
Journal of Computer Science 2012, 8 (12), 2032-2041 

ISSN 1549-3636  

© 2012 Science Publications 

doi:10.3844/jcssp.2012.2032.2041 Published Online 8 (12) 2012 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Kavitha Thiayagarajan, Department of Information Technology, School of Computing, SASTRA University, Tamilnadu, India 

 

2032 Science Publications

 

JCS 

Traversal Algorithm for Complete Coverage  

Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji 
 

Department of Information Technology, School of Computing, SASTRA University, Tamilnadu, India 

 
Received 2012-07-12, Revised 2012-10-25; Accepted 2012-12-15 

ABSTRACT 

There are many applications which require complete coverage and obstacle avoidance. The classical A* 

algorithm provides the user a shortest path by avoiding the obstacle. As well, the Dijkstra’s algorithm finds 

the shortest path between the source and destination. But in many applications we require complete 

coverage of the proposed area with obstacle avoidance. There are LSP, LSSP, BSA, spiral-STC and 

Complete Coverage D* algorithms which do not realize complete (100%) coverage. The complete coverage 

using a critical point algorithm assures complete coverage, but it is not well suited for applications like mine 

detection. Also for covering the missed region it keeps the obstacle as a critical point which is not advisable 

in critical applications where obstacle may be a dangerous one. To overcome this and to achieve the 

complete coverage we propose a novel graph traversal algorithm Traversal Algorithm for Complete 

Coverage (TRACC). Here the area to be scanned is decomposed into a finite number of cells. The traversal 

is done through all the cells after making sure the next cell has no obstacle. TRACC assures thorough 

coverage of the proposed area and ensuring that all the obstacles are avoided. Hence the TRACC always 

have the safer path while covering the entire area. It also reports the obstacle placed or blocked cell.  

 

Keywords: Complete, Area Coverage, Traversal Algorithm, Path Planning, Demining Algorithm 

 

1. INTRODUCTION 

 There are many classical algorithms for graph 
traversal and area coverage. The problems emphasized 
there are finding the shortest path, traversing through 
nodes and finding a path by avoiding the obstacles. But 
when applications require both full coverage and 

obstacle avoidance, there are very few algorithms like 
linked spiral path, complete coverage D* algorithm, 
complete coverage algorithm using critical points, 
backtracking spiral algorithm, linked smooth Spiral Path 
and spiral-STC which serves our needs. But those 
algorithms are not assuring full coverage. Also they are 

well suited only for soft real time systems. Therefore we 
need a heuristic algorithm which serves best to any hard 
real time application which requires real complete 
coverage and object avoidance. When it is a hard real 
time system like mine detection, the improper coverage 
cannot be taken easily as it costs human life. Hence it is 

very important to be stringent in covering the complete 
area and detecting all the mines. In this study, we 

overcome the detection failure because of improper 
scanning by proposing a novel graph traversing 
algorithm TRACC.  
 Applications such as humanitarian demining 

(Nicoud and Habib, 1995), lawn mowing (Huang et al., 

1986) and floor cleaning (Ulrich et al., 1997) and 

harvesting (Ollis and Stentz, 1996) are widely using 

autonomous robots. These robots require a good path 

planning and complete coverage traversal algorithm to 

use their maximum potential. Among the various traversal 

and path finding algorithms, the conventional Dijkstra 

algorithm (Dijkstra, 1959) which finds the shortest path 

between nodes, the breadth first search and depth first 

search algorithms (Cormen et al., 2001) visit all the nodes 

in a graph by traversing them in a particular fashion, the 

A* algorithm (Russell and Norvig, 2003) which finds the 

path from start to end point by avoiding obstacles.  

 The complete coverage algorithm using critical 
points (Garcia and Santos, 2004) is enhanced of Choset’s 
algorithms for both unknown (Acar and Choset, 2002) 
and known (Choset, 2000) environments.  



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2033 

 
Science Publications

 
JCS 

Table 1. Literature survey of complete coverage and obstacle avoidance algorithms 

Algorithm Concept Illustration Coverage 

   
Complete coverage This algorithm covers the area other  100% coverage is assured. 

using critical points than the vertical vertex of the obstacle 

 by forth and back motions. 

   
Complete coverage It is an extension of Path Transform  Near 100% coverage of the 

D* algorithm which uses D* algorithm in  proposed area with 

 place of wavefront algorithm to make  changing environments. 

 quicker re-planning when the 

 environment changes. 

   
Backtracking Region is covered using spiral filling paths.  An average of up to 

spiral algorithm The covered regions are linked through  93% coverage is achieved. 

 backtracking mechanism. 

