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ABSTRACT 

Latent Semantic Indexing (LSI) is one of the well-liked techniques in the information retrieval fields. 

Different from the traditional information retrieval techniques, LSI is not based on the keyword matching 

simply. It uses statistics and algebraic computations. Based on Singular Value Decomposition (SVD), the 

higher dimensional matrix is converted to a lower dimensional approximate matrix, of which the noises could 

be filtered. And also the issues of synonymy and polysemy in the traditional techniques can be prevail over 

based on the investigations of the terms related with the documents. However, it is notable that LSI suffers a 

scalability issue due to the computing complexity of SVD. This study presents a distributed LSI algorithm 

MR-LSI which can solve the scalability issue using Hadoop framework based on the distributed computing 

model Map Reduce. It also solves the overhead issue caused by the involved clustering algorithm by k-means 

algorithm. The evaluations indicate that MR-LSI can gain noteworthy improvement compared to the other 

scheme on processing large scale of documents. One significant advantage of Hadoop is that it supports 

various computing environments so that the issue of unbalanced load among nodes is highlighted.Hence, a 

load balancing algorithm based on genetic algorithm for balancing load in static environment is proposed. The 

results show that it can advance the performance of a cluster according to different levels. 
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1. INTRODUCTION 

 Latent Semantic Indexing (LSI) has been broadly 
used in information retrieval due to its success in solving 
the problems of polysemy and synonymy. However, 
three negative aspects affect the performance of LSI. The 
first disadvantage is that LSI is notably a 
computationally rigorous method because of the 
computing complexities of singular value decomposition 
and filtering operations involved in the process. The 
second disadvantage is several studies show that the 
truncated SVD (Zha and Zhang 2000) can be lack of 
competence in processing large in identical text 
collections. The third disadvantage is for large datasets 
the SVD computation may be too expensive to be carried 
out on conventional computers. Also, the dense data 
structure of the truncated SVD (Zhang and Zha, 2001) 
matrices poses a huge challenge for both disk and 

memory spaces of conventional computers.  One of the 
clustering algorithm k-means has been involved by 
Combining with k-means, the original dataset of 
documents can be clustered into several sub-clusters 
according to the similarities of topics of the documents. 
As a result, the dimension of the original T-D matrix 
formed from the inhomogeneous text collections is 
reduced. Also, the computing complexity and cost are 
reduced. However, it should be noted that the combined 
clustering algorithm k-means can also generate large 
overhead when it is dealing with large dataset. Thus to 
distribute the k-means combining with LSI is an efficient 
way to solve the above issue.This study presents a 
MapReduce based Distributed LSI algorithm (MR-DLSI) 
for high performance and scalable information retrieval 
(Bassu and Behrens, 2003; Dumais, 1995). MR-DLSI 
distributes k-means using Hadoop framework based on 
MapReduce computing model. Each mapper processes a 
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data chunk which is separated from the original dataset by 
running k-means algorithm. After the dataset is clustered, 
a number of sub-clusters are output by reducer. And then, 
a number of mappers are started to do truncated SVD 
computation in each sub-cluster (Husbands et al., 2001). 
Finally, reducer outputs the final results into HDFS.  

 The performance of MR-DLSI is first evaluated in a 

small scale experimental environment.  By partitioning 

the dataset into smaller subsets and optimizing the 

partitioned subsets across a cluster of computing nodes, 

the overhead of the MR-DLSI algorithm is reduced 

significantly while maintaining a high level of accuracy 

in retrieving documents of user interest. A genetic 

algorithm based load balancing scheme is also designed 

to optimize the performance of MR-DLSI in 

heterogeneous computing environments in which the 

computing nodes have varied resources.  

1.1. Problem Statements  

 LSI suffers from scalability problems especially in 

processing massive document collections due to SVD 

which is considered to be computationally intensive.  

