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Abstract: Problem statement: Independent Component Analysis (ICA) based algorithms applied in the 
context to remove the artifacts from the EEG signals are evaluated with appropriate metrics and it 
compares and contrasts the performance of the different methods for such applications. The primary goal 
is to gain some insight into relative performance of the various methods. Approach: CA is a statistical 
and computational technique for revealing hidden factors that underlie sets of random signals. In the ICA 
model the data samples are assumed to be linear mixture of some unknown latent variables and the 
mixing system is also unknown. The latent variables are assumed to have a nongaussian distribution. 
These variables are the independent components of the observed data which can be found, up to some 
degree of accuracy, using different algorithms based on ICA techniques. Results: The algorithms based 
on ICA with different approaches to be considered are JADE, Fast ICA, infomax and extended infomax 
and these performances are measured in terms of Entropy, PSNR and Speed. The simulation results show 
that the performance of each algorithm is to be preferred over another in terms of speed and reliability. A 
framework for accommodating four ICA algorithms is developed and hence selects the best algorithm for 
the specific type of data. Conclusion: ICA plays a vital role in removing of artifacts in EEG signals .It 
maintains the similarity in their patterns when subject is performing the mental task. The traditional 
methods applied for remove artifacts can only compromise between eliminating artifacts and protecting 
useful signals so that the result is not very satisfying. ICA method can protect the useful signals as well as 
obviously weaken even entirely remove the artifacts in multichannel EEG signals, this characteristic of 
ICA is the key to get stable EEG patterns which can be used for mental task classification. 
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INTRODUCTION 

 
 Electroencephalography (EEG) is a medical 
imaging technique that reads the scalp electrical activity 
generated by the brain structures (Binjadhnan and 
Ahmad, 2010), Electrical impulses generated by nerve 
firings in the brain diffuse through the head and can be 
measured by electrodes placed on the scalp. The EEG 
gives a coarse view of neural activity and has been 
used to non-invasively study cognitive processes and 
the physiology of the brain. The greatest advantage 
of EEG when compared with other medical imaging 
techniques is its speed.  

 When the EEG signals measured by electrodes 
placed on the scalp and are always under the influences 
of artifacts (Rizon, 2010). Those artifacts include: line 
noise from the power line, eye blinks, eye movements, 
heartbeat, breathing and other muscle activities. 
Because of these artifacts contained in EEG, the 
pattern detection in EEG produced from normal 
mental states is a very difficult problem. 
 

MATERIALS AND METHODS 
 
Independent component analysis: ICA is an 
extension of PCA but it is more powerful that PCA in 
the field of signal analysis. In mid 90’s several new 
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ICA algorithms (Furukawa, 2010; Hillyard and 
Galambos, 1970) were introduced with impressive 
demonstrations on problems like separating different 
speech signals from a mixed signal. The applications of 
ICA include but not limited to the fields of biomedical, 
telecommunications, audio and video signal processing 
feature extraction, data mining and functional time 
series analysis. Generally, ICA technique can be 
regarded as a technique to separate signals from a 
mixture. There are several ICA algorithms in use. 
Some of these algorithms are Fast ICA, JADE and 
First Order Blind Identification (FOBI), Maximum 
Likelihood and Infomax, algorithms based on Kernel 
methods and algorithms using time structure like 
Second Order Blind Identification (SOBI).  
 
ICA model: A simple mathematical representation of 
ICA model (Ali et al., 2010) is as follows Consider a 
simple linear model which consists of N sources of T 
samples i.e., Si=[s(1)i….s(t)i….si(T)]. The symbol there 
represents time but it may represent some other 
parameter like space. M weighted mixtures of the 
sources are observed as X, where Xi=[xi(1)….xi 
(t)….xi(T)]This can be represented as in Eq. 1 and 2:  
 
 x= As + n  (1)  
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 And n represents the Additive White Gaussian 
Noise (AWGN). It is assumed that there are at least as 
many observations as sources i.e., M≥N. The 
M×Nmatrix A is represented as in Eq. 3: 
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 A is called the mixing matrix. The estimation of 
the matrix S with knowledge of X is the linear source 
separation problem. This is schematically shown in Fig. 1 
A is the mixing matrix and B is the unmixing matrix. 

