
Journal of Computer Science 2012, 8 (12), 2083-2097

ISSN 1549-3636

© 2012 Science Publications

doi:10.3844/jcssp.2012.2083.2097 Published Online 8 (12) 2012 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Rajagopal Palsonkennedy, Department of Information Technology, PBCE, Faculty of I and C,

 Anna University, India

2083 Science Publications

JCS

Matching LSI for Scalable Information Retrieval

1
Rajagopal Palsonkennedy and

2
T.V. Gopal

1Department of Information Technology, PBCE,

Faculty of I and C, Anna University, India
2Department of CSE, Faculty of I and C,CEG, Anna University, Chennai-25, India

Received 2012-06-09, Revised 2012-08-28; Accepted 2012-08-28

ABSTRACT

Latent Semantic Indexing (LSI) is one of the well-liked techniques in the information retrieval fields.

Different from the traditional information retrieval techniques, LSI is not based on the keyword matching

simply. It uses statistics and algebraic computations. Based on Singular Value Decomposition (SVD), the

higher dimensional matrix is converted to a lower dimensional approximate matrix, of which the noises could

be filtered. And also the issues of synonymy and polysemy in the traditional techniques can be prevail over

based on the investigations of the terms related with the documents. However, it is notable that LSI suffers a

scalability issue due to the computing complexity of SVD. This study presents a distributed LSI algorithm

MR-LSI which can solve the scalability issue using Hadoop framework based on the distributed computing

model Map Reduce. It also solves the overhead issue caused by the involved clustering algorithm by k-means

algorithm. The evaluations indicate that MR-LSI can gain noteworthy improvement compared to the other

scheme on processing large scale of documents. One significant advantage of Hadoop is that it supports

various computing environments so that the issue of unbalanced load among nodes is highlighted.Hence, a

load balancing algorithm based on genetic algorithm for balancing load in static environment is proposed. The

results show that it can advance the performance of a cluster according to different levels.

Keywords: SVD, K-Means Cluster, T-Dmatrix, Mapreduce, LSI, Information Retrieval

1. INTRODUCTION

 Latent Semantic Indexing (LSI) has been broadly
used in information retrieval due to its success in solving
the problems of polysemy and synonymy. However,
three negative aspects affect the performance of LSI. The
first disadvantage is that LSI is notably a
computationally rigorous method because of the
computing complexities of singular value decomposition
and filtering operations involved in the process. The
second disadvantage is several studies show that the
truncated SVD (Zha and Zhang 2000) can be lack of
competence in processing large in identical text
collections. The third disadvantage is for large datasets
the SVD computation may be too expensive to be carried
out on conventional computers. Also, the dense data
structure of the truncated SVD (Zhang and Zha, 2001)
matrices poses a huge challenge for both disk and

memory spaces of conventional computers. One of the
clustering algorithm k-means has been involved by
Combining with k-means, the original dataset of
documents can be clustered into several sub-clusters
according to the similarities of topics of the documents.
As a result, the dimension of the original T-D matrix
formed from the inhomogeneous text collections is
reduced. Also, the computing complexity and cost are
reduced. However, it should be noted that the combined
clustering algorithm k-means can also generate large
overhead when it is dealing with large dataset. Thus to
distribute the k-means combining with LSI is an efficient
way to solve the above issue.This study presents a
MapReduce based Distributed LSI algorithm (MR-DLSI)
for high performance and scalable information retrieval
(Bassu and Behrens, 2003; Dumais, 1995). MR-DLSI
distributes k-means using Hadoop framework based on
MapReduce computing model. Each mapper processes a

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2084 Science Publications

JCS

data chunk which is separated from the original dataset by
running k-means algorithm. After the dataset is clustered,
a number of sub-clusters are output by reducer. And then,
a number of mappers are started to do truncated SVD
computation in each sub-cluster (Husbands et al., 2001).
Finally, reducer outputs the final results into HDFS.

