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Abstract: Problem statement: Independent Component Analysis (ICA) based alganit applied in the
context to remove the artifacts from the EEG sigrae evaluated with appropriate metrics and it
compares and contrasts the performance of thediffenethods for such applications. The primaryl goa
is to gain some insight into relative performané¢he various method#\pproach: CA is a statistical
and computational technique for revealing hiddetofs that underlie sets of random signals. In@#e
model the data samples are assumed to be lineanrmigf some unknown latent variables and the
mixing system is also unknown. The latent varialales assumed to have a nongaussian distribution.
These variables are the independent componenteafliserved data which can be found, up to some
degree of accuracy, using different algorithms #ase ICA techniquesResults. The algorithms based
on ICA with different approaches to be considenedJADE, Fast ICA, infomax and extended infomax
and these performances are measured in termsm@ipgnPSNR and Speed. The simulation results show
that the performance of each algorithm is to béepred over another in terms of speed and reltgthii
framework for accommodating four ICA algorithmsiesveloped and hence selects the best algorithm for
the specific type of dat&€onclusion: ICA plays a vital role in removing of artifacts EEG signals .It
maintains the similarity in their patterns when jeabis performing the mental task. The traditional
methods applied for remove artifacts can only campse between eliminating artifacts and protecting
useful signals so that the result is not very féitig. ICA method can protect the useful signalsvali as
obviously weaken even entirely remove the artifactsultichannel EEG signals, this characterisfic o
ICA is the key to get stable EEG patterns whichlmaised for mental task classification.

Key words. Independent Component Analysis (ICA), Second Ordiind Identification (SOBI),
Peak Signal to Noise Ratio (PSNR), First Order @lidentification (FOBI), Additive
White Gaussian Noise (AWGN)

INTRODUCTION When the EEG signals measured by electrodes
placed on the scalp and are always under the imfes
Electroencephalography (EEG) is a medicalof artifacts (Rizon, 2010). Those artifacts inclutiee
imaging technique that reads the scalp electricility ~ noise from the power line, eye blinks, eye movemsent
generated by the brain structures (Binjadhnan anfeartbeat, breathing _and other _musc_le activities.
Ahmad, 2010), Electrical impulses generated by eerv Because of th_ese _artlfacts contained in EEG, the
firings in the brain diffuse through the head aad be pattern detecpon in EEG produced from normal
measured by electrodes placed on the scalp. The Eé@e”ta' states is a very difficult problem.
gives a coarse vigw of neural act_i\{ity and has been MATERIALSAND METHODS
used to non-invasively study cognitive processeas an
the physiology of the brain. The greatest advantaggndependent component analysiss ICA is an

of EEG when compared with other medical imagingextension of PCA but it is more powerful that PGA i
techniques is its speed. the field of signal analysis. In mid 90’s severawn
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ICA algorithms (Furukawa, 2010; Hillyard and n
Galambos, 1970) were introduced with impressive
demonstrations on problems like separating differen S Mixine 123 X_\| Separation|Y=8

speech signals from a mixed signal. The applicatmhn ::> system A system B :>
ICA include but not limited to the fields of biomiedl,

telecommunications, audio and video signal proogssi

feature extraction, data mining and functional time
series analysis. Generally, ICA technique can be_ . . )
regarded as a technique to separate signals from f9- 1: lllustration of mixing and separation syste
mixture. There are several ICA algorithms in use. for ICA

Some of these algorithms are Fast ICA, JADE and
First Order Blind Identification (FOBI), Maximum

Likelihood and Infomax, algorithms based on KernelmOdeI estimates  the  independent components
methods and algorithms using time structure ”kemeanlngfully. Actually the first assumption is tbaly

. o true requirement which ICA demands. The other
Second Order Blind Identification (SOBI). assumptions ensure that the estimated independent
) ) ) components are unique.
ICA model: A simple mathematical representation of The latent variables (or independent
ICA model (Ali et al., 2010) is as follows Consider a components) are statistically independent and the
simple linear model which consists of N sourcesT of mixing is linear. There is no more than one Gaussia
samples i.e.,iS[s(1)....s(t)....§(T)]. The symbol there  sjgnal among. The latent variables and the latent
represents time but it may represent some othejariables have cumulative density function not much
parameter like space. M weighted mixtures of thegifferent from a logistic sigmoid.
sources are observed as X, where=[¥(1)....x The number of observed signals, m, is greater than
... x(T)]This can be represented as in Eq. 1 and 2: . equal to the number of latent variables, n,(imen).

