
Journal of Computer Science 8 (1): 61-67, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Yousef Abuzir, Department of Computer Information Systems, Al-Quds Open University (QOU),
 P.O.Box 51800, PostalCode 97917, Jerusalem, Palestine

61

First Token Algorithm for Searching

Compound Terms Using Thesaurus Database

1Yousef Abuzir and 2Thabit Sabbah
1Department of Computer Information Systems,

Al Quds Open University, Salfeet, Palestine,
2ICTC Center, QOU, Ramallah, Palestine

Abstract: Problem statement: Searching text materials is the one of the most important operations
that carried out by search engines either on web or desktop applications, searching algorithms are
required sometimes to find a specific word into a text, others to find a multi word term (pattern
matching) into a text. Searching for term into a thesaurus database can be carried out using many
searching algorithm such as brute-force algorithm and others. Approach: We addressed several issues
concerning developing a searching algorithm that search terms into thesaurus database. Two exact
algorithms were discussed and compared. The first algorithm, brute-force algorithm and the second one
were proposed by this study to enhance brute-force algorithm. Results: We proposed an efficient search
algorithm and compare it with brute force technique. Computational results showed that our algorithm
can provide an efficient search algorithm that reduces the number of queries and the total time required
to finish the required task. Conclusion: Our study showed an optimum solution for larger size of the
studied problem with much less processing time than the brute-force algorithm. The modified
algorithm has a higher efficiency to deal with Thesaurus Database searching problems.

Key words: Brute-force, pattern matching, information retrieval, compound terms searching, First

Token (FT), thesaurus database, training thesaurus

INTRODUCTION

 Searching is the basic process in Information
Retrieval (IR) science. Documents, data within
documents, relational databases, Schemas and WWW
are the main sources where information can be
retrieved. Searching information needs a search engines
types and different data sources. Text search engines
are the most common search engines type, Full-text
search is the process of examining all of the words in a
computer-stored document(s) or database to match
search words supplied by the user. Full-text searching
techniques become widely common and supported in
either web applications or desktop application
programs. Text search is applicable in e-business,
human resources departments and others. Also, it is a
basic supported feature in any word processing
application such as Microsoft Word or database engines
like Oracle (Doug et al., 2011), MySQL and SqlServer.
 A Thesaurus is a list of very important term
(single-word or multi-word) in a given domain of
knowledge and a set of related terms for each term in

the list. It is used for indexing, classifying, searching
and text mining. Terms in thesaurus are listed
alphabetically and some are hierarchically, this
hierarchically indicates the relation between terms, the
broader term “BT” represent the super class of the term
while the narrower term “NT” represents the subclass
(es) of the term. Some thesauri have the USE and Used
For (UF) relations to indicate the alternation of terms
(Robert, 2006; Abuzir, 2010).
 Searching about text into a thesaurus database or any
other data sources require the traversing of each term or
compound term of the text. Our objective is to introduce
an efficient search algorithm within the thesaurus
database; this search algorithm can be used in either
indexing or information retrieval applications. The next
Sections are an overview over the problems we address,
Brute-force algorithm and our enhanced algorithm First
Token (FT) Algorithm. Finally, discussion, results and
conclusion are presented in the last sections.

 Background: Searching for text in database or any
other data source based on string searching algorithms.
These Algorithms check the existence and the location