 The performance of MR-DLSI is first evaluated in a

small scale experimental environment. By partitioning

the dataset into smaller subsets and optimizing the

partitioned subsets across a cluster of computing nodes,

the overhead of the MR-DLSI algorithm is reduced

significantly while maintaining a high level of accuracy

in retrieving documents of user interest. A genetic

algorithm based load balancing scheme is also designed

to optimize the performance of MR-DLSI in

heterogeneous computing environments in which the

computing nodes have varied resources.

1.1. Problem Statements

 LSI suffers from scalability problems especially in

processing massive document collections due to SVD

which is considered to be computationally intensive.

 Therefore, several techniques have been proposed to

enhance the performance of LSI. Gao and Zhang (2003);

Bassu and Behrens (2003) combined the clustering

algorithm k-means (Steinbach et al., 2000) and LSI to

reduce the overhead (large executing time consumed) of

typical LSI. These approaches show enhancement in

performances however the overhead of k-means with large

document collection are not considered. An alternative

approach is to distribute the computation of LSI among

nodes in a cluster environment using the Message Passing

Interface (MPI). Seshadri and Iyer (2010) proposed a

parallel SVD clustering algorithm using MPI. Documents

are split into a number of subsets. Each subset of the

documents is clustered by a participating node in the cluster.

 The MPI approaches mainly target on homogeneous

computing environments with limited support for fault

tolerance and incur large inter-node communication

overhead when shipping large date across the cluster.

Currently heterogeneous computing environments are

increasingly being used as platforms for resource intensive

distributed applications. One major challenge in using a

heterogeneous environment is to balance the computation

loads across a cluster of participating computer nodes.

1.2. The Design and Implementation of MR-DLSI

 MR-DLSI employs k-means to group documents

into a number of clusters of documents. To minimize the

overhead of k-means in clustering documents, MR-LSI

partitions the set of documents into a number of subsets

of documents and distributes these subsets of documents

among a number of processors in a MapReduce Hadoop

environment. Each processor only clusters a portion of

the documents and subsequently performs a truncated

SVD operation on the generated document cluster.The

details on the design of MR-LSI are given below:

� *

t tt
M U V= ∑

 Let U represent the set of documents,

V represent the set of processors in a Hadoop cluster,

 Each processor runs one map instance called

mapper.Mm. Ms represent the set of mappers running in

the Hadoop cluster.

 In DLSI, the set of documents can be represented by

a set of vectors denoted by, Vd

 Each vector represents the frequencies of keywords

that appear in document. The input of each mapper

includes two parts. The first part is a centroid set of with

initial centroids which are randomly selected from the

vector set,. The second part of the input of a mapper is a

portion of denoted by. The vector set is equally divided

into portions according to the number of mappers. Each

mapper runs on one processor calculating the Euclid

distances between and which is denoted by, then:

() () () ()
2n

2 2 2

1 1 2 2 n n i i

i 1

d(p,q) d(q,p)

q p q p ... q p q p
=

=

= − + − + + − = −∑

 Let d represent the shortest distance between objects

and, then.

 Based on the shortest distance, the mapper selects

the corresponding and to generate a key-value pair as

one output record. The output pairs of all the mappers

are fed into the reduce instance (called reducer). The

reducer groups the values with the same key into a set of

clusters denoted by C, where and for each the reducer

calculates a new centroid denoted by X0=∑xi.

 The reducer outputs a set of centroids denoted by

x1, which will be fed into the mappers for computing

another set of centroids until the values of the centroids

in set are the same as those in then the reducer outputs

the each of the jobs runs a mapper performing a

truncated SVD operation in. In each, the vectors form a

T-D matrix:

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2085 Science Publications

JCS

T

d 1 2 Nv w ,d,w d,...,w ,d =  

Where:

{ }t ,d t ,d

D
w tf .log

d ' D t d '
=

∈ ∈

 After performing a truncated SVD operation, the

matrix can be represented by an approximate matrix,

where, k is the rank of the matrix.