If n > m, we come to a special category of Indegend

The following assumptions ensure that the ICA

x=As+n (1)  Component Analysis called ICA with over-complete
bases .In such a case the mixed signals do not have
M, enough information to separate the independent
X s n, components. There have been attempts to solve this
X, s, _ particular problem but no rigorous proofs existcds
wWhere: X || | and ml. @) yet. If m>n then there is redundancy in the mixed

signals. The ICA model works ideally when n = m.

: The mixing matrix is of full column rank, which

X N M means that the rows of the mixing matrix are lilyear

L independent. If the mixing matrix is not of fullnfathen
the mixed signals will be linear multiples of omether.

And n represents the Additive White Gaussian  The propagation delay of the mixing medium is
Noise (AWGN). It is assumed that there are at laeast negligible. Before applying an ICA algorithm on the
many observations as sources i.e.,.>NM The data, it is usually very useful to do some pre-pssing
MxNmatrix A is represented as in Eq. 3: (Ahmad and Ken, 2010).

Some pre-processing techniques that make the
problem of ICA estimation simpler and better

G Fe e A conditioned are given.
B 8y e 8y
A=l | 3) ICA algorithms-algebraic ICA algorithm: An
) algebraic solution to ICA is proposed by Taro
a, 4, A Yamaguchi. This is a non-iterative algorithm but

becomes extremely complex to compute when the

number of sources goes more than two. For two ssurc
A is called the mixing matrix. The estimation of separation it works very fast (Cichoki and Vorobyov

the matrix S with knowledge of X is the linear smur 2000). Two observed signals and % are given by

separation problem. This is schematically showfign 1 |inear mixture of two independent original sign&s

A is the mixing matrix and B is the unmixing matrix and Sas in Eq. 4:
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X, ] [1a]s, its direction at the stable points and hence cgerere can
X = {[31} s (4) be obtained. The t Eg. 8 can be written as:
2 2
where, a and B are unknown mixing rates. The W - E{ZG'(W'ZW -~ H—VWVH (8)

algebraic solution ta andf3 are given by Eq. 5 and 6:

aC. - C The coefficienty is omitted because it would be
- 2 3 H . - - .
p=—7T—2 (5)  eliminated by the normalization anyways. Iteratian

aC, -G, Eqg. 8 does not however have as good of a conveegenc
as the one using kurtosis. The reason behind gHisei
(C,,Co-C,C)d+ (3GC- 3GG- GG+ GG non-polynomial moments (G’s) do not have same nice
(3C,C,+3GC-3GG- 3CG Ya (6) algebraic properties as cumulates like Kkurtosis.
B 5 . Hence to get a better convergent algorithm the
HECr3GG-3GG- GG )r (G €69 0 iteration in Eq. 9 has to be modified. This

modification can simply be done by adding some
where, G, G, G, Cyy G5, G5, Cr, Gy Co, CroanaCii@r®  itiple of w to the both sides of the iterant teimm

as shown in Eq. 7: Eqg. 9 and then changing the value of multiple tufi
a better convergence speed as in Eq. 9:

C, =E[X{]-{EIXJ}  C X E {EIX]),

C, = E[X,X ] ~E[X JE[X W=E{zG'(W'2)} = (L+ o)W =E{zG'(W'2)} +aE (©)

C, = E[X]-E[XJE[X ],
o = EDG] - EX JEX | Adding a multiple of w to the both sides of Eq. 10

C, = EIX{X ] ~EIXJEIX } would not change the direction of the vector arnéraf
C, = E[X3X ] —E[X X JE[X ] ) normalization in the next step w will be constrairte
C, = E[X3XY -E[X X JE[X } the unit sphere again. A suitable valuexaind thus the

ey Fast ICA algorithm can be found using Newton’'s
Ca= E[Xlxj] EX X JEIX ] method for solving equations (Berg and Scherg, 1991
C, = EIX, X3 —EIX X JE[X,] Newton’s method can briefly explained as follows:To
C,o = EIX XE[X JE[X § find a maxima or minima of any function with respec
C.. = E[X“1 - E[X JE[X to some variable, first the function is expandethgs

