Journal of Computer Science 2012, 8 (12), 2032-2041
ISSN 1549-3636
© 2012 Science Publications

doi:10.3844/jcssp.2012.2032.2041 Published Online 8 (12) 2012 (http://www.thescipub.com/jcs.toc)

Traversal Algorithm for Complete Coverage

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji
Department of Information Technology, School of Computing, SASTRA University, Tamilnadu, India

Received 2012-07-12, Revised 2012-10-25; Accepted 2012-12-15

ABSTRACT

There are many applications which require complete coverage and obstacle avoidance. The classical A*
algorithm provides the user a shortest path by avoiding the obstacle. As well, the Dijkstra’s algorithm finds
the shortest path between the source and destination. But in many applications we require complete
coverage of the proposed area with obstacle avoidance. There are LSP, LSSP, BSA, spiral-STC and
Complete Coverage D* algorithms which do not realize complete (100%) coverage. The complete coverage
using a critical point algorithm assures complete coverage, but it is not well suited for applications like mine
detection. Also for covering the missed region it keeps the obstacle as a critical point which is not advisable
in critical applications where obstacle may be a dangerous one. To overcome this and to achieve the
complete coverage we propose a novel graph traversal algorithm Traversal Algorithm for Complete
Coverage (TRACC). Here the area to be scanned is decomposed into a finite number of cells. The traversal
is done through all the cells after making sure the next cell has no obstacle. TRACC assures thorough
coverage of the proposed area and ensuring that all the obstacles are avoided. Hence the TRACC always

have the safer path while covering the entire area. It also reports the obstacle placed or blocked cell.

Keywords: Complete, Area Coverage, Traversal Algorithm, Path Planning, Demining Algorithm

1. INTRODUCTION

There are many classical algorithms for graph
traversal and area coverage. The problems emphasized
there are finding the shortest path, traversing through
nodes and finding a path by avoiding the obstacles. But
when applications require both full coverage and
obstacle avoidance, there are very few algorithms like
linked spiral path, complete coverage D* algorithm,
complete coverage algorithm wusing critical points,
backtracking spiral algorithm, linked smooth Spiral Path
and spiral-STC which serves our needs. But those
algorithms are not assuring full coverage. Also they are
well suited only for soft real time systems. Therefore we
need a heuristic algorithm which serves best to any hard
real time application which requires real complete
coverage and object avoidance. When it is a hard real
time system like mine detection, the improper coverage
cannot be taken easily as it costs human life. Hence it is
very important to be stringent in covering the complete
area and detecting all the mines. In this study, we

overcome the detection failure because of improper
scanning by proposing a novel graph traversing
algorithm TRACC.

Applications such as humanitarian demining
(Nicoud and Habib, 1995), lawn mowing (Huang et al.,
1986) and floor cleaning (Ulrich et al., 1997) and
harvesting (Ollis and Stentz, 1996) are widely using
autonomous robots. These robots require a good path
planning and complete coverage traversal algorithm to
use their maximum potential. Among the various traversal
and path finding algorithms, the conventional Dijkstra
algorithm (Dijkstra, 1959) which finds the shortest path
between nodes, the breadth first search and depth first
search algorithms (Cormen et al., 2001) visit all the nodes
in a graph by traversing them in a particular fashion, the
A* algorithm (Russell and Norvig, 2003) which finds the
path from start to end point by avoiding obstacles.

The complete coverage algorithm using critical
points (Garcia and Santos, 2004) is enhanced of Choset’s
algorithms for both unknown (Acar and Choset, 2002)
and known (Choset, 2000) environments.

Corresponding Author: Kavitha Thiayagarajan, Department of Information Technology, School of Computing, SASTRA University, Tamilnadu, India

////4 Science Publications

JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

Table 1. Literature survey of complete coverage and obstacle avoidance algorithms

Algorithm Concept Coverage
Complete coverage This algorithm covers the area other 100% coverage is assured.
using critical points than the vertical vertex of the obstacle

by forth and back motions.
Complete coverage It is an extension of Path Transform Near 100% coverage of the
D* algorithm which uses D* algorithm in proposed area with

place of wavefront algorithm to make changing environments.

quicker re-planning when the
environment changes.

o

Backtracking Region is covered using spiral filling paths. An average of up to
spiral algorithm The covered regions are linked through 93% coverage is achieved.
backtracking mechanism.

Spiral-STC The robot covers the current sub region while Assured coverage is 85%.
recording its neighboring sub regions so
that it may cover them as well.