 In LSI, for a submitted query, it is processed using

Equation 1:

()
()

j 1, j 2, j t , j

1,q 2,q t,q

d w ,w ,...,w

q w ,w ,...,w

=

=
 (1)

 The similarities of the query to the documents can

be measured by calculating the cosine values of vector

and the vectors of matrix using Equation 2:

2

2

d .q
cos

d q
θ = (2)

where, j represents the jth document in the clustered

document set.
 If the value of is larger than a given threshold, then
the document will be a target document. Therefore the
set of target documents can be represented as.
 Finally, the reducer generates clusters of documents.
For each cluster of documents, a truncated SVD operation is
performed and targeted documents are retrieved.

1.3. Static Load Balancing Strategy for MR-LSI

 A remarkable characteristic of the MapReduce
Hadoop framework is its support for heterogeneous
computing environments. Therefore computing nodes
with varied processing capabilities can be utilized to run
MapReduce applications in parallel. However, current
implementation of Hadoop only employs First-In-First-
Out (FIFO) and fair scheduling without support for load
balancing taking into consideration the varied resources
of computers. A genetic algorithm based load balancing
scheme is designed to optimize the performance of MR-
LSI in heterogeneous computing environments.

1.4. Algorithm Design

 To solve an optimization problem, genetic algorithm
solutions need to be represented as chromosomes
encoded as a set of strings which are normally binary
strings. However, a binary representation is not feasible
as the number of mappers in a Hadoop cluster

environment is normally large which will result in long
binary strings. A decimal string to represent a
chromosome in which the data chunk assigned to a
mapper is represented as a gene is employed.

 In Hadoop, the total time (Tt) of a mapper in

processing a data chunk consists of the following four parts.

 Data copying time (tc) in copying a data chunk from

Hadoop distributed file system to local hard disk. It

depends on the available network bandwidth and the

writing speed of hard disk.

 Processor running time (tr) in processing a data chunk.

 Intermediate data merging time (tm) in combining

the output files of the mapper into one file for reduce

operations. Buffer spilling time (tb) in emptying filled

buffers using Equation 3:

Tb=Tc+Tr (3)

 Let 10MB be the size of the data chunk.

Ws1ms/1MB = The writing speed of hard disk in

MB/second.

Nb = The network bandwidth in

MB/second.

Ps = The speed of the processor running

the mapper process in MB/second.

Bs = The size of the buffer of the mapper.

Ps/bs = The ratio of the size of the

intermediate data to the size of the

data chunk.

F1 = The number of frequencies in

processing intermediate data.

bBn = The number of times that buffer is

filled up.

Vd = The volume of data processed by the

processor when the buffer is filled up.

s be = The sort factor of Hadoop.

 Therefore:

 Vn = Ps/Bs(f1.bn) (4)

 Here depends on the available resources of hard disk

and network bandwidth using Equation 4. The slower

one of the two factors will be the bottleneck in copying

data chunks from Hadoop distributed file system to the

local hard disk of the mapper:using Equation 5:

Map (c1,v1) → list(c2,v2) (5)

 When a buffer is filling, the processor keeps writing
intermediate data into the buffer and in the mean time the
spilling process keeps writing the sorted data from the

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2086 Science Publications

JCS

buffer to hard disk. Therefore the filling speed of a
buffer can be represented by. Thus the time to fill up a
buffer can be computed by. As a result, for a buffer to be
filled up, the processor will generate a volume of
intermediate data with the size of Vb which can be
computed using Equation 6:

b s a

s

Bf
V P R

P Hd
−

−
 (6)

 The total amount of intermediate data generated

from the original data chunk with a size of is Dm.

Therefore the number of times for a buffer to be filled up

can be computed using Equation 7:

m a
m b

b

D R
D N

V

+
= = (7)

 The time for a buffer to be spilled once is, therefore the

time for a buffer to be spilled for times is using Equation 8.