n = EDXGI-EXJEX ] Taylor's series and the terms above the quadratiog

h d h . ioand are dropped to keep it manageable (since highesrord
where, E [] denotes the expectation operawoBnd  torms don't contribute a lot in the total value the

are obtained by.solving the Eq. 5-7 wi.th the Ferrarg, - tion (Hyvarinen and Oja, 2000). Let E (not
_meth_od. Excluding the _squ_tlons having _non_'zeroexpectation) be a cost or error function which teabe
imaginary parts and negative sizes the properisali#  inimized around vector w (n) having m elements and
selected (Hyvarinen, 1999). Original independent, hoing the number of iteration. The change incibet
signals are computed from Eq. 6 by solving value of f,nction can be written as in Eq. 10
andp.
Fast ICA: The advantage of using the gradient methodAE(Wn) E(W( ) EW(» EWOF § (0 (10)
to maximize negentropy is that the inputs z(t) tan AW(n)+5AW(n)TH(n)AW(n))- E(W(n))
used in the algorithm at once, thus enabling fast
adaptation in non-stationary environment (Cichakila \here, g(n) = m1 gradient vector of cost function
Vorobyov, 2000). However convergence is slow andeygluated at w(n) and, H(n) is an mxm 2nd order
depends on a good choice of learning yate derivative matrix of the cost function E(w(n)) evaled

To make this method efficient, a fast-fixed pointat w(n), called Hessian Matrix. Hessian Matrix H is
algorithm is devised, also called Fast ICA for given by Eq. 11:
Negentropy. To understand this algorithm it shauéd
noted that at a stable point of the gradient atgorj the H = A2E(W(n))
gradient must be pointing towards w or in other agor
it must be a scalar multiple of w. That means thatwhere, g(n) = ml gradient vector of cost function
adding the gradient of negentropy in w would nairgfe  evaluated at w(n) and, H(n) is an mxm 2nd order
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derivative matrix of the cost function E(w(n)) evated = 0. The gradient of L(Wg,A,,....,A ) With respect th,
at w(n), called Hessian Matrix. Hessian Matrix H is gives the 1" constraint function H(w), so putting all

given by Eq. 11: these to zero will give the original constraint dition.
When gradient of L(WA3,A,,....,A)) is taken with respect
[0’ 0% ’E_| to w and equate it to zero, one will get the Eq. 14
f 6W16W2 ...... a\Nla\Nm
’E  O%E 9%E
w2 awow, owow (11) aL)(W’)\;:I\Z’ M) - aE(W) zll)\ 9 H W)_o (14)
H = A2E(W(n)) '

Hence the minimization problem has been changed
into two sets of equations that are much easisplee.
A possible way to solve these two sets, one giyethé
- - constraints, the other by Eq. 15, is some apprtgpria
DifferentiatingAE (W (n)) w.r.tA w (n) to find out iteration method like Newton iteration. From Eq.thé

. . o : ~ optima of E{G(Wz)} for constraint ||wf|= 1 can be
the minimal value oAE gives the condition as in Eq. 12: evaluated as in Eq. 15:

n)+ HNAW(n)= 0 ’
g(n)+ HIMAW(n) OE[GWT2)} , , (W[ -1)

= AW(n) =-H™(n)g(n) oW ow -0
W(n+1)= W(n)- H*(n)g(n) (12) S Ege Wz} +2aw =0 (15)
W(n+1)= W(n)—{azE(Vl/n)} [aE(W(n»} E{zG' (W'2)} +BW =0

oW ow

where, H(w) = |Wi|- 1 = 0 is the only constraint to

Expression in Eq. 12 is the Newton’s method forfind out the extrema of E{G({z)}. To solve Eq. 16 one
updating the vector w to move towards thecan use Newton's method to find the optima with
minimization of the cost function. The advantage ofrespect to w. Let F=E{zG(\7\t)}[3W, the derivative of
Newton’s method is fast convergence but as it aan bF, i.e., the second derivative of Lagrangian fuoictan
seen that it is computationally more intensive siooe  be evaluated as in Eq. 16:
has to calculate inverse of Hessian matrix at stah.