Linked spiral path Portions of the area are covered by spiral Coverage achieved up to
filling paths 94.99%. and Constrained
Inverse Distance Transform is
used to link all the portions.

Linked Coverage is achieved through Assured
smooth circle following, wall following coverage is
spiral path and object side following. 97%.

% Science Publications 2033

JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

This algorithm assures complete coverage of the given area.
The complete coverage D* algorithm (Dakulovi et al.,
2011) implements the path transform algorithm (Zelinsky et
al., 1993) with D* (Stentz, 1994), to give nearly 100%
coverage. The Backtracking Spiral Algorithm (Gonzalez et
al., 2005) is an extension of the basic BSA algorithm
(Gonzalez et al., 2003). Refinements of backtracking spiral
algorithm are proposed in spiral-STC (Wong and
MacDonald, 2003), Linked Spiral Path (Choi et al., 2009)
and Linked Smooth Spiral Path (Lee et al, 2010)
algorithms. Most of the grid based path planning algorithms
uses zig-zag like pattern to traverse the path as discussed by
(Gonzalez ef al., 1996), (Hert et al., 1996) and (Acar and
Choset, 2001).

Table 1 provides a literature survey of some of the
complete coverage and obstacle avoidance algorithms.

2. MATERIALS AND METHODS

Though there are many algorithms available for
complete coverage with obstacle avoidance, we propose
a special algorithm-TRaversal Algorithm for Complete
Coverage (TRACC). TRACC promises that no cell of
the proposed area is left out without being sensed. Also,
the objects (or) blocked cells in the area are found out.

TRACC traverses to the next cell through the safest path
and reaches its destination after sensing all the cells.

The TRACC gives us the path from the start to end by
visiting each cell of the proposed area and ensures there
is no obstacle. Figure 1 is the graphical representation of
the proposed region to be scanned.

We decompose the entire region into finite cells of
11 rows and 11 columns. S is the starting point and E is
the ending point. The C1, C2, C3...C121 are decomposed
cells of the region.

The cells with the circles are the blocked cells and
which are to be avoided. The IA is an intelligent agent
which is capable of sensing its four cardinal neighbors.
The F, B, L and R for front, back, left and right
respectively used for sensing. The algorithm for TRACC
is given in Table 2.

The Fig. 2 gives the flow path of IA, when there is
no object. The TA will start from C1 and traverse to the
next cell after checking each cell in its path. If it
identifies the cell as safe, then it will proceed further to
the next cell. After reaching the boundary line, i.e., C11,
it will move to C33 through C22 and continues towards
C23. Once the boundary is reached next it will move to
C45 through C34.

s . .
= — Al-intelligent agent
C2 €3 (o] CT
ciz_Jcis Jeia Jois cls Sensors:
b - Front
23 Joas Joas feas C29 c32_Jeas
@ -Back
Cia_JC35 _JC36 JC37 JC3I8 J1C39 JC40 CA3 Cad

C45 JC46 JC47 JC4AE JC49 JCS0 JC51

A - Left

52 JC53 C54 C55 W

63 IC84 JC65 JC.

- Right

— Clwo C121 -

C56 57 JCS& JCS9 JC60 JC61 JC62
6T Co8 JC69 u_:'m C71_JC72 _MC73 =

74 Jo7s lere ko7t

decomposed cells

CR1 82 "3 JCR4

92 C93 JC94 95

Cloo JC101 JCi1o2 jJClod JCL04 JCI0S JCL106

107 JCI108 JCI109 JC110

. - Obstacle
cas fcas |csr Jess
cos feor doos oo S - Start
E-End

Ci11 _JC112 JCI13 JC114 JC11S JC1i6 JC117

JCLI18 JC119 JC120 JC131

Fig. 1. Proposed region to be scanned (11x11)

% Science Publications

2034

JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

s
Cl spC2 e} C3 = |C4 e JCS mpJC6 s C7 e} JCE msp | C9 mi C1 O C 1 1
1
Cl2 Cl3 Cia C15 Cl6 C17 Cl8 C19 €20 C21 |C22
C23mC2 42 Sta(C2 Cig(C 2 7 tand C2 B C2 90l C3 Ol C3 Jomd C3 C33
C34 C35S C36 C37 C38 C39 JC40 a1l 42 C43 C44
~4 s | C 4 -4 Cca T T 5 Css
CsSe i 57 Loiy:] C S0 LE0 CE1 Ce2 e CE4 jCE&S s
1
C6 T COSmmiC 6 9wy C 7 7] ey 7 73 T4 7 T7T
" i 79 CBO C81 82 WCE3 CE4 CES CB6 CE7 C838
|
C8 St | C 9 G § CF bt JC 9 2t | £ 9 T JC 9 S | € 9 S | C9 Gt JC 9 T C 9 Bt C 29
!
Cl100 JC101 jCi102 JC1063 JC104 JC105 JCl106 JC107 JCI0R JC109 110
" I |
Rl e =" = ey e g e =y
Ci1i11l _jJoeii2 JCiis Jeilsa Jeiis Jeile JCIT7 JOCIIE JCI19 JC120 JC1271)