 
 
Fig. 1: Illustration of mixing and separation system 

for ICA 
 
 The following assumptions ensure that the ICA 
model estimates the independent components 
meaningfully. Actually the first assumption is the only 
true requirement which ICA demands. The other 
assumptions ensure that the estimated independent 
components are unique. 
 The latent variables (or independent 
components) are statistically independent and the 
mixing is linear. There is no more than one Gaussian 
signal among. The latent variables and the latent 
variables have cumulative density function not much 
different from a logistic sigmoid.  
 The number of observed signals, m, is greater than 
or equal to the number of latent variables, n (i.e., m≥n). 
If n > m, we come to a special category of Independent 
Component Analysis called ICA with over-complete 
bases .In such a case the mixed signals do not have 
enough information to separate the independent 
components. There have been attempts to solve this 
particular problem but no rigorous proofs exist as of 
yet. If m>n then there is redundancy in the mixed 
signals. The ICA model works ideally when n = m. 
  The mixing matrix is of full column rank, which 
means that the rows of the mixing matrix are linearly 
independent. If the mixing matrix is not of full rank then 
the mixed signals will be linear multiples of one another. 
 The propagation delay of the mixing medium is 
negligible. Before applying an ICA algorithm on the 
data, it is usually very useful to do some pre-processing 
(Ahmad and Ken, 2010).  
 Some pre-processing techniques that make the 
problem of ICA estimation simpler and better 
conditioned are given.  
 
 ICA algorithms-algebraic ICA algorithm: An 
algebraic solution to ICA is proposed by Taro 
Yamaguchi. This is a non-iterative algorithm but 
becomes extremely complex to compute when the 
number of sources goes more than two. For two sources 
separation it works very fast (Cichoki and Vorobyov, 
2000). Two observed signals x1 and x2 are given by 
linear mixture of two independent original signals S1 

and S2 as in Eq. 4: 
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where, α and β are unknown mixing rates. The 
algebraic solution to α and β are given by Eq. 5 and 6: 
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where, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 and C11are 
as shown in Eq. 7:  
 

2 2 2 2
1 1 1 2 2 2

3 1 2 1 2

4 3
4 1 1 1

3 3
5 1 2 1 2

3 2
6 1 2 1 2 2

2 2 2
7 1 2 1 2 2

2 2 2
8 1 2 1 2 1

3 2
9 1 2 1 2

C E[X ] {E[X ]} , C [X ] {E[X ]}

C E[X X ] E[X ]E[X ]

C E[X ] E[X ]E[X ],

C E[X X ] E[X ]E[X ]

C E[X X ] E[X X ]E[X ]

C E[X X ] E[X X ]E[X ]

C E[X X ] E[X X ]E[X ]

C E[X X ] E[X X ]E

= − = −

= −

= −

= −

= −

= −

= −

= − 2

3 3
10 1 2 1 2

4 3
11 2 2 2

[X ]

C E[X X ]E[X ]E[X ]

C E[X ] E[X ]E[X ]

=

= −

 (7) 

 
where, E [ ] denotes the expectation operation. α and β 
are obtained by solving the Eq. 5-7 with the Ferrari 
method. Excluding the solutions having non-zero 
imaginary parts and negative sizes the proper solution is 
selected (Hyvarinen, 1999). Original independent 
signals are computed from Eq. 6 by solving value of α 
and β. 
 
Fast ICA: The advantage of using the gradient method 
to maximize negentropy is that the inputs z(t) can be 
used in the algorithm at once, thus enabling fast 
adaptation in non-stationary environment (Cichoki and 
Vorobyov, 2000). However convergence is slow and 
depends on a good choice of learning rate γ. 
 To make this method efficient, a fast-fixed point 
algorithm is devised, also called Fast ICA for 
Negentropy. To understand this algorithm it should be 
noted that at a stable point of the gradient algorithm, the 
gradient must be pointing towards w or in other words 
it must be a scalar multiple of w. That means that 
adding the gradient of negentropy in w would not change 

its direction at the stable points and hence convergence can 
be obtained. The t Eq. 8 can be written as: 
 

T W
W E{ZG (W Z)}W

W
′← ←   (8) 

 
  The coefficient γ is omitted because it would be 
eliminated by the normalization anyways. Iteration in 
Eq. 8 does not however have as good of a convergence 
as the one using kurtosis. The reason behind this is the 
non-polynomial moments (G’s) do not have same nice 
algebraic properties as cumulates like kurtosis. 
Hence to get a better convergent algorithm the 
iteration in Eq. 9 has to be modified. This 
modification can simply be done by adding some 
multiple of w to the both sides of the iterant term in 
Eq. 9 and then changing the value of multiple to find 
a better convergence speed as in Eq. 9: 
 

T TW E{zG (W z)} (1 )W E{zG (W z)} E′ ′= ⇔ + α = + α  (9) 
 
