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ABSTRACT

There are many applications which require complete coverage and obstacle avoidance. The classical A*
algorithm provides the user a shortest path by avoiding the obstacle. As well, the Dijkstra’s algorithm finds
the shortest path between the source and destination. But in many applications we require complete
coverage of the proposed area with obstacle avoidance. There are LSP, LSSP, BSA, spiral-STC and
Complete Coverage D* algorithms which do not realize complete (100%) coverage. The complete coverage
using a critical point algorithm assures complete coverage, but it is not well suited for applications like mine
detection. Also for covering the missed region it keeps the obstacle as a critical point which is not advisable
in critical applications where obstacle may be a dangerous one. To overcome this and to achieve the
complete coverage we propose a novel graph traversal algorithm Traversal Algorithm for Complete
Coverage (TRACC). Here the area to be scanned is decomposed into a finite number of cells. The traversal
is done through all the cells after making sure the next cell has no obstacle. TRACC assures thorough
coverage of the proposed area and ensuring that all the obstacles are avoided. Hence the TRACC always

have the safer path while covering the entire area. It also reports the obstacle placed or blocked cell.
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1. INTRODUCTION

There are many classical algorithms for graph
traversal and area coverage. The problems emphasized
there are finding the shortest path, traversing through
nodes and finding a path by avoiding the obstacles. But
when applications require both full coverage and
obstacle avoidance, there are very few algorithms like
linked spiral path, complete coverage D* algorithm,
complete coverage algorithm wusing critical points,
backtracking spiral algorithm, linked smooth Spiral Path
and spiral-STC which serves our needs. But those
algorithms are not assuring full coverage. Also they are
well suited only for soft real time systems. Therefore we
need a heuristic algorithm which serves best to any hard
real time application which requires real complete
coverage and object avoidance. When it is a hard real
time system like mine detection, the improper coverage
cannot be taken easily as it costs human life. Hence it is
very important to be stringent in covering the complete
area and detecting all the mines. In this study, we

overcome the detection failure because of improper
scanning by proposing a novel graph traversing
algorithm TRACC.

Applications such as humanitarian demining
(Nicoud and Habib, 1995), lawn mowing (Huang et al.,
1986) and floor cleaning (Ulrich et al., 1997) and
harvesting (Ollis and Stentz, 1996) are widely using
autonomous robots. These robots require a good path
planning and complete coverage traversal algorithm to
use their maximum potential. Among the various traversal
and path finding algorithms, the conventional Dijkstra
algorithm (Dijkstra, 1959) which finds the shortest path
between nodes, the breadth first search and depth first
search algorithms (Cormen et al., 2001) visit all the nodes
in a graph by traversing them in a particular fashion, the
A* algorithm (Russell and Norvig, 2003) which finds the
path from start to end point by avoiding obstacles.

The complete coverage algorithm using critical
points (Garcia and Santos, 2004) is enhanced of Choset’s
algorithms for both unknown (Acar and Choset, 2002)
and known (Choset, 2000) environments.
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Table 1. Literature survey of complete coverage and obstacle avoidance algorithms

Algorithm Concept Coverage
Complete coverage This algorithm covers the area other 100% coverage is assured.
using critical points than the vertical vertex of the obstacle

by forth and back motions.
Complete coverage It is an extension of Path Transform Near 100% coverage of the
D* algorithm which uses D* algorithm in proposed area with

place of wavefront algorithm to make changing environments.

quicker re-planning when the
environment changes.

o

Backtracking Region is covered using spiral filling paths. An average of up to
spiral algorithm The covered regions are linked through 93% coverage is achieved.
backtracking mechanism.

Spiral-STC The robot covers the current sub region while Assured coverage is 85%.
recording its neighboring sub regions so
that it may cover them as well.

Linked spiral path Portions of the area are covered by spiral Coverage achieved up to
filling paths 94.99%. and Constrained
Inverse Distance Transform is
used to link all the portions.

Linked Coverage is achieved through Assured
smooth circle following, wall following coverage is
spiral path and object side following. 97%.
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This algorithm assures complete coverage of the given area.
The complete coverage D* algorithm (Dakulovi et al.,
2011) implements the path transform algorithm (Zelinsky et
al., 1993) with D* (Stentz, 1994), to give nearly 100%
coverage. The Backtracking Spiral Algorithm (Gonzalez et
al., 2005) is an extension of the basic BSA algorithm
(Gonzalez et al., 2003). Refinements of backtracking spiral
algorithm are proposed in spiral-STC (Wong and
MacDonald, 2003), Linked Spiral Path (Choi et al., 2009)
and Linked Smooth Spiral Path (Lee et al, 2010)
algorithms. Most of the grid based path planning algorithms
uses zig-zag like pattern to traverse the path as discussed by
(Gonzalez ef al., 1996), ( Hert et al., 1996) and (Acar and
Choset, 2001).