 Therefore, several techniques have been proposed to 

enhance the performance of LSI. Gao and Zhang (2003); 

Bassu and Behrens (2003) combined the clustering 

algorithm k-means (Steinbach et al., 2000) and LSI to 

reduce the overhead (large executing time consumed) of 

typical LSI. These approaches show enhancement in 

performances however the overhead of k-means with large 

document collection are not considered. An alternative 

approach is to distribute the computation of LSI among 

nodes in a cluster environment using the Message Passing 

Interface (MPI). Seshadri and Iyer (2010) proposed a 

parallel SVD clustering algorithm using MPI. Documents 

are split into a number of subsets. Each subset of the 

documents is clustered by a participating node in the cluster.  

 The MPI approaches mainly target on homogeneous 

computing environments with limited support for fault 

tolerance and incur large inter-node communication 

overhead when shipping large date across the cluster. 

Currently heterogeneous computing environments are 

increasingly being used as platforms for resource intensive 

distributed applications. One major challenge in using a 

heterogeneous environment is to balance the computation 

loads across a cluster of participating computer nodes. 

1.2. The Design and Implementation of MR-DLSI 

 MR-DLSI employs k-means to group documents 

into a number of clusters of documents. To minimize the 

overhead of k-means in clustering documents, MR-LSI 

partitions the set of documents into a number of subsets 

of documents and distributes these subsets of documents 

among a number of processors in a MapReduce Hadoop 

environment. Each processor only clusters a portion of 

the documents and subsequently performs a truncated 

SVD operation on the generated document cluster.The 

details on the design of MR-LSI are given below: 

 
� *

t tt
M U V= ∑  

 

 Let U represent the set of documents,  

V represent the set of processors in a Hadoop cluster,  

 Each processor runs one map instance called 

mapper.Mm. Ms represent the set of mappers running in 

the Hadoop cluster. 

 In DLSI, the set of documents can be represented by 

a set of vectors denoted by, Vd 

 Each vector represents the frequencies of keywords 

that appear in document. The input of each mapper 

includes two parts. The first part is a centroid set of with 

initial centroids which are randomly selected from the 

vector set,. The second part of the input of a mapper is a 

portion of denoted by. The vector set is equally divided 

into portions according to the number of mappers. Each 

mapper runs on one processor calculating the Euclid 

distances between and which is denoted by, then: 
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 Let d represent the shortest distance between objects 

and, then.  

 Based on the shortest distance, the mapper selects 

the corresponding and to generate a key-value pair as 

one output record. The output pairs of all the mappers 

are fed into the reduce instance (called reducer). The 

reducer groups the values with the same key into a set of 

clusters denoted by C, where and for each the reducer 

calculates a new centroid denoted by X0=∑xi. 

 The reducer outputs a set of centroids denoted by 

x1, which will be fed into the mappers for computing 

another set of centroids until the values of the centroids 

in set are the same as those in then the reducer outputs 

the each of the jobs runs a mapper performing a 

truncated SVD operation in. In each, the vectors form a 

T-D matrix: 
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 After performing a truncated SVD operation, the 

matrix can be represented by an approximate matrix, 

where, k is the rank of the matrix. 

 In LSI, for a submitted query, it is processed using 

Equation 1: 
 

 
( )
( )

j 1, j 2, j t , j

1,q 2,q t,q

d w ,w ,...,w

q w ,w ,...,w

=

=
 (1) 

 
 The similarities of the query to the documents can 

be measured by calculating the cosine values of vector 

and the vectors of matrix using Equation 2: 
 

2
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where, j represents the jth document in the clustered 

document set.   
 If the value of is larger than a given threshold, then 
the document will be a target document. Therefore the 
set of target documents can be represented as.  
 Finally, the reducer generates clusters of documents. 
For each cluster of documents, a truncated SVD operation is 
performed and targeted documents are retrieved.  

1.3. Static Load Balancing Strategy for MR-LSI 

 A remarkable characteristic of the MapReduce 
Hadoop framework is its support for heterogeneous 
computing environments. Therefore computing nodes 
with varied processing capabilities can be utilized to run 
MapReduce applications in parallel. However, current 
implementation of Hadoop only employs First-In-First-
Out (FIFO) and fair scheduling without support for load 
balancing taking into consideration the varied resources 
of computers. A genetic algorithm based load balancing 
scheme is designed to optimize the performance of MR-
LSI in heterogeneous computing environments.  