Fig. 2. The actual flow path

Table 2. TRaversal Algorithm for Complete Coverage (TRACC)
BEGIN
STEP1 scanCell(cell_id) if no
obstacle
move into the cell
findNeighbour(cell_id) returns list of cardinal neighbors for all cardinal
neighbors
scanCell(cell_id)
if no obstacle
remove from uncheck list else if
obstacle
remove from unchecked list
add the cell_id in list of unsafe cells cell_id =
next cell in the flow path
goto STEP1 else if
obstacle
shortestpath(cell_id, next cell in the flow path, list of unsafe cells) returns the shortest
and safest path list
goto STEP1 for every cell in the shortest path list
STEP?2 if the last cell in the flow path list is reached if
list_of unchecked_cells is not empty
for the elements of list_of unchecked cells
if at least one of the cardinal neighbors of the element is safe
shortestPath(cell_id,unchecked cell,list of unsafe cells)

Else
exit(unchecked cell resides at blocked area)
END traverse successful with complete coverage

% Science Publications 2035 JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

We have three major functions, scan cell (cell id)
which will scan a cell and returns true if obstacle is
detected, FindNeighbour (cell id) which will return a
list of cardinal neighbors, shortestPath (current cell id,
next unchecked cell in the flow path,
list of unsafe cells) which will find the shortest path
between the current cell and the next cell by avoiding the
unsafe (with obstacles) cells. We also have a
list of unchecked cells, which initially has all the
cell ids. After a cell is sensed by IA, the cell id of the
sensed cell is removed from the list of unchecked cells.

3. RESULTS

The following assumptions are made to implement
this algorithm:

e The Intelligent Agent (IA) can sense its four
adjacent cells in its cardinal points viz., front, back,
left and right

The proposed area is virtually decomposed into

e The area of a cell the sensing area of the sensor

e The first cell has no obstacle

Initially, the agent IA starts from cell C1. Before the IA
enters into each cell, it scans the cell to check whether
the cell has obstacle. If there is no obstacle, then it
moves into the cell. The cardinal neighbors of the cell
are found and they are sensed for obstacle. If any of its
neighbors are found with obstacle, then the cell id is
added in the list_of unsafe cells. Then the IA will take
the next neighboring as per the flow path given in Fig. 2
and continue scanning. This process is continued till the
End (E). If there is any obstacle in the flow path, then the
shortest path between the current cell and the next cell
(in the flow path) is found by avoiding the unsafe cells.
By repeating the above said steps, the IA reaches E.
Once it reaches E, the list of unchecked cells will be
empty. If any cell id exist in the
list of unchecked cells, then we check whether all its

equal sized cells neighboring cells are in list of unsafe cells.
C8__JCo 110 JCl) wes - Flow path
c1e fcao lez1 Jesz wms - Diverted path
by TRACC
30 31 C32 JC33
. . - Sensed cell
ca1_lcaz lcas Jcas
cs2_Jcsy |csa Joss
css _Jcso lcso Joer Josz Joes osa Jess lces
jC69 C70_JC71 __JC72 I3 (74 Skl |76 b £ 3
geo lcs) Jcs2 Jcsas Icss Jess fose |cw7 foss
L['I')] iC92 93 94 95 _JC96 97 JCO8 _JC99
Cloo Jciol L(_:IDZ C103 JC104 JCIUS Cloé |C107 JCI108 JCI09 JCL110
E ’
ciu Jenz Jeiiz Jeiid Jens fens fenz fens feno |cizo foia