Table 1 provides a literature survey of some of the
complete coverage and obstacle avoidance algorithms.

2. MATERIALS AND METHODS

Though there are many algorithms available for
complete coverage with obstacle avoidance, we propose
a special algorithm-TRaversal Algorithm for Complete
Coverage (TRACC). TRACC promises that no cell of
the proposed area is left out without being sensed. Also,
the objects (or) blocked cells in the area are found out.

TRACC traverses to the next cell through the safest path
and reaches its destination after sensing all the cells.

The TRACC gives us the path from the start to end by
visiting each cell of the proposed area and ensures there
is no obstacle. Figure 1 is the graphical representation of
the proposed region to be scanned.

We decompose the entire region into finite cells of
11 rows and 11 columns. S is the starting point and E is
the ending point. The C1, C2, C3...C121 are decomposed
cells of the region.

The cells with the circles are the blocked cells and
which are to be avoided. The IA is an intelligent agent
which is capable of sensing its four cardinal neighbors.
The F, B, L and R for front, back, left and right
respectively used for sensing. The algorithm for TRACC
is given in Table 2.

The Fig. 2 gives the flow path of IA, when there is
no object. The TA will start from C1 and traverse to the
next cell after checking each cell in its path. If it
identifies the cell as safe, then it will proceed further to
the next cell. After reaching the boundary line, i.e., C11,
it will move to C33 through C22 and continues towards
C23. Once the boundary is reached next it will move to
C45 through C34.
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Fig. 1. Proposed region to be scanned (11x11)
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Fig. 2. The actual flow path

Table 2. TRaversal Algorithm for Complete Coverage (TRACC)
BEGIN
STEP1 scanCell(cell_id) if no
obstacle
move into the cell
findNeighbour(cell_id) returns list of cardinal neighbors for all cardinal
neighbors
scanCell(cell_id)
if no obstacle
remove from uncheck list else if
obstacle
remove from unchecked list
add the cell_id in list of unsafe cells cell_id =
next cell in the flow path
goto STEP1 else if
obstacle
shortestpath(cell_id, next cell in the flow path, list of unsafe cells) returns the shortest
and safest path list
goto STEP1 for every cell in the shortest path list
STEP?2 if the last cell in the flow path list is reached if
list_of unchecked_cells is not empty
for the elements of list_of unchecked cells
if at least one of the cardinal neighbors of the element is safe
shortestPath(cell_id,unchecked cell,list of unsafe cells)

Else
exit(unchecked cell resides at blocked area)
END traverse successful with complete coverage
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We have three major functions, scan cell (cell id)
which will scan a cell and returns true if obstacle is
detected, FindNeighbour (cell id) which will return a
list of cardinal neighbors, shortestPath (current cell id,
next unchecked cell in the flow path,
list of unsafe cells) which will find the shortest path
between the current cell and the next cell by avoiding the
unsafe (with obstacles) cells. We also have a
list of unchecked cells, which initially has all the
cell ids. After a cell is sensed by IA, the cell id of the
sensed cell is removed from the list of unchecked cells.

3. RESULTS

The following assumptions are made to implement
this algorithm:

e The Intelligent Agent (IA) can sense its four
adjacent cells in its cardinal points viz., front, back,
left and right

The proposed area is virtually decomposed into

e The area of a cell the sensing area of the sensor

e  The first cell has no obstacle

Initially, the agent IA starts from cell C1. Before the IA
enters into each cell, it scans the cell to check whether
the cell has obstacle. If there is no obstacle, then it
moves into the cell. The cardinal neighbors of the cell
are found and they are sensed for obstacle. If any of its
neighbors are found with obstacle, then the cell id is
added in the list_of unsafe cells. Then the IA will take
the next neighboring as per the flow path given in Fig. 2
and continue scanning. This process is continued till the
End (E). If there is any obstacle in the flow path, then the
shortest path between the current cell and the next cell
(in the flow path) is found by avoiding the unsafe cells.
By repeating the above said steps, the IA reaches E.
Once it reaches E, the list of unchecked cells will be
empty. If any cell id exist in the
list of unchecked cells, then we check whether all its

equal sized cells neighboring cells are in list of unsafe cells.
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Fig. 3. Traversal by TRACC, avoiding the first obstacle in cell C5
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Fig. 4. (a) Traversal of Intelligent Agent (IA) through the actual and diverted paths (b) complete coverage of the proposed area using
TRACC
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Fig. 5. TRACC implemented for a different scenario

If at least one of its neighbors is safe, then a shortest path
is found between the current cell and the unchecked cell.
The IA will traverse back through the path and scans the
cell. This process may be repeated if more than one
unchecked cell is present. But this case is very rare.
Hence by using TRACC, we achieve 100% coverage of
the proposed area.