   
Spiral-STC The robot covers the current sub region while  Assured coverage is 85%. 

 recording its neighboring sub regions so 

 that it may cover them as well. 

   
Linked spiral path Portions of the area are covered by spiral  Coverage achieved up to 

 filling paths 94.99%. and Constrained 

 Inverse Distance Transform is 

 used to link all the portions. 

   
Linked Coverage is achieved through  Assured 

smooth circle following, wall following  coverage is 

spiral path and object side following.  97%. 



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2034 

 
Science Publications

 
JCS 

This algorithm assures complete coverage of the given area. 
The complete coverage D* algorithm (Dakulovi et al., 
2011) implements the path transform algorithm (Zelinsky et 

al., 1993) with D* (Stentz, 1994), to give nearly 100% 
coverage. The Backtracking Spiral Algorithm (Gonzalez et 

al., 2005) is an extension of the basic BSA algorithm 
(Gonzalez et al., 2003). Refinements of backtracking spiral 
algorithm are proposed in spiral-STC (Wong and 
MacDonald, 2003), Linked Spiral Path (Choi et al., 2009) 
and Linked Smooth Spiral Path (Lee et al., 2010) 
algorithms. Most of the grid based path planning algorithms 
uses zig-zag like pattern to traverse the path as discussed by 
(Gonzalez et al., 1996), ( Hert et al., 1996) and (Acar and 
Choset, 2001).  
 Table 1 provides a literature survey of some of the 
complete coverage and obstacle avoidance algorithms. 

2. MATERIALS AND METHODS 

 Though there are many algorithms available for 
complete coverage with obstacle avoidance, we propose 
a special algorithm-TRaversal Algorithm for Complete 
Coverage (TRACC). TRACC promises that no cell of 
the proposed area is left out without being sensed. Also, 
the objects (or) blocked cells in the area are found out. 

TRACC traverses to the next cell through the safest path 
and reaches its destination after sensing all the cells.  
The TRACC gives us the path from the start to end by 
visiting each cell of the proposed area and ensures there 
is no obstacle. Figure 1 is the graphical representation of 
the proposed region to be scanned.  
 We decompose the entire region into finite cells of 

11 rows and 11 columns. S is the starting point and E is 

the ending point. The C1, C2, C3...C121 are decomposed 

cells of the region.  

 The cells with the circles are the blocked cells and 

which are to be avoided. The IA is an intelligent agent 

which is capable of sensing its four cardinal neighbors. 

The F, B, L and R for front, back, left and right 

respectively used for sensing. The algorithm for TRACC 

is given in Table 2.  

 The Fig. 2 gives the flow path of IA, when there is 

no object. The IA will start from C1 and traverse to the 

next cell after checking each cell in its path. If it 

identifies the cell as safe, then it will proceed further to 

the next cell. After reaching the boundary line, i.e., C11, 

it will move to C33 through C22 and continues towards 

C23. Once the boundary is reached next it will move to 

C45 through C34. 

 

 
 

Fig. 1. Proposed region to be scanned (11×11) 



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2035 

 
Science Publications

 
JCS 

 
 

Fig. 2. The actual flow path 
 
Table 2. TRaversal Algorithm for Complete Coverage (TRACC) 

BEGIN 

STEP1 scanCell(cell_id) if no 

 obstacle 

 move into the cell 

 findNeighbour(cell_id) returns list of cardinal neighbors for all cardinal 

 neighbors 

 scanCell(cell_id) 

 if no obstacle 

 remove from uncheck list else if 

 obstacle 

 remove from unchecked list 

 add the cell_id in list_of_unsafe_cells cell_id =  

 next cell in the flow path 

 goto STEP1 else if 

 obstacle 

 shortestpath(cell_id, next cell in the flow path, list_of_unsafe_cells) returns the shortest 

 and safest path list 

 goto STEP1 for every cell in the shortest path list 

STEP2 if the last cell in the flow path list is reached if 

 list_of_unchecked_cells is not empty 

 for the elements of list_of_unchecked_cells 

 if at least one of the cardinal neighbors of the element is safe 

 shortestPath(cell_id,unchecked_cell,list_of_unsafe_cells) 

 Else 

 exit(unchecked cell resides at blocked area) 

END traverse successful with complete coverage 



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2036 

 
Science Publications

 
JCS 

 We have three major functions, scan cell (cell_id) 

which will scan a cell and returns true if obstacle is 

detected, FindNeighbour (cell_id) which will return a 

list_of_cardinal_neighbors, shortestPath (current cell_id, 

next unchecked cell in the flow path, 

list_of_unsafe_cells) which will find the shortest path 

between the current cell and the next cell by avoiding the 

unsafe (with obstacles) cells. We also have a 

list_of_unchecked_cells, which initially has all the 

cell_ids. After a cell is sensed by IA, the cell_id of the 

sensed cell is removed from the list_of_unchecked_cells.   