1.4. Algorithm Design 

 To solve an optimization problem, genetic algorithm 
solutions need to be represented as chromosomes 
encoded as a set of strings which are normally binary 
strings. However, a binary representation is not feasible 
as the number of mappers in a Hadoop cluster 

environment is normally large which will result in long 
binary strings. A decimal string to represent a 
chromosome in which the data chunk assigned to a 
mapper is represented as a gene is employed.  

 In Hadoop, the total time (Tt) of a mapper in 

processing a data chunk consists of the following four parts.  

 Data copying time (tc) in copying a data chunk from 

Hadoop distributed file system to local hard disk. It 

depends on the available network bandwidth and the 

writing speed of hard disk.  

 Processor running time (tr) in processing a data chunk. 

 Intermediate data merging time (tm) in combining 

the output files of the mapper into one file for reduce 

operations. Buffer spilling time (tb) in emptying filled 

buffers using Equation 3: 
 
Tb=Tc+Tr  (3)  
 
 Let 10MB be the size of the data chunk.  

Ws1ms/1MB = The writing speed of hard disk in 

MB/second.  

Nb = The network bandwidth in 

MB/second.  

Ps = The speed of the processor running 

the mapper process in MB/second.  

Bs = The size of the buffer of the mapper.  

Ps/bs = The ratio of the size of the 

intermediate data to the size of the 

data chunk.  

F1 = The number of frequencies in 

processing intermediate data.  

bBn = The number of times that buffer is 

filled up.  

Vd = The volume of data processed by the 

processor when the buffer is filled up.  

s be = The sort factor of Hadoop.  
 
 Therefore: 
 
 Vn = Ps/Bs(f1.bn) (4) 

 

 Here depends on the available resources of hard disk 

and network bandwidth using Equation 4. The slower 

one of the two factors will be the bottleneck in copying 

data chunks from Hadoop distributed file system to the 

local hard disk of the mapper:using Equation 5: 
 
Map (c1,v1) → list(c2,v2) (5)  
 
 When a buffer is filling, the processor keeps writing 
intermediate data into the buffer and in the mean time the 
spilling process keeps writing the sorted data from the 
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buffer to hard disk. Therefore the filling speed of a 
buffer can be represented by. Thus the time to fill up a 
buffer can be computed by. As a result, for a buffer to be 
filled up, the processor will generate a volume of 
intermediate data with the size of Vb which can be 
computed using Equation 6: 
 

b s a

s

Bf
V P R

P Hd
−

−
 (6) 

 
 The total amount of intermediate data generated 

from the original data chunk with a size of is Dm. 

Therefore the number of times for a buffer to be filled up 

can be computed using Equation 7: 
 

m a
m b

b

D R
D N

V

+
= =  (7)  

 
 The time for a buffer to be spilled once is, therefore the 

time for a buffer to be spilled for times is using Equation 8. 

Then we have: 
 

b b Hd
t N Rf= + ∫  (8)  

 
 The frequencies in processing intermediate data can 

be computed using Equation 9: 
 

f b
N [q | s] 1= −  (9) 
 
 When the merging occurs once, the whole volume of 

intermediate data will be written into the hard disk 

causing an overhead of thus if the merging occurs times, 

the time consumed by hard disk IO operations can be 

represented by Tm:(given in Equation 10.): 
 

m f
m

D Ra N
t

Hd
=  (10) 

  
 The total time to process data chunks in one processing 

wave in MapReduce. Hadoop is the maximum time 

consumed by participating mappers, where: 
 

total 1 2 k
T max(T ,T ...T )...=  (11)  
 
 According to divisible load theory (Othman, 2010; 
Robertazzi, 2003; Thysebaert et al., 2005) to achieve a 
minimum, it is expected that all the mappers to complete 
data processing at the same time: 
 
T1 = T2 = …Tk (12)  
 
 Let Tp be the processing time for the mapper.  

 T  be the average time of the mappers in data 

processing,  k

pT T / k= ∑ . 