Then we have:

b b Hd
t N Rf= + ∫ (8)

 The frequencies in processing intermediate data can

be computed using Equation 9:

f b
N [q | s] 1= − (9)

 When the merging occurs once, the whole volume of

intermediate data will be written into the hard disk

causing an overhead of thus if the merging occurs times,

the time consumed by hard disk IO operations can be

represented by Tm:(given in Equation 10.):

m f
m

D Ra N
t

Hd
= (10)

 The total time to process data chunks in one processing

wave in MapReduce. Hadoop is the maximum time

consumed by participating mappers, where:

total 1 2 k
T max(T ,T ...T)...= (11)

 According to divisible load theory (Othman, 2010;
Robertazzi, 2003; Thysebaert et al., 2005) to achieve a
minimum, it is expected that all the mappers to complete
data processing at the same time:

T1 = T2 = …Tk (12)

 Let Tp be the processing time for the mapper.

 T be the average time of the mappers in data

processing, k

pT T / k= ∑ .

 Based on Equation 11 and 12, the fitness function is
to measure the distance between and gene. Therefore, the
fitness function can be defined using Eq. 13 which is used
by the genetic algorithm (Guo et al., 2010) in finding an
optimal or a near optimal solution in determining the size
for a data chunk:

k
2

p

i 1

f (t) (T _ T)
=

= ∑ (13)

1.5. Crossover

 To maintain the diversity of the chromosomes, the
algorithm needs functions of crossover. Crossover
recomposes the homologous chromosomes via mating to
generate new chromosomes or so called offspring. The
generated offspring inherit the basic characteristics of
their parents. Some of them may adapt to the fitness
function better than their parents did, so they may be
chosen as parents in next generation. Based on crossover,
the algorithm can keep evolving until an optimal
offspring has been found. In this algorithm, to gain the
effective of design and operations, single-point crossover
which refers to set only one crossover point randomly in
the chromosome has been employed. The processes of
crossover could be regarded as:
 Randomly select pairs of the chromosomes
(schedulers) as parents to mate. 2. In each pair, randomly
select a position as crossover point. If the length of the
chromosome is then there will be available points. k1k3.
In each pair, the chromosomes change their parts which
are after the crossover point with each other according to
crossover probability. p
 However in the algorithm simply crossing the

chromosome may cause one problem.
 As each gene is the value of the actual volume of
data each Map instance takes, to change the members of
genes may differentiate the original total volume of data.
Assume the original total volume of data is and the volume
of data after crossover is, then the difference should be
considered and processed. In the algorithm is divided into
parts. The size of each part is randomly assigned. And then
these parts will be randomly added to or removed by ∆D:

k k

i i

l 1 I 1

D D d
− −

∆ = −∑ ∑

 From genes in the chromosome. Thus the total size
of processed data in one wave could be guaranteed.

1.6. Mutation

 To avoid the local optimum of the algorithm,
mutation has been introduced into our algorithm.
Mutation could mutate genes in a chromosome based on
smaller probabilities. Moreover new individuals could be

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2087 Science Publications

JCS

generated. So that combined with crossover the information
loss due to the selection could be avoided. Thus the validity
of the algorithm could be guaranteed. The mutation
contributes in two main aspects in our algorithm.
 Improving the local search ability of the algorithm.
The crossover operation could find a number of
chromosomes with better adaptability from a global
angle. These chromosomes are close to or helpful to gain
the optimal solution. However crossover cannot execute
local search in details. So using mutation to tune the

values of certain genes from local detailed phase could
make the chromosome much closer to the optimal
solution. So the search ability is enhanced compare to
that of only crossover involved.
 Maintaining the diversity of the colony moreover
preventing the premature convergence of the algorithm.
Mutation replaces the original genes with newly mutated
genes so that the structure of a chromosome could be
significantly affected. The diversity of the colony could
be maintained.

 The algorithm mutates genes mainly based on

simple mutation which refers that to mutate one or

several genes in the chromosome based on mutation

probability. There are two steps in the simple mutation.
 Randomly select a gene to be the mutation point.
Base on mutation probability to decide if the
chromosome mutates.