3. RESULTS 

 The following assumptions are made to implement 

this algorithm:  
 

• The Intelligent Agent (IA) can sense its four 

adjacent cells in its cardinal points viz., front, back, 

left and right 

• The proposed area is virtually decomposed into 

equal sized cells  

• The area of a cell the sensing area of the sensor  

• The first cell has no obstacle  

 

Initially, the agent IA starts from cell C1. Before the IA 

enters into each cell, it scans the cell to check whether 

the cell has obstacle. If there is no obstacle, then it 

moves into the cell. The cardinal neighbors of the cell 

are found and they are sensed for obstacle. If any of its 

neighbors are found with obstacle, then the cell_id is 

added in the list_of_unsafe_cells. Then the IA will take 

the next neighboring as per the flow path given in Fig. 2 

and continue scanning. This process is continued till the 

End (E). If there is any obstacle in the flow path, then the 

shortest path between the current cell and the next cell 

(in the flow path) is found by avoiding the unsafe cells. 

By repeating the above said steps, the IA reaches E. 

Once it reaches E, the list_of_unchecked_cells will be 

empty. If any cell_id exist in the 

list_of_unchecked_cells, then we check whether all its 

neighboring cells are in list_of_unsafe_cells.

 

 
 

Fig. 3. Traversal by TRACC, avoiding the first obstacle in cell C5 



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2037 

 
Science Publications

 
JCS 

 
(a) 

 

 
(b) 

 
Fig. 4. (a) Traversal of Intelligent Agent (IA) through the actual and diverted paths (b) complete coverage of the proposed area using 

TRACC 



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2038 

 
Science Publications

 
JCS 

 
 

Fig. 5. TRACC implemented for a different scenario 

 
If at least one of its neighbors is safe, then a shortest path 
is found between the current cell and the unchecked cell. 
The IA will traverse back through the path and scans the 
cell. This process may be repeated if more than one 
unchecked cell is present. But this case is very rare. 
Hence by using TRACC, we achieve 100% coverage of 
the proposed area.  

 As shown in Fig. 3, the IA starts traversing from cell 

C1, scans its available cardinal neighbors-C2, C12 and 

moves to the next cell in the flow path-C2. The cells C2 

and C12 are removed from the list_of_unchecked_cells. 

This process continues till it reaches C4. At this juncture, 

C5, which is the next cell to be traversed as per the flow 

path, is having an obstacle.  
 C5 will be appended to the list_of_unsafe_cells. 
Now, the IA must avoid this cell and move forward to 

the next cell to C5. This is done by finding the shortest 
path from the current cell C4 to the next cell to C5 (i.e., 
C6). So the IA moves through C4 =>C15 =>C16 =>C17 
=>C6, which is the shortest path from C4 to C6. While 
traversing the path from C4 to C6, the IA will scan its 
cardinal neighbors of each cell it traverses. The blue 
arrow represents the flow path and the green arrow 
represents the diverted path taken by the IA with the help 
of TRACC in order to avoid the obstacle.  
 The IA uses TRACC to traverse further in the 
proposed area. The path taken by the IA to reach the end 
point E (C111) is shown in the Fig. 4a and b. The IA, 
after reaching C111, will check the 
list_of_unchecked_cells. The cell_id C41 will be present. 
IA will then check whether any of C41’s cardinal 
neighbors are safe. As they are not safe in this case, IA 
will deduce that it is a blocked cell.  



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2039 

 
Science Publications

 
JCS 

 
(a) 

 

 
(b) 

 
Fig. 6. (a) Simulation tool for TRACC (b) Path found by TRACC-Sim with complete coverage 



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2040 

 
Science Publications

 
JCS 

 TRACC algorithm is also implemented in different 

environments with challenging obstacles. The obstacles 

are placed at various places, forming varied patterns. 

Figure 5 depicts one such a challenging environment. 

The path taken by the IA by implementing TRACC is 

shown in Fig. 5. In this scenario, after reaching C111, 

the cells C60, C62 and C121 will be available in the 

list_of_unchecked_cells. The shortest path is found and 

they are sensed one by one. As C121 is bounded by 

unsafe cells, it is discarded.  