 Based on Equation 11 and 12, the fitness function is 
to measure the distance between and gene. Therefore, the 
fitness function can be defined using Eq. 13 which is used 
by the genetic algorithm (Guo et al., 2010) in finding an 
optimal or a near optimal solution in determining the size 
for a data chunk: 
 

k
2

p

i 1

f (t) (T _ T )
=

= ∑  (13)  

1.5. Crossover 

 To maintain the diversity of the chromosomes, the 
algorithm needs functions of crossover. Crossover 
recomposes the homologous chromosomes via mating to 
generate new chromosomes or so called offspring. The 
generated offspring inherit the basic characteristics of 
their parents. Some of them may adapt to the fitness 
function better than their parents did, so they may be 
chosen as parents in next generation. Based on crossover, 
the algorithm can keep evolving until an optimal 
offspring has been found. In this algorithm, to gain the 
effective of design and operations, single-point crossover 
which refers to set only one crossover point randomly in 
the chromosome has been employed. The processes of 
crossover could be regarded as:  
 Randomly select pairs of the chromosomes 
(schedulers) as parents to mate. 2. In each pair, randomly 
select a position as crossover point. If the length of the 
chromosome is then there will be available points. k1k3. 
In each pair, the chromosomes change their parts which 
are after the crossover point with each other according to 
crossover probability. p 
 However in the algorithm simply crossing the 

chromosome may cause one problem.  
 As each gene is the value of the actual volume of 
data each Map instance takes, to change the members of 
genes may differentiate the original total volume of data. 
Assume the original total volume of data is and the volume 
of data after crossover is, then the difference should be 
considered and processed. In the algorithm is divided into 
parts. The size of each part is randomly assigned. And then 
these parts will be randomly added to or removed by ∆D: 

k k

i i

l 1 I 1

D D d
− −

∆ = −∑ ∑  

 From genes in the chromosome. Thus the total size 
of processed data in one wave could be guaranteed.  

1.6. Mutation 

 To avoid the local optimum of the algorithm, 
mutation has been introduced into our algorithm. 
Mutation could mutate genes in a chromosome based on 
smaller probabilities. Moreover new individuals could be 
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generated. So that combined with crossover the information 
loss due to the selection could be avoided. Thus the validity 
of the algorithm could be guaranteed. The mutation 
contributes in two main aspects in our algorithm.  
 Improving the local search ability of the algorithm. 
The crossover operation could find a number of 
chromosomes with better adaptability from a global 
angle. These chromosomes are close to or helpful to gain 
the optimal solution. However crossover cannot execute 
local search in details. So using mutation to tune the 

values of certain genes from local detailed phase could 
make the chromosome much closer to the optimal 
solution. So the search ability is enhanced compare to 
that of only crossover involved.  
 Maintaining the diversity of the colony moreover 
preventing the premature convergence of the algorithm. 
Mutation replaces the original genes with newly mutated 
genes so that the structure of a chromosome could be 
significantly affected. The diversity of the colony could 
be maintained.  

 The algorithm mutates genes mainly based on 

simple mutation which refers that to mutate one or 

several genes in the chromosome based on mutation 

probability. There are two steps in the simple mutation.  
 Randomly select a gene to be the mutation point. 
Base on mutation probability to decide if the 
chromosome mutates.  

 If the probability decides the gene should mutate, 

then the value of the gene will be mutated which means a 

new value replaces the original value. As a result a new 

individual is generated.   

 However, it is quite similar to crossover processes 
that when the value of one gene mutates, the original 
total volume of data has been changed. Assume the 
original volume of the gene is and the volume after 
mutation is, then the difference. To solve issue, is 
divided into parts. The size of each part is randomly 

assigned. And then these parts will be randomly added to 
or removed from genes in the chromosome. Thus the 
total size of processed data in one wave could be 
guaranteed. Based on this design, the algorithm has a 
strong ability to change its searching direction to gain the 
optimal solution in a large search space.  

iPip 

iiPPpP  

1.7. Experimental Results 

 To evaluate the performances of MR-LSI a small 

scale Hadoop cluster consisting four computer nodes has 

been set up. Table 1 shows the configurations of the 

Hadoop cluster.  