 If the probability decides the gene should mutate,

then the value of the gene will be mutated which means a

new value replaces the original value. As a result a new

individual is generated.

 However, it is quite similar to crossover processes
that when the value of one gene mutates, the original
total volume of data has been changed. Assume the
original volume of the gene is and the volume after
mutation is, then the difference. To solve issue, is
divided into parts. The size of each part is randomly

assigned. And then these parts will be randomly added to
or removed from genes in the chromosome. Thus the
total size of processed data in one wave could be
guaranteed. Based on this design, the algorithm has a
strong ability to change its searching direction to gain the
optimal solution in a large search space.

iPip

iiPPpP

1.7. Experimental Results

 To evaluate the performances of MR-LSI a small

scale Hadoop cluster consisting four computer nodes has

been set up. Table 1 shows the configurations of the

Hadoop cluster.

Table 1. The experimental environment

Number of Hadoop nodes: 4

Nodes' specifications: Three Datanode: CPU

 Q6600@2.5G, RAM 3GB and

 running OS Fedora11. One

 namenode: CPU

 C2D7750@2.26,RAM2GB

 and running OS Fedora 12.

Number of mappers per node: 2

Number of reducer: 1

Network banwidth: 1000Gbps

 To evaluate the performances of MR-LSI, 1000
papers were collected from the IEEE XPlore data source.
For each paper selected, a T-D matrix will be
constructed. In the tests, also two strategies Closest
Distance Searching (CDS) and All Distances Searching
(ADS) for clustering documents which are similar to the
clustered strategies proposed in have been designed.
 Processed by k-means, the original dataset is
clustered into a number of sub-clusters. Within these
sub-clusters, one or a few of them may be close to the
query while the others are far away from the query. CDS
calculates the distances between a query and the centroid
of each sub-cluster. The closest sub-cluster to the query
will have the highest probability in containing the target
documents. A truncated SVD will only be performed on
the closest sub-cluster. As CDS just retrieves information
in one cluster, the time consumed for executing CDS is
least. ADS calculates the distance between a query and
the centroid of each sub-cluster and a truncated SVD will
be performed on all the sub-clusters. As ADS retrieves
information in all sub-clusters, the misclassified
documents may have chance to be retrieved.

1.8. Evaluating MR-DLSI

 MR-LSI was evaluated from the aspects of precision
and recall in comparison with standalone LSI, standalone
LSI combined with k-means using the CDS strategy
and standalone LSI combined with k-means using the
ADS strategy. From the results presented in Fig. 1 and
2 it can be observed that the performance of MR-LSI
is close to that of the standalone LSI. It is worth
pointing out that the CDS strategy only works on the
closest sub-cluster of documents related to a query.
Compared with other algorithms, CDS retrieves a
smaller number of documents which resulting in lower
performance in recall.
 There are a number of tests have been conducted
to evaluate the overhead of MR-LSI in computation.
The number of documents to be retrieved varied from
100-1000.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2088 Science Publications

JCS

Fig. 1. The precision of MR-LSI

Fig. 2. The recall of MR-LSI

However, the size of the dataset was not large. From Fig.
3 and 1 it can be seen that MR-LSI consumed more time
than other algorithms in processing the Number of
papers dataset. This is mainly due to the overhead
generated by the Hadoop framework which is effective in
processing large scale data. Both the ADS and the CDS
strategies perform faster than the standalone LSI indicating
the effectiveness of a combination of LSI with k-means.

 And also a number of additional tests have been

as well conducted to further evaluate CDS and MR-

LSI the overhead of MR-LSI in processing a large

collection of documents.

 The size of the document collection is increased

from 5KB to 20MB and the overhead of MR-LSI with

that of the CDS strategy is compared as CDS is faster

than both the standalone LSI and the ADS strategy.