As shown in Fig. 3, the IA starts traversing from cell
Cl, scans its available cardinal neighbors-C2, C12 and
moves to the next cell in the flow path-C2. The cells C2
and C12 are removed from the list_of unchecked cells.
This process continues till it reaches C4. At this juncture,
C5, which is the next cell to be traversed as per the flow
path, is having an obstacle.

C5 will be appended to the list of unsafe cells.
Now, the IA must avoid this cell and move forward to
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the next cell to C5. This is done by finding the shortest
path from the current cell C4 to the next cell to C5 (i.e.,
C6). So the IA moves through C4 =>C15 =>C16 =>C17
=>C6, which is the shortest path from C4 to C6. While
traversing the path from C4 to C6, the IA will scan its
cardinal neighbors of each cell it traverses. The blue
arrow represents the flow path and the green arrow
represents the diverted path taken by the IA with the help
of TRACC in order to avoid the obstacle.

The TA uses TRACC to traverse further in the
proposed area. The path taken by the IA to reach the end
point E (C111) is shown in the Fig. 4a and b. The IA,
after reaching Cl111, will check the
list of unchecked cells. The cell id C41 will be present.
IA will then check whether any of C41’s cardinal
neighbors are safe. As they are not safe in this case, IA
will deduce that it is a blocked cell.
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Fig. 6. (a) Simulation tool for TRACC (b) Path found by TRACC-Sim with complete coverage
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TRACC algorithm is also implemented in different
environments with challenging obstacles. The obstacles
are placed at various places, forming varied patterns.
Figure 5 depicts one such a challenging environment.
The path taken by the IA by implementing TRACC is
shown in Fig. 5. In this scenario, after reaching C111,
the cells C60, C62 and C121 will be available in the
list of unchecked cells. The shortest path is found and
they are sensed one by one. As C121 is bounded by
unsafe cells, it is discarded.

4. DISCUSSION

The simulation results reveal the following facts
about TRACC.

4.1. Coverage

There is no possibility of uncovered area, unless the
area is bounded by obstacles in all its four directions.
Hence, we achieve complete coverage.

4.2. Redundancy

The redundancy rate is the ratio of the overlapped
cell and the covered cell:

Rr = (Uc/Cc) * 100 (1) Where
Rr-is the rate of redundancy
Uc-no. of uncovered cells

Cc- no. of covered cells

According to TRACC’s flow path, it is calculated as
45.45% of the cells are redundant. This redundancy may
be considered as a drawback of this algorithm. But
applications with sensors need more redundant cells to
improvise the quality of sensing.

4.3. Cost

Though the complete coverage algorithm with
critical points (Garcia amd Santos, 2004) assures 100%
coverage, it is costly in terms of time. The simulation of
TRACC proves that, it is 1.71 times faster than the
complete coverage algorithm with critical points.

Figure 6a and 6b show our simulator for TRACC
algorithm, TRACC-Sim. The former shows the IA
sensing the cells from C1 to C111. The later shows the
path taken by the IA to reach C111 from C1. When the
TA moves from one cell to another, the traverse cell
updates in the box on the left side.

///// Science Publications

2040

S. CONCLUSION

In this study we proposed a novel algorithm TRACC
for complete coverage and obstacle avoidance. As we
assured, our TRACC algorithm covers 100% of the
proposed area. The simulation results show us it works
perfect and visited all the cells through the safest path
and avoided all the obstacles. As the results proved it is
efficient, a prototype of a landmine detector is going to
be developed using this algorithm.

By simulations, we infer that TRACC works the
same as humans do. We have planned to apply this
algorithm for land mine detection and applications which
require full coverage as well obstacle avoidance.
TRACC will also be used for applications like painting,
lawn mowing and mopping. In this study, we have not
considered the ordinal cells as neighboring cells. That
will also be considered in the future explore to reduce the
coverage time further.
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