Fig. 3. Traversal by TRACC, avoiding the first obstacle in cell C5

% Science Publications

2036

JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

z 9 1 11 == -Flow path

’ L L . .
5
=

La
c12 fcia jcid Jois |cis jei7 eisg jeie jezog jc21 jez2 w=e - Diverted path
7

by TRACC

C30 JC31 32 33

. - Sensed cell
cal Jeaz Jcaa Joaa

C52 JCs3 JC54 JCSS

IC63 _1C64_ JC6S

IC74__JCI5 K76 KC77

C85 JC86 JCB7 88

CO6 97 I8 99

Clo4 JC105 C107 JCl08

E
116 _JC117 JC1I8 JO119 JCI120 JCI12]
(@)
s
el i
cr ez Jea fea gles oo or] 8 Jco g el
3 3 ;
A IR == -Flow path
cl2 IC13 14 _JC15 _IC16 JC17 18 19 1 22
a dn o e . ==t - Diverted path
3 Jc2s Joas fe2s jeaz 0 3 by TRACC
E)
+ L 2K Ak J
4 sglcie Joar |cis 9 lcao Jca1 Jeaz Jcas |cas - Sensed cell
o F +)
4 4 50
oefoe T (=]
Cs6__JOs7 58 __1Cs 60 o6 3 __JCsa
e ®e| .
(] 72 _Jc73 jc7d o7
"Qi_ 8 85 7
. L O R .
9 | o3 Jcoa lcos |cosg Jeoi
ol
C} clolgjcio2 03 |Clo4 JCI105 JCI06 JC107 JC108 JCI09 JC110)
E 1A ’ . om s o
112 3 JCI1i4 JC115 JC116 JC117 JC118 JCi19 JC120 JC121

(b)

Fig. 4. (a) Traversal of Intelligent Agent (IA) through the actual and diverted paths (b) complete coverage of the proposed area using
TRACC

///// Science Publications 2037 JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

S
, , , , gt i
1 l O - C b (‘6" =7 l”ﬂ' (9 Cio Cilg
C12 I(‘]3T A |(_|5 I('lﬁ I('l? ClE
e pre
C23 g E'Zd\ l‘zﬂ L?ﬁ +27 *28 29
. e = .
34 § JC3S C36 f‘.\'r" (IR CI9ImC40
L 2
gy =g
Ed.‘ 46 a7 (T'ill 49 50
H6S 6
76 77
(RS (86 C87 CES
(96 JC97 ‘ﬂﬂl “99
00 JCIOIRICI02 JCIO0ARIC104 JCI10S JC106 JCI107 C:ﬂﬁlfioq K110
E =ten o o il At . .
Cl1l (‘HE Ci13 JC114 JCIIS KOl KCL1L7 RCLIE JCLIS JCI120 E|2I

Fig. 5. TRACC implemented for a different scenario

If at least one of its neighbors is safe, then a shortest path
is found between the current cell and the unchecked cell.
The IA will traverse back through the path and scans the
cell. This process may be repeated if more than one
unchecked cell is present. But this case is very rare.
Hence by using TRACC, we achieve 100% coverage of
the proposed area.

As shown in Fig. 3, the IA starts traversing from cell
Cl, scans its available cardinal neighbors-C2, C12 and
moves to the next cell in the flow path-C2. The cells C2
and C12 are removed from the list_of unchecked cells.
This process continues till it reaches C4. At this juncture,
C5, which is the next cell to be traversed as per the flow
path, is having an obstacle.

C5 will be appended to the list of unsafe cells.
Now, the IA must avoid this cell and move forward to

% Science Publications

2038

the next cell to C5. This is done by finding the shortest
path from the current cell C4 to the next cell to C5 (i.e.,
C6). So the IA moves through C4 =>C15 =>C16 =>C17
=>C6, which is the shortest path from C4 to C6. While
traversing the path from C4 to C6, the IA will scan its
cardinal neighbors of each cell it traverses. The blue
arrow represents the flow path and the green arrow
represents the diverted path taken by the IA with the help
of TRACC in order to avoid the obstacle.

The TA uses TRACC to traverse further in the
proposed area. The path taken by the IA to reach the end
point E (C111) is shown in the Fig. 4a and b. The IA,
after reaching Cl111, will check the
list of unchecked cells. The cell id C41 will be present.
IA will then check whether any of C41’s cardinal
neighbors are safe. As they are not safe in this case, IA
will deduce that it is a blocked cell.

JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

. . :
M TRACC-Sim e

TRACC Simulation Help

Traversed Cells

C36 -
C107
C108
109
Ca8
C99
110
c121
120
C113
118
117
C116
115
C114
103 |
102 |
101 |
C112
C111 ¥

Obstacle
9 Insert

s

o
FEoF F FoF |

C38

m

) Remove

-~
M TRACC-Sim
TRACC Simulation Help

%

Traversed Cells

5T =
C62

C63

C64

C53

(b)

Fig. 6. (a) Simulation tool for TRACC (b) Path found by TRACC-Sim with complete coverage

% Science Publications 2039 JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

TRACC algorithm is also implemented in different
environments with challenging obstacles. The obstacles
are placed at various places, forming varied patterns.
Figure 5 depicts one such a challenging environment.
The path taken by the IA by implementing TRACC is
shown in Fig. 5. In this scenario, after reaching C111,
the cells C60, C62 and C121 will be available in the
list of unchecked cells. The shortest path is found and
they are sensed one by one. As C121 is bounded by
unsafe cells, it is discarded.

4. DISCUSSION

The simulation results reveal the following facts
about TRACC.

4.1. Coverage

There is no possibility of uncovered area, unless the
area is bounded by obstacles in all its four directions.
Hence, we achieve complete coverage.

4.2. Redundancy

The redundancy rate is the ratio of the overlapped
cell and the covered cell:

Rr = (Uc/Cc) * 100 (1) Where
Rr-is the rate of redundancy
Uc-no. of uncovered cells

Cc- no. of covered cells

According to TRACC’s flow path, it is calculated as
45.45% of the cells are redundant. This redundancy may
be considered as a drawback of this algorithm. But
applications with sensors need more redundant cells to
improvise the quality of sensing.

4.3. Cost

Though the complete coverage algorithm with
critical points (Garcia amd Santos, 2004) assures 100%
coverage, it is costly in terms of time. The simulation of
TRACC proves that, it is 1.71 times faster than the
complete coverage algorithm with critical points.

Figure 6a and 6b show our simulator for TRACC
algorithm, TRACC-Sim. The former shows the IA
sensing the cells from C1 to C111. The later shows the
path taken by the IA to reach C111 from C1. When the
TA moves from one cell to another, the traverse cell
updates in the box on the left side.

///// Science Publications

2040

S. CONCLUSION

In this study we proposed a novel algorithm TRACC
for complete coverage and obstacle avoidance. As we
assured, our TRACC algorithm covers 100% of the
proposed area. The simulation results show us it works
perfect and visited all the cells through the safest path
and avoided all the obstacles. As the results proved it is
efficient, a prototype of a landmine detector is going to
be developed using this algorithm.

By simulations, we infer that TRACC works the
same as humans do. We have planned to apply this
algorithm for land mine detection and applications which
require full coverage as well obstacle avoidance.
TRACC will also be used for applications like painting,
lawn mowing and mopping. In this study, we have not
considered the ordinal cells as neighboring cells. That
will also be considered in the future explore to reduce the
coverage time further.

6. REFERENCES

Acar, E.U. and H. Choset, 2001. Robust sensor-
based coverage of unstructured environments.
Proceedings of the International Conference on
IEEE Retrieved from Intelligent Robots and
Systems, Oct. 29-Nov. 3, IEEE Xplore Press,
Maui, HI., pp: 61-68. DOI:
10.1109/IROS.2001.973337

Acar, E.U. and H. Choset, 2002. Sensor-based
coverage of unknown environments:
Incremental construction of morse
decompositions. Int. J. Robo. Res., 21: 345-366.
DOI: 10.1177/027836402320556368

Choi, Y.H., T.K. Lee, S.H. Baek and S.Y. Oh,
2009. Online complete coverage path planning
for mobile robots based on linked spiral paths
using constrained inverse distance transform.
Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems,
Oct. 10-15, IEEE Xplore Press, St. Louis, MO.,
pp: 5788-5793. DOI:
10.1109/IROS.2009.5354499

Choset, H., 2000. Coverage of known spaces:
The boustrophedon cellular decomposition.
Autonomous Robots, 9: 247-253. DOI:
10.1023/A:1008958800904

Cormen, T.H., C.E. Leiserson, R.L. Rivest and
C. Stein, 2001. Introduction to Algorithms. 2nd
Edn., MIT Press and McGraw-Hill, ISBN-10:
0262032937, pp: 1180.

JCS

10.

11.

12.

13.