J. Computer Sci., 8 (1): 61-67, 2012

62

of a substring (also called pattern) into another string
(Lin, 2009; Chen et al., 2011; Sleit et al., 2009).
 Many algorithms of string matching were
introduced as an enhancement of the simplest string
matching algorithm. The Naïve search (brute-force) is
the simplest and the less efficient algorithm among string
matching algorithms (Lokman and Zain, 2010). Brute-
force algorithm is simple to implement, need no
preprocessing of text and always find the result if it
is exists. It based on making a comparison at each
and every possible point while sliding the window of
search (Christian and Robert, 2000).
 Knuth-Morris-Pratt (KMP) and Boyer-Moore
(BM) algorithms (Lin, 2009) are the commonly used
algorithms in string matching. Both are similar in idea
used, time complexity and both don’t perform
complicated arithmetic on characters. BM algorithm is
more complicated than KMP but it is a little faster in
practice. Finite State Machine (FSM) (Cormen, 2001)
was introduced as a base for string matching algorithm,
this algorithm firstly builds a state table then simulate it
on the input text. The bitap algorithm (Shift-or, shift-
and or Baeza-Yates-Gonnet algorithm) is a fuzzy string
matching algorithm, this algorithm adapts easily to
approximate string matching and uses the bitwise
techniques, it is efficient if the pattern length is no
longer than the memory-word size of the machine
(Manber and Wu, 1992).
 Benjamin et al., (2006) described XTM system
which has the ability to search for text that matches a
set of rules or patterns “regular-expression”, like social-
security numbers, email addresses, phone numbers. This
regular-expression matching can be performed
concurrently for up to 50 rules. In recent years keyword
search over semi structured and structured data has been
extensively studied by Fredriksson (2010); Al-mazroi and
Rashid, 2011); Alajlan et al. (2009. Other researchers
Agrawal et al. (2002); He et al. (2007); Carmel et al.
(2003); Vu et al. (2008); treated keyword search in
databases as a graph. These approaches are
computationally expensive. (Al-mazroi and Rashid, 2011)
proposes the combination of two algorithms namely
Berry-Ravindran and Skip Search Algorithms to form a
hybrid algorithm in order to boost search performance.

MATERIALS AND METHODS

 Brute-force algorithm (Lin, 2009) is simple to
implement no need of preprocessing of text and always
find the result if it is exists. However this technique is
proportionally cost growth to the problem size growth,
for example consider the problem of finding the number
of occurrences of each word within a document that are
exists in a database field which is one word term, the
brute force technique will traverse all tokens (t) and

query the database to check the existence, the total
number of queries in this case is (t) times. Suppose that
the terms in database field are of length (l-1) tokens,
that is mean we can form a compound terms of length
(l). The total numbers of queries to search for the
compound terms can be calculate by Eq. 1:

t t l

n 1 n 1
n n

−

= =
−∑ ∑ (1)

 The following Fig. 1-3 explains the growth rate in
the number of queries with respect to text size and the
maximum count of tokens in the database field.
 To explain the previous formula and graphs,
consider the following text. “Information Retrieval (IR)
is the science of searching for documents, or
information within document as well as that of
searching relational databases and the World Wide
Web”. Also consider the following list of terms:

Id Term Tokens count
1 Information retrieval 2
2 IR 1
3 World Wide Web 3
4 Information technology standards 3

Fig. 1: Growth rate in number of queries related to

growth of text size with constant count of
tokens in database field (10 tokens)

Fig. 2: Growth rate in queries related to growth count

of tokens in database field with constant text
size (1000 tokens)

J. Computer Sci., 8 (1): 61-67, 2012

63

Fig. 3: Growth rate in queries related to growth of both:

count of tokens in database field and text size.
The volume of bubble in graph represents the
number of queries

Fig. 4: ER diagram shows the relation between the table

 In our first test, we used our sample text about
information retrieval. To search the text using brute
force algorithm, the text should be traversed 3 times
which is the maximum number of tokens in the list. In
the first phase the algorithm will search for a single
term (token), each word in the text will be used to query
the database. In this case, the number of queries equal
the number of tokens count in the term. In second
phase, a compound term of two words will be
considered as one term and this term will be used to
query the database. So, the first term in our example
will be “Information retrieval “while the second one
will be “retrieval IR” and so on, this will yield a (t-1)
terms in this round. Third phase will use a term consist
of three tokens, starting from the term “Information
retrieval IR” and the last term will be “World Wide
Web”. The number of queries in this round is (t-2). The
total number of queries in all the three phases in our
example can be calculated using the following Eq. 2:

(t + (t-1) + (t-2)) (2)

 In general, the total number of queries of text
consists of (t) tokens and (l) the maximum tokens count
in terms in the database is Eq. 3:

t + t-1 + t-2 + t-3 + …+ (t-l+2) + (t-l+1) + t-l (3)

 Consider the following series:

1 + 2 + 3 + … + (t-l) + (t-l+1) + (t-l+2) + … + t-3 + t-2

+ t-1 + t = t

n 1

n
=
∑

 As a result the total number of queries can be
expressed by the following formula (4):

t t l

n 1 n 1

n n
−

= =

−∑ ∑ (4)

 From Eq. 4 and based on our text sample we can
calculate the total number of queries for Brute-force
algorithm. The text contains 14 tokens (t) (tokens are in
Bold, the rest are stop words and will be ignored by the
system) and the maximum number of Token Count (l)
in a term is 3. We can find that the total number of
queries is equal to 39 queries:

14 14 3

n 1 n 1

14(14 1) 11(11 1)
n n 105 – 66 39

2 2

−

= =

+ +− = + =∑ ∑

The proposed approach-First Token (FT): In this
study we proposed an enhanced algorithm to Brute-
force algorithm called (FT).
 Our study based on the existing approach and the
analysis of the effectiveness of different sources on the
total number of queries and on the total time. We
described the structure of the databases and explained
how our approach reduced the number of queries and
the total time required to finish the required task.

Database structure: The proposed enhancement
depend on creating two other tables related to the main
list of terms in the databases, the first one will contain a
list of first token of each terms, while the other will
contain the Id of terms that begins with specified
Token. The following Entity-Relation diagram E-R
Diagram (Fig. 4) illustrates the relations between tables.
 Table-1 shows an instance of the database from
our sample example. The flowchart in Fig. 5 explains
how to use the E-R Diagram in Fig. 4 and Table 1.

The proposed algorithm: Fig. 5 shows the main steps
in searching for a term in the databases. The process of
searching text terms in the database can be performed
by traversing the text tokens for one time. In this phase
each token of the text will be used to query the table of
(Tokens) from the new model.
 If the system returns a (TokenID) from Tokens
table, this means that two extra queries are needed, the
first one is querying the Terms_Tokens table, to get all
(TermIDs) that begins with the specified (TokenID).
The second one is querying Terms table to get a
Temporary List of (Tokens count) for that term Id
(TermIDs) and the list of the terms in the thesaurus
database (Terms List). The (Tokens count) of terms
used to determine the length of the compound term that
our system can extract from text collection.

J. Computer Sci., 8 (1): 61-67, 2012

64

Table 1: The new relationships

Token Terms-Token Terms
--------------------------------------- ----------------------------------- ---
Token ID Token Token ID Term ID Terms ID Term Token count

1 Information 1 1 1 Information retrieval 2
2 IR 1 4 2 IR 1
3 World 2 2 3 World Wide Web 3
 3 3 4 Information technology standards 3

Fig. 5: Searching for a term in the databases model

The system parsed our sample text collections using the
tokens counts and constructs a list of compound terms
(Build List) start with the term in query. Finally, the
system use the list of the terms returned by our query (list
of thesaurus terms from the database) to search for the
occurrence of these terms in the compound terms extracted
and build by our system from the text collection.
 This model automated and restricted the
construction process of the compound terms from the
text collection. It is clear how long is the compound
term and the starting term.
 Back to our example, starting with token
“Information”, we query the Tokens Table, this gives us
the (TokenID = 1), meaning that we need to perform
two extra queries, first we use (TokenID = 1) to query
Terms_Tokens Table, resulting the following list of
TokenIDs and TermIDs:

TokenID TermID
1 1
1 4

 Now, we query Terms Table for TermIDs 1 and 4.
The result of this query will contain the terms and its
(TokensCount) as follows:

TermID Term Tokens Count
1 Information retrieval 2
4 Information technology standards 3

 Based on the previous result, the system build
terms from text collection starting with the current
token and length of 2 and 3 tokens, the built list will be
as follows:

Built terms:
Information retrieval
Information Retrieval (IR)

 The final step is to check the existence of terms
from query result table within the Built Terms list.
Numerically, our example need to make 13 queries to
the Tokens table, with 3 extra 2 queries when process
the tokens “Information”,”IR”,”World”. While the
brute force technique need to perform 39 queries. The
following pseudo code listing of the proposed algorithm
illustrates the proposed enhancement approach.

First Token Algorithm: Searching terms into
thesaurus database using First Token (proposed name
of method) technique:

For I = 1 to text.tokensCount
 For j = 1 to tokens.count
If tokens[j] = Text[i]
 L = list of distinct # of tokens for terms starts
with Text[i]
 For each length in L
 TempTerm =
buildTermfromtextoflength(length)
 For = 1 to
termsStartswithToken[j].Count

J. Computer Sci., 8 (1): 61-67, 2012

65

 If
(termsStartswithToken[j]).[k] = tempTerm
 Append thesaurus[i] to result array
 Breack to next length
 End for k
 Edn for each
 End for j
End for I

RESULTS

An experiment: Our data collections consist of five
different thesauri. Table 2 gives a summary of these
thesauri. A sample of 15 text collections was used. We
test our system with these data collections. We
experiment with these collections and databases
different length of tokens. The variable length of the
tokens ranges were from 50-991 tokens. The system
uses stop list to remove noisy terms from the text
collections. We ran both algorithms Brute Force and
First Token (FT) using our data collections and
thesauri. In each experiment we found the average
processing time for each algorithm based on the
dynamic changing of the length of tokens that range
from 50-991. We plotted and compared the result for
each experiment.
 In the first experiment we used the first thesaurus
(Training Thesaurus). The Training Thesaurus
constitutes the controlled vocabulary of reference in the

field of vocational education and training. We used
our Tool ThesCov to built this Thesaurus from Web
site related to the domain of Training. The other
thesauri were constructed using our Tool ThesCov
(Abuzir, 2010).

DISCUSSION

 In Table 3 the average time (normalized) for both
algorithms was calculated. Comparing our results for brute
force algorithm and First Token (FT) algorithm, we can
conclude that FT algorithm is more efficient in time on all
cases of token length, especially for large number of
tokens matching. The graph in Fig. 6 shows the time
required for each algorithm using the first thesaurus.
 We repeated the test with the other four thesauri and
different data collections. A Summary of the average time
required for both Brute Force and First Token algorithms
to search terms of different length from our text collection
using thesauri is shown in Table 3.
 Figure 7 and 8 show time required for BF and FT
algorithms respectively using the different thesauri.
Figure 9 shows time required for BF and FT algorithms
using the different thesauri.
 The worst case of the proposed enhancement
algorithm occurs when each token of the text found in
Tokens table that means we need more two extra
queries. Here we need the same total number of queries
as brute force algorithm.

Table 2: A summary of thesauri

Thesaurus name # Terms #Distinct first tokens Term length average (token) Max term tokens count Set of term tokens counts

Thesaurus 1 2522 1749 1.874 12 1, 2, 3,4,5,6,7,8,10,12
Thesaurus 2 3564 2363 1.844 8 1,2,3,4,5,6,8
Thesaurus 3 5800 3475 1.857 7 1,2,3,4,5,6,7
Thesaurus 4 69794 45042 1.903 9 1, 2, 3,4,5,6,7,8,9
Thesaurus 5 19726 10287 2.183 15 1,2,3,4,5,6,7,8,9,10,11,12,14,15