From the results plotted in Fig. 5 it can observed that

when the data size is less than 1.25MB, the overhead

of CDS is stable.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2089 Science Publications

JCS

Fig. 3. The overhead of standalone LSI, ADS and CDS in computation

Fig. 4. The overhead of MR-LSI

However, the overhead of CDS starts growing when the

size of dataset is larger than 2.5MB. When the size of

data reaches to 10MB, the overhead of CDS increases

sharply as shown in Fig. 4. Compared with CDS, the

overhead of MR-LSI is highly stable with an increasing

size of dataset shows its better scalability than the CDS

strategy. It also should be mentioned that when the size

of data increases higher than 20MB, the heap space

exception occurs when CDS processes data due to the

memory limitation of applications in a standalone node.

1.9. MR-DLSI Simulation Results

 To further evaluate the effectiveness of MR-LSI
in large scale MapReduce environments, HSim has been
developed using pure JAVA programming language.
This chapter accesses the performance of the MR-LSI in
simulation environments.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2090 Science Publications

JCS

Fig. 5. Comparing the overhead of MR-LSI with CDS

Fig. 6. The impact of the number of reducers on mapper performance

1.10. Simulation Results

 To study the impacts of Hadoop parameters on
performance of MR-LSI, a cluster has been simulated with
the configurations as shown in Table 2. Each node has a
processor with 1 cores. The number of mappers is equal to
the number of processor cores. There are two mappers
running on a single processor with two cores. The speeds of
the processors were simulated in terms of the volume of
data in MB processed per second. In the following sections,
the impacts have been shown of a number of Hadoop
parameters on the performance of MR-LSI.

1.11. Multiple Reducers in one Node

 From Fig. 6 it shows that the number of reducers

does not affect the performance of mappers greatly. This

is because mappers and reducers work almost

independently in Hadoop environments. Figure 7 shows

the impact of the number of reducers on the overall

overhead when processing a job. Allocating multiple

reducers on one node increases results in the shared

resources issue.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2091 Science Publications

JCS

Fig. 7. The impact of the number of reducers on the total process

Fig. 8. The impact of sort factor

Table 2. The simulated environment

No. of simulated nodes 250
Data size: 100,000MB
CPU processing speed: Up to 0.65MB/s
Hard drive reading speed: 80MB/s
Hard drive writing speed: 40MB/s
Memory reading speed: 6000MB/s
Memory writing speed: 5000MB/s
Network bandwidth: 1Gbps
Number of mappers: 4per node
Number of reducer: 1 or more

1.12. Sort Factor

 In Hadoop, The parameter of sort factor controls the

maximum number of data streams to be merged in one

wave when sorting files. Therefore, the value of sort

factor affects the IO performance of MR-LSI. From Fig.

8 it can be observed that the case of using sort factor 100

gives a better performance than sort factor 10.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2092 Science Publications

JCS

Fig. 9. The impact of buffer size

Fig. 10. The impact of data chunk size on the mappers in MR-LSI

When the value of sort factor is changed from 10 to 100, the

number of spilled files will be increased which reduces the

overhead in merging.

1.13. Buffer Size

 The buffer size in Hadoop contributes to IO

performance and it affects the performance of a processor.

The default value of a buffer size is 100MB. The

performance of MR-LSI with a data size of 1000MB is

tested. As shown in Fig. 9, the mappers generate a small

number of spilled files when using a large size buffer

which reduces the overhead in merging. Furthermore, a

large buffer size can keep the processor working without

any blocking for a long period of time.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2093 Science Publications

JCS

Fig. 11. The impact of data chunk size on MR-LSI

Fig. 12. The impact of different CPU processing speeds

 Each mapper processes a data chunk at a time. Thus
the size of data chunks highly affects the number of
processing waves of mappers. From Fig. 10 it can be
observed that using a large size for data chunks reduces
the overhead of mappers in processing and also reduces
the total overhead of the process as shown in Fig. 11.
However, both of the two chunk sizes produce the same
performance when the number of mappers increases to
800 and 900 respectively. In the case of chunk size
61MB, to process 100,000MB data, using 800 mappers
needs waves to finish the job. In the case of chunk size
100MB, using 800 mappers needs waves to finish the
job. Similarly, using 900 mappers needs 2 waves to
process the 100,000MB data in both cases. When the

number of mappers reaches 1000, the performance of the
two cases with different data sizes varies.