 Adding a multiple of w to the both sides of Eq. 10 
would not change the direction of the vector and after 
normalization in the next step w will be constrained to 
the unit sphere again. A suitable value of α and thus the 
Fast ICA algorithm can be found using Newton’s 
method for solving equations (Berg and Scherg, 1991) 
Newton’s method can briefly explained as follows:To 
find a maxima or minima of any function with respect 
to some variable, first the function is expanded using 
Taylor’s series and the terms above the quadratic terms 
are dropped to keep it manageable (since higher order 
terms don’t contribute a lot in the total value of the 
function (Hyvarinen and Oja, 2000). Let E (not 
expectation) be a cost or error function which has to be 
minimized around vector w (n) having m elements and 
n being the number of iteration. The change in the cost 
function can be written as in Eq. 10: 
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where, g(n) = m×1 gradient vector of cost function 
evaluated at w(n) and, H(n) is an m×m 2nd order 
derivative matrix of the cost function E(w(n)) evaluated 
at w(n), called Hessian Matrix. Hessian Matrix H is 
given by Eq. 11: 
 

2H E(W(n))= ∆  
 
where, g(n) = m×1 gradient vector of cost function 
evaluated at w(n) and, H(n) is an mxm 2nd order 
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derivative matrix of the cost function E(w(n)) evaluated 
at w(n), called Hessian Matrix. Hessian Matrix H is 
given by Eq. 11: 
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 Differentiating ∆E (W (n)) w.r.t ∆ w (n) to find out 
the minimal value of ∆E gives the condition as in Eq. 12: 
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 Expression in Eq. 12 is the Newton’s method for 
updating the vector w to move towards the 
minimization of the cost function. The advantage of 
Newton’s method is fast convergence but as it can be 
seen that it is computationally more intensive since one 
has to calculate inverse of Hessian matrix at each step. 
 In order to avoid the cost and time consuming 
calculation of the inverse of Hessian matrix in the 
Newton’s method, an approximation of this method is 
developed that avoids the use of matrix inversion 
without sacrificing its essence to employ ICA algorithm 
(Comon, 1994). The approximation of Newton’s 
method calls for the use of Lagrangian rule for 
constrained optimization. Lagrangian rule for 
constrained optimization can be briefly described as 
follows.Assume a cost function E(w) (E is not 
expectation) which is suppose to be minimized or 
maximized under some constraint Hi(w) = 0, where i = 
1,2,3, …., k. One can write the Lagrangian function 
based on the given information as in Eq. 13: 
 

k

1 2 k i i
i 1

L(W, , ,....., ) E(W) H (W)
=

λ λ λ = + λ∑   (13) 

 
where, λ1,λ2,….λk are called Lagrangian multipliers. 
The minimum (maximum) point of Eq. 14 where its 
gradient is zero with respect to both w and all of theλi 
gives the solution to the original constrained problem, 
i.e., minimization of E(w) under some constraint Hi(w) 

= 0. The gradient of L(W,λ1,λ2,….,λk) with respect toλi 
gives the ith constraint function Hi (w), so putting all 
these to zero will give the original constraint condition. 
When gradient of L(W,λ1,λ2,….,λk) is taken with respect 
to w and equate it to zero, one will get the Eq. 14: 
  

k
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w W W=
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 Hence the minimization problem has been changed 
into two sets of equations that are much easier to solve. 
A possible way to solve these two sets, one given by the 
constraints, the other by Eq. 15, is some appropriate 
iteration method like Newton iteration. From Eq. 16 the 
optima of E{G(wTz)} for constraint ||w||2 = 1 can be 
evaluated as in Eq. 15: 
 

2T

T

T

( W 1)E{G(W z)}
0

W W

E{zG (W z)} 2 w 0

E{zG (W z)} W 0

∂ −∂ + λ =
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′⇒ + λ =
′ + β =

 (15) 

 
where, H(w) = ||w||2 – 1 = 0 is the only constraint to 
find out the extrema of E{G(wTz)}. To solve Eq. 16 one 
can use Newton’s method to find the optima with 
respect to w. Let F=E{zG(WTz)}βw, the derivative of 
F, i.e., the second derivative of Lagrangian function can 
be evaluated as in Eq. 16: 
 

T TF
E{zz G"(W z)} I

W

∂ − + β
∂

 (16) 

 
 Thus the Newton iteration from Eq. 13 can be 
written as in Eq. 17: 
 

T

T T
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 To simplify the calculations, since the vector z is 

sphered then F
W

∂
∂

can be approximated as in Eq. 18: 

 

T T T T

T T

F
E{zz G (W z)} I E{zz }E{G (W z)} I

W

E{G (W z)} I [E{G (W z)} ]I

∂ ′′ ′′= + β ≈ + β
∂

′′ ′′= β = β
 (18) 