Table 3: Time elapsed to search terms of different length from our text collection in seconds using the different Thesauri
 Thesaurus 1 Thesaurus 2 Thesaurus 3 Thesaurus 4 Thesaurus 5
Text length ---------------------------- ----------------------------- ---------------------------- ----------------------------- -------------------------------------
(token) BF average FT average BF average FT average BF average FT average FT average BF average FT average BF average
50 0.002 0.000 0.001 0.000 0.002 0.000 0.000 0.001 0.00 0.002
66 0.002 0.000 0.002 0.000 0.002 0.000 0.000 0.002 0.00 0.002
94 0.003 0.000 0.003 0.000 0.003 0.000 0.000 0.003 0.00 0.003
117 0.004 0.000 0.003 0.000 0.004 0.001 0.000 0.003 0.00 0.004
163 0.006 0.000 0.005 0.001 0.006 0.001 0.000 0.005 0.00 0.006
342 0.009 0.001 0.007 0.001 0.009 0.001 0.001 0.007 0.001 0.009
317 0.012 0.001 0.010 0.001 0.012 0.001 0.001 0.010 0.001 0.012
379 0.014 0.001 0.012 0.002 0.014 0.002 0.001 0.012 0.002 0.014
410 0.015 0.001 0.013 0.002 0.015 0.002 0.015 0.013 0.013 0.015
500 0.019 0.002 0.015 0.002 0.019 0.002 0.002 0.015 0.002 0.019
635 0.024 0.002 0.020 0.002 0.024 0.002 0.002 0.020 0.002 0.024
739 0.028 0.002 0.023 0.003 0.028 0.003 0.002 0.023 0.003 0.028
836 0.032 0.002 0.026 0.003 0.032 0.003 0.002 0.026 0.003 0.032
914 0.035 0.003 0.029 0.003 0.035 0.004 0.003 0.029 0.003 0.035
991 0.38 0.003 0.310 0.004 0.38 0.004 0.003 0.031 0.004 0.038

J. Computer Sci., 8 (1): 61-67, 2012

66

Fig. 6: Time required for BF and FT algorithms

Fig. 7: Time required for BF algorithms using the five
different thesauri

Fig. 8: Time required for FT algorithms using the five
different thesauri

Fig. 9: Time required for BF and FT algorithms using
the different thesauri

CONCLUSION

 In summary, the proposed approach builds a new
database structure (Fig. 4). The system creates these
tables only one time. Using these new tables the system
decrease the number of queries needed to search in
the database. The new structure build new index to
be used in searching thesaurus database instead of
using the whole database. The system searches for
any term in the new indexed tables instead of the
original database.
 In this study we proposed a string searching
algorithm called First Token (FT) as an improvement
of the brute force algorithm. Our experiments and
data collections showed that the proposed algorithm
is efficient. Our algorithm can perform in a faster
and more efficient manner than brute force
algorithm. Our algorithm decrease the number of
queries required to query the databases and search time.

REFERENCES

Doug, G., C. Karen, C. Patrick, G. S. Martin and S.H.
Timothy, 2011. Beginning Oracle Application
Express 4. 1st Edn., Apress Publication, New
York, ISBN: 978-1430231479, pp: 440.

Robert, L.M., 2006. Decisions in thesaurus construction
and Use. Inform. Proc. Manage., 43: 958-968.
DOI: 10.1016/j.ipm.2006.08.011

Abuzir, Y., 2010. Constructing the medical thesaurus as
a tool for indexing, J. AL-Quds Open Univ. Res.
Study, Palestine.