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

Dakulovi, M., S. Horvatic and 1. Petrovic, 2011.
Complete coverage D* algorithm for path
planning of a floor-cleaning mobile robot.
Proceedings of the Preprints of the 18th IFAC
World Congress, Aug. 28-Sep. 2, Milano, Italy,
pp: 5950-5955.
http://www.nt.ntnu.no/users/skoge/prost/procee
dings/ifacl1-
proceedings/data/html/papers/3400.pdf
Dijkstra, E.W., 1959. A note on two problems
in connexion with graphs. Num. Math., 1: 269-

271. http://www-
m3.ma.tum.de/foswiki/pub/MN0506/WebHome
/dijkstra.pdf

Garcia, E. and P.G.D. Santos, 2004. Mobile-
robot navigation with complete coverage of
unstructured environments. Robotics
Autonomous Syst., 46: 195-204. DOI:
10.1016/j.robot.2004.02.005

Gonzalez, E., M. Alarcon, P. Aristizabal and C.
Parra, 2003. BSA: A coverage algorithm.
Proceedings of the International Conference on
Intelligent Robots and Systems, Oct. 27-31,
IEEE Xplore Press, Colombia, pp. 1679-1684.
DOI: 10.1109/IR0OS.2003.1248885

Gonzalez, E., A. Suarez, C. Moreno and F.
Artigue, 1996. Complementary regions: A
surface filling algorithm. Proceedings of the
IEEE International Conference on IEEE
Robotics and Automation, Apr. 22-28, IEEE
Xplore Press, Minneapolis, MN., pp: 909- 914.
DOI: 10.1109/ROBOT.1996.503888

Gonzalez, E., O. Alvarez, Y. Diaz, C. Parra and
C. Bustacara, 2005. BSA: A complete coverage
algorithm. Proceedings of the IEEE
International Conference on Robotics and
Automation, Apr. 18-22, IEEE Xplore Press,
pp: 2040-2044. DOI:
10.1109/ROBOT.2005.1570413

Hert, S., S. Tiwari and V. Lumelsky, 1996. A
terrain-covering algorithm for an AUV.
Autonomous Robots, 3: 91-119. DOI:
10.1007/BF00141150

Huang, Y., Z. Cao and E. Hall, 1986. Region
filling operations for mobile robot using
computer graphics. Proceedings of the IEEE
International Conference on Robotics and
Automation, (RA’ 86), IEEE Xplore Press, pp:
1607-1614. DOLI:
10.1109/ROBOT.1986.1087504

///// Science Publications

2041

14.

15.

16.

17.

18.

19.

20.

21.

Nicoud, J.D. and M.K. Habib, 1995. The
pemex-b autonomous demining robot:
Perception and navigation strategies.
Proceedings of the IEEE International
Conference on Intelligent Robots and Systems
95. ‘Human Robot Interaction and Cooperative
Robots, Aug. 5-9, IEEE Xplore Press,
Pittsburgh, PA., pp: 419-424. DOI:
10.1109/IROS.1995.525830

Lee, T.K., S.H. Baek, S.Y. Oh and Y.H. Choi,
2010. Complete coverage algorithm based on
linked smooth spiral paths for mobile robots.
Proceedings of the 11th International
Conference on Control Automation Robotics
and Vision, Dec. 7-10, IEEE Xplore Press,
Singapore, pp: 609-614. DOLI:
10.1109/ICARCV.2010.5707264

Ollis, M. and A. Stentz, 1996. First results in
vision-based crop line tracking. Carnegie
Mellon University.
http://www.rec.ri.cmu.edu/projects/auto_harvest
ing/tech/crop_line tracking.pdf

Russell, S.J. and P. Norvig, 2003. Artificial
Intelligence: A Modern Approach Ist Edn.,
Pearson Education, India, ISBN-10:
8177583670, pp: 1081.

Stentz, A., 1994. Optimal and efficient path
planning for partially-known environments.
Proceedings of the IEEE International
Conference on Robotics and Automation, May,
8-13, IEEE Xplore Press, San Diego, CA., pp:
3310-3317. DOI:
10.1109/ROBOT.1994.351061

Ulrich, I., F. Mondada and J.D. Nicoud, 1997.
Autonomous vacuum cleaner. Robotics Autono.
Syst., 19: 233-245. DOI: 10.1016/S0921-
8890(96)00053-X

Wong, S.C. and. B.A. MacDonald, 2003. A
topological coverage algorithm for mobile
robots. Proceedings of the International
Conference on Intelligent Robots and Systems,
Oct. 27-31, IEEE Xplore Press, pp: 1685-1690.
DOI: 10.1109/IR0OS.2003.1248886

Zelinsky, A., R.A. Jarvis, J.C. Byrne and S.
Yuta, 1993. Planning paths of complete
coverage of an unstructured environment by a
mobile robot. Adv. Robotics, 66: 533-538. DOI:
10.1107/S1600536810016661

JCS

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041

% Science Publications 2042 JCS