 
 Hence the gradient becomes a diagonal matrix and 
can easily be inverted. Thus the algorithm becomes as 
in Eq. 19: 
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T

E{zG (W z)} W
W W

[E{G (W z)} ]I

′ + β← −
′′ + β

 (19) 

 
 Multiplying both sides of Eq. 21 by-
[E{G ”(WTz)}+β]I and simplifying the resulting 
expression can be written as Eq. 20: 
 

T T TW[E{G (W z)} ]I E{zG (W z)} EG (W z)}W′′ ′ ′′+β ← −  (20)   

 
 Left hand side of Eq. 20 is nothing but a new 
variable to which right hand side value will be assigned, 
hence the Fast ICA algorithm based on negentropy will 
become as in Eq. 21: 
 

T T
new oldW E{zG(W z)} E{G (W z)}W′′← −ɺ   (21) 

 
 Following is a brief summary of Fast ICA 
algorithm based on negentropy for finding one 
maximally non-Gaussian direction, i.e., estimating one 
independent component.  
 
JADE: JADE is an algorithm that uses significant 
eigenpairs of the cumulant tensor F(M) to find out 
the estimated values of independent components. In 
this algorithm the tensor eigenvalue decomposition is 
considered as more of a preprocessing step (Laubach 
et al., 1999). Eigenvalue decomposition can be 
viewed as diagonalization. The idea is to diagonalize 
F(M) for any M using the matrix W. In other words, 
WF(M)WT is diagonal. This is because the matrix F 
consists of a linear combination of terms of the form 
wiwi,

T assuming that the ICA model holds. Hence the 
goal is to take a set of significant eigenmatrices, M i 
and try to make the matrices WF (M)WT as diagonal 
as possible. They might not be made exactly 
diagonal since the model doesn’t hold exactly 
because of some sampling errors. Let Q = WF 
(M)WT , then maximization of the sum of the square 
of diagonal elements of the Eq. 22: 
 

TT
JADE i

i

J (W) diag(WF(M )W=∑   (22) 

 

 
 
Fig. 2: Structure of the infomax ICA system 

 Maximization of JJADE is then one method of joint 
approximate diagonalization of the F(Mi). 
 Two of the main steps in the JADE algorithm are 
to find the significant eigenpairs of the cumulant tensor 
{ λ r, M r |1 ≤ r ≤ n} and to jointly diagonalize the JADE 
criterion JJADE (W). These two steps that lead to the 
JADE algorithm are discussed next. 
 
Infomax method: The Infomax method has been 
proposed for performing linear ICA based on a 
principle of maximum information preservation (hence 
its name). However, it can also be seen as a maximum 
likelihood method, or as a method based on the 
minimization of mutual information. Infomax uses a 
network whose structure is depicted in Fig. 2 (the figure 
shows the case of two components; extension to a 
larger number of components is straightforward). W is 
a linear block, yielding the Eq. 23: 
 
Y = WX  (23) 
 
 This block thus performs just a product by a square 
matrix (we shall designate both the block and the 
matrix by the same letter since this will cause no 
confusion). After optimization, the components of Y 
are expected to be as independent from one another as 
possible. Blocks φi am auxiliary, being used only during 
the optimization phase (Lee et al., 2000). Each of them 
implements a nonlinear function (that we shall also 
designate byφi). These functions must be increasing, 
with values in [0; 1]. The optimization of W is made by 
maximizing the output entropy, H (Z). 
 
Extended infomax method: The algorithm of Bell and 
Sejnowski which uses a sigmoidal activation function is 
specifically suited to separate signals with super-
Gaussiandistribution (Alfaouri and Daqrouq, 2008). The 
proposed extension of Infomax ICA that is able to separate 
with sub and as well as super Gaussian distribution. This 
preserves the ICA architecture of Infomax algorithm, but it 
uses a learning rule derived by Girolami and Fyfe. It 
determines the sign changes (positive to negative and vice 
versa) required by the algorithm to handle both sub and 
super Gaussian distributions.  
 

RESULTS AND DISCUSSION 
 
 Data were recorded for 10 sec during each task and 
each task was repeated five times per session 
(Verobyov and Cichocki, 2002; Vigon et al., 2000). 
Subjects attended two sessions recorded on separate 
weeks, resulting in a total of ten trials for each task. 
With a 250 Hz sampling rate, each 10 sec trial produces 
2,500 samples per channel.  
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(a) 

 

 
(b) 

 
Fig. 3: EEG Recording of a Subject during Mental 

Multiplication 
 
 Figure 3 shows one Subject’s EEG Data obtained 
from doing maths tasks twice. 
 