1.14. CPU Processing Speed

 Figure 12 shows the impacts caused by different
processing speed of processors. From the figure we can
observe clearly that a faster processor can gain better
performance compared to that of a slower processor.

1.15. Number of Reducers

 Figure 13 shows that increasing the number of

reducers enhances the performance of MR-LSI when the

number of reducers is small.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2094 Science Publications

JCS

Fig. 13. The impact of reducers

Fig. 14. The performance of the MR-LSI with difference sizes of data

More reducers are used more resources will need to be
consumed due to Hadoop's management work on the
reducers. In some cases multiple reducers need an additional

job to collect and merge the results of each reducer to form a

final result. This can also cause larger overhead.

1.16. Load Balancing Simulation Results

 Table 3 shows the configurations of the simulated
Hadoop environments in evaluating the effectiveness of
the load balancing scheme of MR-LSI.
 To evaluate the load balancing algorithm, a cluster
with 20 computers has been simulated. Each computer

has one processor with two cores. The number of
mappers is equals to the number of processor cores.
Therefore two mappers are running on a single processor
with two cores. The speeds of the processors are generated
based on the heterogeneities of the Hadoop cluster. In the
simulation environments the total processing power of
the cluster was where n represents the number of the
processors employed in the cluster and represents the
processing speed of the ith processor (Steinbach et al.,
2000). For a Hadoop cluster with a total computing
capacity, the levels of heterogeneity of the Hadoop cluster
can be defined using Equation 11.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2095 Science Publications

JCS

Fig. 15. The convergence of the load balancing scheme

Fig. 16: The overhead of the load balancing scheme with different sizes of data

In the simulation, the value of heterogeneity was in the
range of 0 and 2.28. The reading and writing speeds of
hard disk were generated based on the real measurements
from the experiments conducted.

 Firstly 10GB data has been tested in the simulated

cluster with different levels of heterogeneity. From Fig.

11 it can be observed that when the level of heterogeneity

is less than 1.08 which indicates a nearly homogeneous

environment, the load balancing scheme does not make any

difference to the performance of MR-LSI. However, the

load balancing scheme reduces the overhead of MR-LSI

significantly with an increasing level of heterogeneity.
 The levels of heterogeneity are keeping the same in
the tests but varied the size of data from 1GB to 10GB.
This set of tests was used to evaluate how the load
balancing scheme performs with different sizes of
datasets. Figure 14 shows that the load balancing
scheme can always reduce the overhead of MR-LSI.

 The load balancing scheme builds on a genetic algorithm

whose convergence affects the efficiency of MR-LSI.

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2096 Science Publications

JCS

Table 3. Hadoop simulation configuration

Number of stimulated node 20

Number of processor 1
in each node:
Number of cores 2
in each processor:
Size of data: Test 1: 10GB Test 2:
 10-100GB
The processing Depending on
speed of prpcessors: heterogeneities
Hetrogeneities: From 0-2.28
Number of hard 1
diskin each node:
Reading speed of 80MB/s
hard disk:
Writing speed of 40MB/s
hard disk:
Number of Each node contributes
Map instances: 2Map instances.
Number of 1
Reducer instances:
Sort factor: 100

 To analyze the convergence of the genetic

algorithm, the number of generations is varied and the

overhead of MR-LSI in processing a 10GB dataset in the

simulated Hadoop environment is measured. Figure 15

shows that MR-LSI reaches a stable performance when

the number of generations in the genetic algorithm

reaches 300.

 The load balancing scheme also produces some

overhead during execution.

 Figure 16 shows an increased overhead of the load

balancing scheme when the number of mappers increases

together with an increasing size of data. However the

MR-LSI algorithm can still achieve benefit from load

balancing algorithm. For example, for heterogeneity

2.08, the overhead of load balancing algorithm is 331s.

