases. Proceeding of the 18th
International Conference on Data Engineering,
Feb. 26-Mar. 1, IEE XplooiSan Jose, pp: 5-16.
DOI: 10.1109/ICDE.2002.994693

He, H., H. Wang, J. Yang and P.S. Yu, 2007. BLINKS:

Ranked keyword searches on graphs. Proceedings
of the ACM SIGMOD International Conference on
Management of DataJune 11-14, ACM, New
York, NY, USA., pp: 305-316, DOI:
10.1145/1247480.1247516

Carmel, D., Y.S. Maarek, M. Mandelbrod, Y. Mass and

A. Soffer, 2003. Searching XML documents via
XML fragments. Proceedings of the 26th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrievaluly
28-Aug. 01, ACM New York, USA., Toronto,
Canada, pp: 151-158. DOI:
10.1145/860435.860464

Q.H., B.C. Ooi, D. Papadias and A.K.H. Tung,
2008. A graph method for keyword-based selection
of the top-K databases. Proceedings of the 2008
ACM SIGMOD international conference on
Management of Data, June 09-12CM, New
York, USA,, pp: 1378. DOI:
10.1145/1376616.1376707

102-107. Al-mazroi, A.A. and A. Rashid, 2011. A fast hybrid

algorithm for the exact string matching problem.
Am. J. Eng. Applied Sci., 4: 102-107. DOI:
10.3844/ajeassp.2011.102.107