4. DISCUSSION 

 The simulation results reveal the following facts 

about TRACC. 

4.1. Coverage  

 There is no possibility of uncovered area, unless the 

area is bounded by obstacles in all its four directions. 

Hence, we achieve complete coverage.  

4.2. Redundancy  

 The redundancy rate is the ratio of the overlapped 

cell and the covered cell:  
 

• Rr = (Uc/Cc) * 100 (1) Where  

• Rr-is the rate of redundancy  

• Uc-no. of uncovered cells  

• Cc- no. of covered cells  
 
 According to TRACC’s flow path, it is calculated as 

45.45% of the cells are redundant. This redundancy may 

be considered as a drawback of this algorithm. But 

applications with sensors need more redundant cells to 

improvise the quality of sensing.  

4.3. Cost  

 Though the complete coverage algorithm with 

critical points (Garcia amd Santos, 2004) assures 100% 

coverage, it is costly in terms of time. The simulation of 

TRACC proves that, it is 1.71 times faster than the 

complete coverage algorithm with critical points.  

 Figure 6a and 6b show our simulator for TRACC 

algorithm, TRACC-Sim. The former shows the IA 

sensing the cells from C1 to C111. The later shows the 

path taken by the IA to reach C111 from C1. When the 

IA moves from one cell to another, the traverse cell 

updates in the box on the left side. 

5. CONCLUSION 

 In this study we proposed a novel algorithm TRACC 

for complete coverage and obstacle avoidance. As we 

assured, our TRACC algorithm covers 100% of the 

proposed area. The simulation results show us it works 

perfect and visited all the cells through the safest path 

and avoided all the obstacles. As the results proved it is 

efficient, a prototype of a landmine detector is going to 

be developed using this algorithm.  
 By simulations, we infer that TRACC works the 
same as humans do. We have planned to apply this 
algorithm for land mine detection and applications which 
require full coverage as well obstacle avoidance. 
TRACC will also be used for applications like painting, 
lawn mowing and mopping. In this study, we have not 
considered the ordinal cells as neighboring cells. That 
will also be considered in the future explore to reduce the 
coverage time further.  

6. REFERENCES 

1. Acar, E.U. and H. Choset, 2001. Robust sensor-
based coverage of unstructured environments. 
Proceedings of the International Conference on 
IEEE Retrieved from Intelligent Robots and 
Systems, Oct. 29-Nov. 3, IEEE Xplore Press, 
Maui, HI., pp: 61-68. DOI: 
10.1109/IROS.2001.973337  

2. Acar, E.U. and H. Choset, 2002. Sensor-based 
coverage of unknown environments: 
Incremental construction of morse 
decompositions. Int. J. Robo. Res., 21: 345-366. 
DOI: 10.1177/027836402320556368 

3. Choi, Y.H., T.K. Lee, S.H. Baek and S.Y. Oh, 
2009. Online complete coverage path planning 
for mobile robots based on linked spiral paths 
using constrained inverse distance transform. 
Proceedings of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems, 
Oct. 10-15, IEEE Xplore Press, St. Louis, MO., 
pp: 5788-5793. DOI: 
10.1109/IROS.2009.5354499  

4. Choset, H., 2000. Coverage of known spaces: 
The boustrophedon cellular decomposition. 
Autonomous Robots, 9: 247-253. DOI: 
10.1023/A:1008958800904  

5. Cormen, T.H., C.E. Leiserson, R.L. Rivest and 
C. Stein, 2001. Introduction to Algorithms. 2nd 
Edn., MIT Press and McGraw-Hill, ISBN-10: 

0262032937, pp: 1180.  



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2041 

 
Science Publications

 
JCS 

6. Dakulovi, M., S. Horvatic and I. Petrovic, 2011. 
Complete coverage D* algorithm for path 

planning of a floor-cleaning mobile robot. 
Proceedings of the Preprints of the 18th IFAC 
World Congress, Aug. 28-Sep. 2, Milano, Italy, 
pp: 5950-5955.  
http://www.nt.ntnu.no/users/skoge/prost/procee
dings/ifac11-
proceedings/data/html/papers/3400.pdf 

7. Dijkstra, E.W., 1959. A note on two problems 

in connexion with graphs. Num. Math., 1: 269-

271. http://www-

m3.ma.tum.de/foswiki/pub/MN0506/WebHome

/dijkstra.pdf 

8. Garcia, E. and P.G.D. Santos, 2004. Mobile-

robot navigation with complete coverage of 

unstructured environments. Robotics 

Autonomous Syst., 46: 195-204. DOI: 

10.1016/j.robot.2004.02.005  

9. Gonzalez, E., M. Alarcon, P. Aristizabal and C. 

Parra, 2003. BSA: A coverage algorithm. 