Table 1. The experimental environment 

Number of Hadoop nodes: 4 

Nodes' specifications: Three Datanode: CPU  

 Q6600@2.5G, RAM 3GB and  

 running OS Fedora11. One   

 namenode: CPU  

 C2D7750@2.26,RAM2GB 

 and running OS Fedora 12. 

Number of mappers per node: 2 

Number of reducer: 1 

Network banwidth: 1000Gbps 

 
 To evaluate the performances of MR-LSI, 1000 
papers were collected from the IEEE XPlore data source. 
For each paper selected, a T-D matrix will be 
constructed. In the tests, also two strategies Closest 
Distance Searching (CDS) and All Distances Searching 
(ADS) for clustering documents which are similar to the 
clustered strategies proposed in have been designed. 
 Processed by k-means, the original dataset is 
clustered into a number of sub-clusters. Within these 
sub-clusters, one or a few of them may be close to the 
query while the others are far away from the query. CDS 
calculates the distances between a query and the centroid 
of each sub-cluster. The closest sub-cluster to the query 
will have the highest probability in containing the target 
documents. A truncated SVD will only be performed on 
the closest sub-cluster. As CDS just retrieves information 
in one cluster, the time consumed for executing CDS is 
least. ADS calculates the distance between a query and 
the centroid of each sub-cluster and a truncated SVD will 
be performed on all the sub-clusters. As ADS retrieves 
information in all sub-clusters, the misclassified 
documents may have chance to be retrieved.  

1.8. Evaluating MR-DLSI 

 MR-LSI was evaluated from the aspects of precision 
and recall in comparison with standalone LSI, standalone 
LSI combined with k-means using the CDS strategy 
and standalone LSI combined with k-means using the 
ADS strategy. From the results presented in Fig. 1 and 
2 it can be observed that the performance of MR-LSI 
is close to that of the standalone LSI. It is worth 
pointing out that the CDS strategy only works on the 
closest sub-cluster of documents related to a query. 
Compared with other algorithms, CDS retrieves a 
smaller number of documents which resulting in lower 
performance in recall.  
 There are a number of tests have been conducted 
to evaluate the overhead of MR-LSI in computation. 
The number of documents to be retrieved varied from 
100-1000. 
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Fig. 1. The precision of MR-LSI 

 

 

  
Fig. 2. The recall of MR-LSI 

 
However, the size of the dataset was not large. From Fig. 
3 and 1 it can be seen that MR-LSI consumed more time 
than other algorithms in processing the Number of 
papers dataset. This is mainly due to the overhead 
generated by the Hadoop framework which is effective in 
processing large scale data. Both the ADS and the CDS 
strategies perform faster than the standalone LSI indicating 
the effectiveness of a combination of LSI with k-means.  

 And also a number of additional tests have been 

as well conducted to further evaluate CDS and MR-

LSI the overhead of MR-LSI in processing a large 

collection of documents. 

 The size of the document collection is increased 

from 5KB to 20MB and the overhead of MR-LSI with 

that of the CDS strategy is compared as CDS is faster 

than both the standalone LSI and the ADS strategy. 

From the results plotted in Fig. 5 it can observed that 

when the data size is less than 1.25MB, the overhead 

of CDS is stable. 
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Fig. 3. The overhead of standalone LSI, ADS and CDS in computation 
 

 
 

Fig. 4. The overhead of MR-LSI 
 

However, the overhead of CDS starts growing when the 

size of dataset is larger than 2.5MB. When the size of 

data reaches to 10MB, the overhead of CDS increases 

sharply as shown in Fig. 4. Compared with CDS, the 

overhead of MR-LSI is highly stable with an increasing 

size of dataset shows its better scalability than the CDS 

strategy. It also should be mentioned that when the size 

of data increases higher than 20MB, the heap space 

exception occurs when CDS processes data due to the 

memory limitation of applications in a standalone node.  