Results of fast ICA algorithm: 
Parameters: 
 
Nonlinearity: log (cosh(y)) 
No. of iterations: 100 
Max. Weight change: 10e-300 
 
 Figure 4 shows the independent components 
obtained using the Fast ICA algorithm from the EEG 
data mixed with EOG which is shown in Fig. 3. 
 
Results of JADE algorithm: No adjustable 
parameters. Execution time in seconds: Trail1: 0.99, 
Trail 2: 1.01. Figure 5 shows the independent 
components obtained using the JADE algorithm for the 
EEG data of Fig. 3. 
 
Results of infomax:  
 
Parameters: learning rate = 0.1 
Max. Change in weight = 1e-3 

 
(a) 
 

 
(b) 
 

Fig. 4: Independent Components Obtained by Fast ICA 
(a) Trail-1 (b) Trail-2 

 

Transformation function=logistic sigmoid =
u

1

1 e−+
 

Number of iterations: 5 
Bias weight = 0 
Initial weight = Identity Matrix 
 
 Figure 6 shows the independent components 
obtained using the Infomax algorithm for the EEG data 
of Fig. 3.  
 
Results of Extended Informax: 
 
Parameters: Min. Weight-change: 1e-3 
Number of iterations=512  
Signs: -1: subgaussian  
1: supergaussian 
Initial weight= Identity matrix 
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Fig. 5: Independent components obtained using JADE 

(a) Trail-1 (b) Trail-2 
 
Table 1: Comparative analysis of entropy between original EEG 

signal and ICA based Algorithms   
Algorithm Oroiginal Fast ICA JADE Infomax  Extended Infomax 
Trail 1 1.646 4.409 4.468 4.001 2.996 
Trail 2 1.664 3.781 4.570 3.518 2.858 
Trail 3 1.759 3.955 4.124 3.878 2.899 
Trail 4 1.787 4.293 4.222 3.650 3.139 
Trail 5 1.705 4.092 4.335 3.91 3.050 
 
Nonlinearity = tanh(u) 
Bias =0 
Learning rate =0.1 
 
 Figure 7 shows the independent components 
obtained using the Extended Infomax algorithm for the 
EEG data of Fig. 3. 

 
(a) 

 

 
(b) 

 
Fig. 6: Independent Components Obtained using 

Infomax (a) Trail-1 (b) Trail-2 
 
Table 2: Comparative analysis of PSNR between original EEG signal 

and ICA based Algorithms  
 Trails Algorithms JADE Fast ICA Infomax Ex-Infomax 
Trail 1 24.4299 24.4718 3.031423 7.763012 
Trail 2 23.0914 23.1453 3.028219 5.813879 
Trail 3 19.4162 19.7419 3.051284 53.219996 
Trail 4 24.4608 24.3400 3.000577 19.952245 
Trail 5 24.1807 24.2847 3.000662 12.197524 

 
Performance comparisons of algorithms: 
Computation time: The computation time i.e., the time 
taken by algorithm to separate the EEG signal is 
measured (Teplan, 2002). For comparison of algorithms 
mental multiplication task EEG (Kumar et al., 2008) 
which is measured for five trails is used. Entropy of 
original mental multiplication EEG signals of five trails 
is given in Table 1. Table 2 shows the comparative 
analysis between original EEG signal and ICA based 
algorithms. Table 3 shows computational time 
comparision in second. 
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(a) 

 

 
(b) 

 
Fig. 7: Independent components obtained using the 

Extended Infomax (a) Trail-1 (b) Trail-2 
 
Table 3: Computational time Comparison (in Second) 
Trails Algorithms JADE Fast ICA Infomax Ex-Infomax 
Trail 1 0.766524 1.368353 3.031423 7.7630 
Trail 2 0.748238 1.388060 3.028219 5.8138 
Trail 3 0.752374 1.488665 3.051284 53.2199 
Trail 4 0.763124 1.451006 3.000577 19.9522 
Trail 5 0.777170 1.328352 3.000662 12.1975 

 
CONCLUSION 

 
 ICA plays a vital role in removing of artifacts in 
EEG signals .It maintains the similarity in their patterns 
when subject is performing the mental task. BCI 
systems using EEG as control signal suffers from the 
artifact problem. The traditional methods applied for 
remove artifacts can only compromise between 
eliminating artifacts and protecting useful signals so 
that the result is not very satisfying. However, ICA 
method can protect the useful signals as well as 

obviously weaken even entirely remove the artifacts in 
multi-channel EEG signals, this characteristic of ICA is 
the key to get stable EEG patterns which can be used 
for mental task classification. 
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