Proceedings of the International Conference on 

Intelligent Robots and Systems, Oct. 27-31, 

IEEE Xplore Press, Colombia, pp. 1679-1684. 

DOI: 10.1109/IROS.2003.1248885  

10. Gonzalez, E., A. Suarez, C. Moreno and F. 

Artigue, 1996. Complementary regions: A 

surface filling algorithm. Proceedings of the 

IEEE International Conference on IEEE 

Robotics and Automation, Apr. 22-28, IEEE 

Xplore Press, Minneapolis, MN., pp: 909- 914. 

DOI: 10.1109/ROBOT.1996.503888  

11. Gonzalez, E., O. Alvarez, Y. Diaz, C. Parra and 

C. Bustacara, 2005. BSA: A complete coverage 

algorithm. Proceedings of the IEEE 

International Conference on Robotics and 

Automation, Apr. 18-22, IEEE Xplore Press, 

pp: 2040-2044. DOI: 

10.1109/ROBOT.2005.1570413  

12. Hert, S., S. Tiwari and V. Lumelsky, 1996. A 

terrain-covering algorithm for an AUV. 

Autonomous Robots, 3: 91-119. DOI: 

10.1007/BF00141150  

13. Huang, Y., Z. Cao and E. Hall, 1986. Region 

filling operations for mobile robot using 

computer graphics. Proceedings of the IEEE 

International Conference on Robotics and 

Automation, (RA’ 86), IEEE Xplore Press, pp: 

1607-1614. DOI: 

10.1109/ROBOT.1986.1087504 

 

 

14. Nicoud, J.D. and M.K. Habib, 1995. The 

pemex-b autonomous demining robot: 

Perception and navigation strategies. 

Proceedings of the IEEE International 

Conference on Intelligent Robots and Systems 

95. ‘Human Robot Interaction and Cooperative 

Robots, Aug. 5-9, IEEE Xplore Press, 

Pittsburgh, PA., pp: 419-424. DOI: 

10.1109/IROS.1995.525830  

15. Lee, T.K., S.H. Baek, S.Y. Oh and Y.H. Choi, 

2010. Complete coverage algorithm based on 

linked smooth spiral paths for mobile robots. 

Proceedings of the 11th International 

Conference on Control Automation Robotics 

and Vision, Dec. 7-10, IEEE Xplore Press, 

Singapore, pp: 609-614. DOI: 

10.1109/ICARCV.2010.5707264  

16. Ollis, M. and A. Stentz, 1996. First results in 

vision-based crop line tracking. Carnegie 

Mellon University. 

http://www.rec.ri.cmu.edu/projects/auto_harvest

ing/tech/crop_line_tracking.pdf  

17. Russell, S.J. and P. Norvig, 2003. Artificial 

Intelligence: A Modern Approach 1st Edn., 

Pearson Education, India, ISBN-10: 

8177583670, pp: 1081.  

18. Stentz, A., 1994. Optimal and efficient path 

planning for partially-known environments. 

Proceedings of the IEEE International 

Conference on Robotics and Automation, May, 

8-13, IEEE Xplore Press, San Diego, CA., pp: 

3310-3317. DOI: 

10.1109/ROBOT.1994.351061  

19. Ulrich, I., F. Mondada and J.D. Nicoud, 1997. 

Autonomous vacuum cleaner. Robotics Autono. 

Syst., 19: 233-245. DOI: 10.1016/S0921-

8890(96)00053-X  

20. Wong, S.C. and. B.A. MacDonald, 2003. A 

topological coverage algorithm for mobile 

robots. Proceedings of the International 

Conference on Intelligent Robots and Systems, 

Oct. 27-31, IEEE Xplore Press, pp: 1685-1690. 

DOI: 10.1109/IROS.2003.1248886  

21. Zelinsky, A., R.A. Jarvis, J.C. Byrne and S. 

Yuta, 1993. Planning paths of complete 

coverage of an unstructured environment by a 

mobile robot. Adv. Robotics, 66: 533-538. DOI: 

10.1107/S1600536810016661  



Kavitha Thiayagarajan and Coimbatore Ganeshsankar Balaji / Journal of Computer Science 8 (12) (2012) 2032-2041 

 

2042 

 
Science Publications

 
JCS 

 