1.9. MR-DLSI Simulation Results 

 To further evaluate the effectiveness of MR-LSI 
in large scale MapReduce environments, HSim has been 
developed using pure JAVA programming language. 
This chapter accesses the performance of the MR-LSI in 
simulation environments. 
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Fig. 5. Comparing the overhead of MR-LSI with CDS 
  

 
 

Fig. 6. The impact of the number of reducers on mapper performance 

 

1.10. Simulation Results 

 To study the impacts of Hadoop parameters on 
performance of MR-LSI, a cluster has been simulated with 
the configurations as shown in Table 2. Each node has a 
processor with 1 cores. The number of mappers is equal to 
the number of processor cores. There are two mappers 
running on a single processor with two cores. The speeds of 
the processors were simulated in terms of the volume of 
data in MB processed per second. In the following sections, 
the impacts have been shown of a number of Hadoop 
parameters on the performance of MR-LSI.   

1.11. Multiple Reducers in one Node 

 From Fig. 6 it shows that the number of reducers 

does not affect the performance of mappers greatly. This 

is because mappers and reducers work almost 

independently in Hadoop environments. Figure 7 shows 

the impact of the number of reducers on the overall 

overhead when processing a job. Allocating multiple 

reducers on one node increases results in the shared 

resources issue.  
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Fig. 7. The impact of the number of reducers on the total process 

 

 
 

Fig. 8. The impact of sort factor 

 

Table 2. The simulated environment 

No. of simulated nodes 250 
Data size: 100,000MB 
CPU processing speed: Up to 0.65MB/s 
Hard drive reading speed: 80MB/s 
Hard drive writing speed: 40MB/s 
Memory reading speed: 6000MB/s 
Memory writing speed: 5000MB/s 
Network bandwidth: 1Gbps 
Number of mappers:  4per node 
Number of reducer: 1 or more 

1.12. Sort Factor 

 In Hadoop, The parameter of sort factor controls the 

maximum number of data streams to be merged in one 

wave when sorting files. Therefore, the value of sort 

factor affects the IO performance of MR-LSI. From Fig. 

8 it can be observed that the case of using sort factor 100 

gives a better performance than sort factor 10. 
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Fig. 9. The impact of buffer size 

 

 

 

Fig. 10. The impact of data chunk size on the mappers in MR-LSI 

 

When the value of sort factor is changed from 10 to 100, the 

number of spilled files will be increased which reduces the 

overhead in merging.  

1.13. Buffer Size 

 The buffer size in Hadoop contributes to IO 

performance and it affects the performance of a processor. 

The default value of a buffer size is 100MB. The 

performance of MR-LSI with a data size of 1000MB is 

tested. As shown in Fig. 9, the mappers generate a small 

number of spilled files when using a large size buffer 

which reduces the overhead in merging. Furthermore, a 

large buffer size can keep the processor working without 

any blocking for a long period of time. 
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Fig. 11. The impact of data chunk size on MR-LSI 
 

 
 

Fig. 12. The impact of different CPU processing speeds 

 
 Each mapper processes a data chunk at a time. Thus 
the size of data chunks highly affects the number of 
processing waves of mappers. From Fig. 10 it can be 
observed that using a large size for data chunks reduces 
the overhead of mappers in processing and also reduces 
the total overhead of the process as shown in Fig. 11. 
However, both of the two chunk sizes produce the same 
performance when the number of mappers increases to 
800 and 900 respectively. In the case of chunk size 
61MB, to process 100,000MB data, using 800 mappers 
needs waves to finish the job. In the case of chunk size 
100MB, using 800 mappers needs waves to finish the 
job. Similarly, using 900 mappers needs 2 waves to 
process the 100,000MB data in both cases. When the 

number of mappers reaches 1000, the performance of the 
two cases with different data sizes varies.  

1.14. CPU Processing Speed 

 Figure 12 shows the impacts caused by different 
processing speed of processors. From the figure we can 
observe clearly that a faster processor can gain better 
performance compared to that of a slower processor.  

1.15. Number of Reducers 

 Figure 13 shows that increasing the number of 

reducers enhances the performance of MR-LSI when the 

number of reducers is small.  
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Fig. 13. The impact of reducers 
 

 
 

Fig. 14. The performance of the MR-LSI with difference sizes of data 

 
More reducers are used more resources will need to be 
consumed due to Hadoop's management work on the 
reducers. In some cases multiple reducers need an additional 

job to collect and merge the results of each reducer to form a 

final result. This can also cause larger overhead.  