 The time consumed for one processing wave of

mappers is 363s with load balancing. The time consumed

for one processing wave of mappers is 2256s without

load balancing. Thus the performance is enhanced

69.2%. As in the static computing environment, the

scheduler only needs to be computed once, thus it can be

claimed that for a long-time processing job with proper

heterogeneities, the load balancing algorithm can

enhance performances greatly.

2. CONCLUSION

 This study presents for scalable information

retrieval. MR-LSI is effective when processing a large

dataset due to high scalability of MapReduce in support

of data intensive applications. Both experimental and

simulation results have shown that the MR-LSI

algorithm speeds up the computation process of SVD

while maintaining a high level of accuracy in

information retrieval. The simulating results also indicate

that the load balancing strategy can enhance the

performance of the Hadoop cluster when it is running a

Hadoop application.

3. REFERENCES

Bassu, D. and C. Behrens, 2003. Distributed LSI:

Scalable Concept-based information retrieval with

high semantic resolution. Proceedings of the 3rd

SIAM International Conference on Data Mining,

May, 3-3, Telcordia Technologies, Inc., Morristown.

Dumais, S., 1995. Using LSI for Information Filtering:

TREC-3 experiments. In: The Third Text Retrieval

Conference (TREC3), D. Harman (Ed.), NIST

Special Publication, Gaithersburg, ISBN-10:

0788129457, pp: 219-230.

Gao, J. and J. Zhang, 2003. Sparsification strategies in

latent semantic indexing. Proceedings of the 2003
Text Mining Workshop, (TMW’ 03), CiteSeerX, pp: 93-103.

Guo, P., Wang, X. and Y. Han, 2010. The enhanced

genetic algorithms for the optimization design.

Proceedings of the 3rd International Conference on

Biomedical Engineering and Informatics, Oct. 16-

18, IEEE Xplore Press, Yantai, pp: 2990-2994. DOI:

10.1109/BMEI.2010.5639829

Husbands, P., H. Simon and C. Ding, 2001. On the use

of the Singular Value Decomposition for Text

Retrieval. In: Computational Information Retrieval,

Berry, M.W., (Ed.). SIAM, Philadelphia, ISBN-10:

0898715008, pp: 145-156.

Othman, M. (2010). Survey on divisible load theory and

its applications. Proceedings of the 2009

International Conference on Information

Management and Engineering, Apr. 3-5, IEEE

Xplore Press, pp: 300-304. DOI:

10.1109/ICIME.2009.59

Robertazzi, T.G., 2003. Ten reasons to use divisible load

theory. Comput., 36: 63-68. DOI:

10.1109/MC.2003.1198238
Seshadri, K. and K.V. Iye, 2010. Parallelization of a

dynamic SVD clustering algorithm and its

application in information retrieval. Software

Practice and Experience, 40: 883-896. DOI:

10.1002/spe.v40:10

Rajagopal Palsonkennedy and T.V. Gopal / Journal of Computer Science 8 (12) (2012) 2083-2097

2097 Science Publications

JCS

Thysebaert, P., M., Volckaert, B., De Turck, F. Dhoedt

and P. Demeester, 2005. Using divisible load theory

to dimension optical transport networks for grid

excess load handling. Proceedings of the Joint

International Conference on Networking and

Services, Oct. 23-28, IEEE Xplore Press, Papeete,

Tahiti, pp: 89-89. DOI: 10.1109/ICAS-

ICNS.2005.97
Steinbach, M., G. Karypis and V. Kumar, 2000. A

comparison of document Clustering

Techniques. University of Minnesota.

Zha, H. and Z. Zhang, 2000. On matrices with low-rank-

plus-shift structures: Partial SVD and latent

semantic indexing. SIAM J. Matrix Analysis Appli.,

21: 522-536.

Zhang, Z. and H. Zha, 2001. Structure and perturbation

analysis of truncated svds for column-partitioned

matrices. SIAM J. Matrix Anal. Applic., 22: 1245-

1262. DOI: 10.1137/S0895479899357875