In order to avoid the cost and time consuming gF
calculation of the inverse of Hessian matrix in the gy
Newton’s method, an approximation of this method is
developed that avoids the use of matrix inversion  Thys the Newton iteration from Eq. 13 can be
without sacrificing its essence to employ ICA algon  \ritten as in Eq. 17:

(Comon, 1994). The approximation of Newton’s
method calls for the use of Lagrangian rule for

-E{zz'G"(W'2)} +Bl (16)

constrained optimization. Lagrangian rule for [‘l‘} -
constrained optimization can be briefly described a w —m wtOWd -y - EzG(W 2)} +pW (17)
follows.Assume a cost function E(w) (E is not oF E{zz'G"(W'2)} + I
expectation) which is suppose to be minimized or ow
maximized under some constrain(\) = 0, where i = o ] ) ]
1,2,3, ..., k. One can write the Lagrangian function To simplify the calculations, since the vectorsz i
based on the given information as in Eq. 13: sphered theri(;% can be approximated as in Eq. 18:

k
LOW, A A Ay )= E(W)@Ai H (W) (13) oF

wo E{zz'G" (W' 2)}+ Bl =E{zz"}E{G (W Z2)} +p (18)

where, Ay,A,,... A are called Lagrangian multipliers. =E{G"(W2)}pl =[E{G (W )} §

The minimum (maximum) point of Eq. 14 where its

gradient is zero with respect to both w and althe; Hence the gradient becomes a diagonal matrix and
gives the solution to the original constrained feal)  can easily be inverted. Thus the algorithm becoases
i.e., minimization of E(w) under some constrainf¥)  in Eq. 19:
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_E{zG'(W'z2)} + W

W W
[E{G"(W2)} +Al

(19)

Multiplying both sides of Eq. 21 by-
[E{G (W'2)}+B]l and simplifying the resulting

expression can be written as Eq. 20:

WEG"(W'2)} +@l —[IEZG (W 2)} €G W W  (20)

Maximization of Jape is then one method of joint
approximate diagonalization of the FjM

Two of the main steps in the JADE algorithm are
to find the significant eigenpairs of the cumuléarisor
{Ar, Mr|[1<r<n}and to jointly diagonalize the JADE
criterion Jape (W). These two steps that lead to the
JADE algorithm are discussed next.

Infomax method: The Infomax method has been
proposed for performing linear ICA based on a

Left hand side of Eq. 20 is nothing but a newprinciple of maximum information preservation (henc

variable to which right hand side value will beigeed,

its name). However, it can also be seen as a mawimu

hence the Fast ICA algorithm based on negentrofly wilikelihood method, or as a method based on the

become as in Eq. 21:

W, 00 EfZG(W'2)} -E{G"(W '2)}W (21)

Following is a brief summary of Fast ICA
algorithm based on negentropy for finding oneyY = WX (23)
maximally non-Gaussian direction, i.e., estimatorg

independent component.

JADE: JADE is an algorithm that uses significant

eigenpairs of the cumulant tensor F(M) to find

out

the estimated values of independent components. |
this algorithm the tensor eigenvalue decomposiison

considered as more of a preprocessing step (Lauba

et al.,, 1999). Eigenvalue decomposition can

be

viewed as diagonalization. The idea is to diagamali

F(M) for any M using the matrix W. In other words,
WF(M)WT is diagonal. This is because the matrix F
consists of a linear combination of terms of thenfo

w;w;,” assuming that the ICA model holds. Hence theSejnowski which uses a sigmoidal activation funtcii®
goal is to take a set of significant eigenmatridds,
and try to make the matrices WF (Mjveis diagonal
as possible. They might not be made exactlyroposed extension of Infomax ICA that is abledpasate
diagonal since the model doesn’t hold exactlywith sub and as well as super Gaussian distribufiors
wHoreserves the ICA architecture of Infomax algoritbart it

(M)W , then maximization of the sum of the squareuses a learning rule derived by Girolami and Fyfe.

because of some sampling errors. Let Q =

of diagonal elements of the Eq. 22:

Jypoe (W)= Y| diag(WF(M )W (22)

W

Xy —ept —P“b—\—b Z

Fig. 2: Structure of the infomax ICA system
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minimization of mutual information. Infomax uses a
network whose structure is depicted in Fig. 2 fthere
shows the case of two components; extension to a
larger number of components is straightforward)isw

a linear block, yielding the Eq. 23:

This block thus performs just a product by a squar
matrix (we shall designate both the block and the
matrix by the same letter since this will cause no
confusion). After optimization, the components of Y
are expected to be as independent from one anather
possible. Blockgy am auxiliary, being used only during
the optimization phase (Lest al., 2000). Each of them
implements a nonlinear function (that we shall also
designate by). These functions must be increasing,
with values in [0; 1]. The optimization of W is n&abdy
maximizing the output entropy, H (2).