Lin, J., 2009. Brute force and indexed approaches to
pairwise document similarity comparisons with
MapReduce. Proceedings of the 32nd International
ACM SIGIR Conference on Research and
Development in Information Retrieval, July 19-23,
ACM, New York, USA., pp: 155. DOI:
10.1145/1571941.1571970

Chen, Y., Wang W. and Liu Z., 2011. Keyword-based
search and exploration on databases. Proceeding of
the IEEE 27th International Conference on Data
Engineering, Apr. 11-16, IEEE Computer Society
Washington, USA., pp: 1380-1383.
DOI: 10.1109/ICDE.2011.5767958

Sleit, A., W. AlMobaideen, M. Qatawneh and H.
Saadeh, 2009. Efficient processing for binary
submatrix matching. Am. J. Applied Sci., 6: 78-88.
DOI: 10.3844/ajassp.2009.78.88

 Lokman, A.S. and J.M. Zain, 2010. One-match and all-
match categories for keywords matching in

J. Computer Sci., 8 (1): 61-67, 2012

67

chatbot. Am. J. Applied Sci., 7: 1406-1411.
DOI: 10.3844/ajassp.2010.1406.1411.

Christian, L. and H.B. Robert, 2000. Fast exact string
pattern-matching algorithms adapted to the
characteristics of the medical language. Orig.
Investig., 7: 378-391. DOI:
10.1136/jamia.2000.0070378.

Cormen, T.H., 2001. Introduction to Algorithms. 2rd
Edn. MIT Press/McGraw-Hill, New York ISBN-
13: 978-0262033848, pp: 1180.

http://books.google.com.pk/books?id=NLngYyWF
l_YC&dq=Introduction+to+Algorithms&lr=&sour
ce=gbs_navlinks_s

Manber, U. and S. Wu, 1992. Fast text search allowing
errors. Commun. ACM., 35: 83-91.
DOI:10.1145/135239.135244

Benjamin, C.B., D.E. Taylor and R.K. Cytron, 2006. A
scalable architecture for high-throughput regular-
expression pattern matching. Proceeding of the
International Symposium on Computer
Architecture, (ISCA ’06), IEEE Xploor, Boston,
pp: 191-202. DOI: 10.1109/ISCA.2006.7

Fredriksson, K., 2010. On building minimal automaton
for subset matching queries. J. Inform. Proc. Lett.,
110: DOI: 10.1016/j.ipl.2010.09.014

Al-Mazroi, A.A. and N.A. Rashid, 2011. A fast hybrid
algorithm for the exact string matching problem.
Am. J. Eng. Applied Sci., 4: 102-107.
DOI: 10.3844/ajeassp.2011.102.107

Alajlan, N., 2009. Solving square jigsaw puzzles using
dynamic programming and the hungarian
procedure. Am. J. Applied Sci., 6: 1941-1947.
DOI: 10.3844/ajassp.2009.1941.1947.

Agrawal, S., S. Chaudhuri and G. Das, 2002.
DBXplorer: A System for Keyword-Based Search
over Relational Databases. Proceeding of the 18th
International Conference on Data Engineering,
Feb. 26-Mar. 1, IEE Xploor, San Jose, pp: 5-16.
DOI: 10.1109/ICDE.2002.994693

He, H., H. Wang, J. Yang and P.S. Yu, 2007. BLINKS:
Ranked keyword searches on graphs. Proceedings
of the ACM SIGMOD International Conference on
Management of Data, June 11-14, ACM, New
York, NY, USA., pp: 305-316, DOI:
10.1145/1247480.1247516

Carmel, D., Y.S. Maarek, M. Mandelbrod, Y. Mass and
A. Soffer, 2003. Searching XML documents via
XML fragments. Proceedings of the 26th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, July
28-Aug. 01, ACM New York, USA., Toronto,
Canada, pp: 151-158. DOI:
10.1145/860435.860464

Vu, Q.H., B.C. Ooi, D. Papadias and A.K.H. Tung,
2008. A graph method for keyword-based selection
of the top-K databases. Proceedings of the 2008
ACM SIGMOD international conference on
Management of Data, June 09-12, ACM, New
York, USA., pp: 1378. DOI:
10.1145/1376616.1376707

Al-mazroi, A.A. and A. Rashid, 2011. A fast hybrid
algorithm for the exact string matching problem.
Am. J. Eng. Applied Sci., 4: 102-107. DOI:
10.3844/ajeassp.2011.102.107