1.16. Load Balancing Simulation Results 

 Table 3 shows the configurations of the simulated 
Hadoop environments in evaluating the effectiveness of 
the load balancing scheme of MR-LSI.  
 To evaluate the load balancing algorithm, a cluster 
with 20 computers has been simulated. Each computer 

has one processor with two cores. The number of 
mappers is equals to the number of processor cores. 
Therefore two mappers are running on a single processor 
with two cores. The speeds of the processors are generated 
based on the heterogeneities of the Hadoop cluster. In the 
simulation environments the total processing power of 
the cluster was where n represents the number of the 
processors employed in the cluster and represents the 
processing speed of the ith processor (Steinbach et al., 
2000). For a Hadoop cluster with a total computing 
capacity, the levels of heterogeneity of the Hadoop cluster 
can be defined using Equation 11. 
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Fig. 15. The convergence of the load balancing scheme 
 

 
 

Fig. 16: The overhead of the load balancing scheme with different sizes of data 

 

In the simulation, the value of heterogeneity was in the 
range of 0 and 2.28. The reading and writing speeds of 
hard disk were generated based on the real measurements 
from the experiments conducted. 

 Firstly 10GB data has been tested in the simulated 

cluster with different levels of heterogeneity. From Fig. 

11 it can be observed that when the level of heterogeneity 

is less than 1.08 which indicates a nearly homogeneous 

environment, the load balancing scheme does not make any 

difference to the performance of MR-LSI. However, the 

load balancing scheme reduces the overhead of MR-LSI 

significantly with an increasing level of heterogeneity.  
 The levels of heterogeneity are keeping the same in 
the tests but varied the size of data from 1GB to 10GB. 
This set of tests was used to evaluate how the load 
balancing scheme performs with different sizes of 
datasets. Figure 14 shows that the load balancing 
scheme can always reduce the overhead of MR-LSI.   

 The load balancing scheme builds on a genetic algorithm 

whose convergence affects the efficiency of MR-LSI.   
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Table 3. Hadoop simulation configuration 

Number of stimulated node 20 

Number of processor 1 
in each node: 
Number of cores 2 
in each processor: 
Size of data: Test 1: 10GB Test 2:  
 10-100GB 
The processing Depending on  
speed of prpcessors: heterogeneities 
Hetrogeneities: From 0-2.28 
Number of hard 1 
diskin each node: 
Reading speed of 80MB/s 
hard disk: 
Writing speed of 40MB/s 
hard disk: 
Number of Each node contributes  
Map instances: 2Map instances. 
Number of 1 
Reducer instances: 
Sort factor: 100 

 

 To analyze the convergence of the genetic 

algorithm, the number of generations is varied and the 

overhead of MR-LSI in processing a 10GB dataset in the 

simulated Hadoop environment is measured. Figure 15 

shows that MR-LSI reaches a stable performance when 

the number of generations in the genetic algorithm 

reaches 300. 

 The load balancing scheme also produces some 

overhead during execution.  

 Figure 16 shows an increased overhead of the load 

balancing scheme when the number of mappers increases 

together with an increasing size of data. However the 

MR-LSI algorithm can still achieve benefit from load 

balancing algorithm. For example, for heterogeneity 

2.08, the overhead of load balancing algorithm is 331s.  

 The time consumed for one processing wave of 

mappers is 363s with load balancing. The time consumed 

for one processing wave of mappers is 2256s without 

load balancing. Thus the performance is enhanced 

69.2%. As in the static computing environment, the 

scheduler only needs to be computed once, thus it can be 

claimed that for a long-time processing job with proper 

heterogeneities, the load balancing algorithm can 

enhance performances greatly. 

2. CONCLUSION 

 This study presents for scalable information 

retrieval. MR-LSI is effective when processing a large 

dataset due to high scalability of MapReduce in support 

of data intensive applications. Both experimental and 

simulation results have shown that the MR-LSI 

algorithm speeds up the computation process of SVD 

while maintaining a high level of accuracy in 

information retrieval. The simulating results also indicate 

that the load balancing strategy can enhance the 

performance of the Hadoop cluster when it is running a 

Hadoop application. 
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