Extended infomax method: The algorithm of Bell and

specifically suited to separate signals with super-
Gaussiandistribution (Alfaouri and Daqgrouq, 200B)e

determines the sign changes (positive to negatidevize
versa) required by the algorithm to handle both and
super Gaussian distributions.

RESULTSAND DISCUSSION

Data were recorded for 10 sec during each task and
each task was repeated five times per session
(Verobyov and Cichocki, 2002; Vigost al., 2000).
Subjects attended two sessions recorded on separate
weeks, resulting in a total of ten trials for edeakk.

With a 250 Hz sampling rate, each 10 sec trial pced
2,500 samples per channel.
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Fig. 3: EEG Recording of a Subject during Mental

Multiplication 10 . . . ‘
0 500 1000 1500 2000 2500
Figure 3 shows one Subject's EEG Data obtained Number of samples
from doing maths tasks twice. (b)
Results of fast ICA algorithm: Fig. 4: Independent Components Obtained by Fast ICA
Parameters: (a) Trail-1 (b) Trail-2

Nonlinearity: log (cosh(y))
No. of iterations: 100
Max. Weight change: 10e-300 Number of iterations: 5

. . Bias weight =0

Figure 4 shows the independent components ... ; - ; ;
obtained using the Fast ICA algorithm from the EEG?nltlal weight = Identity Matrix
data mixed with EOG which is shown in Fig. 3.

Transformation function=logistic sigmoid 1:1

et

Figure 6 shows the independent components
Results of JADE algorithm: No adjustable obtained using the Infomax algorithm for the EEGada

parameters. Execution time in seconds: Traill: 0.99° Fig. 3.
Trail 2: 1.01. Figure 5 shows the independent _
components obtained using the JADE algorithm fer th R€sults of Extended Informax:

EEG data of Fig. 3. . .
Parameters: Min. Weight-change: 1e-3

Results of infomax: Number of iterations=512
Signs: -1: subgaussian

Parameters: learning rate =0.1 1: supergaussian

Max. Change in weight =1e-3 Initial weight= ldentity matrix
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S ted signal using JADE Independent components using infomax
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Fig. 6: Independent Components Obtained using

-10 1 . .
0 500 1000 1500 2000 2500 Infomax (a) Trail-1 (b) Trail-2
Number of samples
(b) Table 2: Comparative analysis of PSNR between maigEEG signal
and ICA based Algorithms
. . . . Trails Algorithms JADE Fast ICA  Infomax Ex-Infomax
Fig. 5: Indepe_ndent components obtained using JADE g7 544299 244718 3031423 7763012
(a) Trail-1 (b) Trail-2 Trail 2 23.0914 23.1453  3.028219  5.813879
Trail 3 19.4162 19.7419  3.051284  53.219996
Table 1: Comparative analysis of entropy betweeigiral EEG Trail 4 24.4608 24.3400 3.000577 19.952245
signal and ICA based Algorithms Trail 5 241807 24.2847 3.000662 12.197524
Algorithm  Oroiginal Fast ICA JADE Infomax Extend&dfomax
Trail 1 1.646 4.409 4468 4.001 2.996 . .
Trail 2 1664 3781 4570 3518 2.858 Performance  comparisons  of  algorithms:
pa?:z i;g? i-ggg 2-;5421 g-ggg g-?gg Computation time: The computation time i.e., the time
ral . . . . . . H .
Trail 5 1705 4002 4335 391 3.050 taken by algorithm to separate the EEG signal is
measured (Teplan, 2002). For comparison of algmsth
Nonlinearity = tanh(u) mental multiplication task EEG (Kumat al., 2008)
Bias =0 which is measured for five trails is used. Entragy
Learning rate =0.1 original mental multiplication EEG signals of fiveils

is given in Table 1. Table 2 shows the comparative
Figure 7 shows the independent component@nalysis between original EEG signal and ICA based
obtained using the Extended Infomax algorithm far t algorithms. Table 3 shows computational time
EEG data of Fig. 3. comparision in second.
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Independent component using extended infomax obviously weaken even entirely remove the artifacts

' ‘ . ' multi-channel EEG signals, this characteristic@Alis
120 the key to get stable EEG patterns which can bd use
for mental task classification.

100 f
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