
Journal of Computer Science 2012, 8 (11), 1932-1939

ISSN 1549-3636

© 2012 Science Publications

doi:10.3844/jcssp.2012.1932.1939 Published Online 8 (11) 2012 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Inali Wisniewski Soares, Graduate School of Electrical Engineering and Computer Science,

 Federal University of Technology Parana (UTFPR), Av. 7 de Setembro, 3165, 80.230-901, Curitiba,

Parana, Brazil Tel: + 55 41 3310 4759

1932 Science Publications

JCS

A Method for the Development of Platform

Models in the Model Driven Architecture Context

1,2
Inali Wisniewski Soares,

 1, 2
Luciane Telinski Wiedermann Agner,

1
Paulo Cezar Stadzisz and

1
Jean Marcelo Simao

1Graduate School of Electrical Engineering and Computer Science,

Federal University of Technology Parana (UTFPR),

Av. 7 de Setembro, 3165, 80.230-901, Curitiba, Parana, Brazil
2Department of Computer Science

Mid-West State University (UNICENTRO),

Rua Padre Salvador, 875, 85.015-430, Guarapuava, Parana, Brazil

Received 2012-08-23, Revised 2012-09-20; Accepted 2012-11-07

ABSTRACT

The application of the Model Driven Architecture (MDA) approach to the design of embedded
software based on Real-Time Operating Systems (RTOS) is encouraged by the fact that such software
has a wide variety of platforms. In this way, the creation of methods for the development of platform
models that meet such diversity of platforms is necessary. This study proposes a method called PM-
MDA for the development of platform models that design embedded software based on RTOS in the
context of MDA. In addition, this study defines the swxRTOS metamodel, a UML 2.0 profile for
RTOS based on embedded software design. Such profile defines a set of stereotypes to describe
Platform Models (PMs) and is intended to generically describe the services provided by a given
embedded system platform of the RTOS. This profile promotes the creation of Platform Models, which
will be used as input parameters in the model transformation. Due to the inherent complexity in
embedded software design and the existence of a wide variety of platform models, new methods that
support the development of such software become crucial.

Keywords: UML Profile, Embedded Software, Software Engineering

1. INTRODUCTION

Model Driven Architecture (MDA) is a contemporary
software development approach that aims to shift from
conventional code-centric software design to model-
centric software design (Chong et al., 2011). In Software
Engineering, the main idea behind the MDA approach lies
in the fact that software can be initially built from an
abstract representation, which is successively refined until
implementation is reached (Hamous-Lhadj et al., 2009).

The MDA development process involves: specification
of the system functionality with a Platform Independent
Model (PIM), specification of a Platform Model (PM),

selection of a specific platform for the system, Model
Transformation (MT) of a PIM into a Platform Specific
Model (PSM) based on a specific platform (OMG, 2010;
Lecomte et al., 2011; Loniewski et al., 2011).

The PM provides a set of technical concepts that
represent parts and services of a platform. Moreover, such
PM must specify constraints on the use of these elements.
MT, in its turn, can be defined as the generation of a target
model from a source model based on a set of rules that
define the link between its elements (OMG, 2010;
Meertens et al., 2010).

An embedded system can be defined as an electronic

and autonomous system designed to a specific task

Inali Wisniewski Soares et al. / Journal of Computer Science 8 (11) (2012) 1932-1939

1933 Science Publications

JCS

(Kessaci et al., 2011). Due to the advancements in the field

of electronics, most applications have been developed by

microcontrollers based on embedded systems. This type of

system has become very widely spread to all kinds of

equipment, either for consumer, industrial or military

products (Baskaran and Vijula, 2012). Currently, the

growing need for new embedded products with additional

functionalities is a tendency, thus demanding the increment

of more complex software components in the system.

Therefore, the complexity of embedded software systems

emphasizes the need for high-level development

approaches, such as MDA. MDA approach is appealing to

the design of embedded systems, once models can be easily

evolved as hardware and software requirements evolve

(Tucci-Piergiovanni et al., 2011).
UML is the standard language for representing

software design models. It provides a rich set of
notations, diagrams, extension mechanisms and,
whatever its advantages and drawbacks are, it is
undeniably one of the most adopted modeling languages
of this decade (Bendraou et al., 2010). Particularly, the
UML core still lacks key artifacts for precisely
describing PMs of RTOS execution platforms.

Essentially, software development is an activity that
demands intensive human knowledge, involving
software developers who execute a software
development process by making use of expert knowledge
(Omar et al., 2011). In the domain of embedded systems,
MDA employment is thus even more encouraging due to
the wide variety of platforms and the development
complexity of such systems. In this context, the present
paper aims to contribute to the improvement of the
process quality and productivity for RTOS-based
embedded software design and mainly focuses on the
proposal of a UML profile: swxRTOS-defines a set of
stereotypes to describe the PM and proposes a method
through which these PMs will be created, allowing the
definition of PMs separate from the model
transformation process and thus resulting in the
transformation of models that are more efficient and
adaptable to other platforms.

2. MATERIALS AND METHODS

The Platform Model provides a set of technical

concepts that represent the parts and services of a

platform as well as the different types of elements that

can be employed in the use specification of the platform

by an application (OMG, 2010). In order to understand

and define a Platform Model, it is necessary to

understand the concept of platform. At first, platform

was simply defined as “computer hardware that executes

software”. Later on, such definition included software-

based platforms such as operational systems. That is to

say, the term platform implies into a set of

hardware/software tools that enable the execution of

software applications. “Enable the execution” means, in

this case, providing external mechanisms or services

used by one or more software applications. In this way, a

software platform provides a set of general-purpose

capabilities (services), e.g., communication tools among

processes, memory archive and memory management

services (Selic, 2005; Dube and Dixit, 2012).
The services of a platform are typically accessed by

an Application Programming Interface (API). The
concept of API is essential in Software Engineering as a
representation of the information hiding principle. The
services that a supplier software asset offers to client
applications are exposed through an API, a specification
that hides implementation details and describes how
to properly use services (at least their signature) and the
kind of results they provide (Izquierdo et al., 2012). A
software platform can thus be displayed as an abstraction
mechanism as well. The main purpose of a platform,
however, is not found on abstraction, but on enabling the
access to its functions (or services). In this case,
abstraction is just a convenient way to enable the use of
the services offered by the platform.

Understanding that a software platform differs from
the applications that it supports is crucial. Although the
platform services are used to implement an application,
such services are not part of the application. Another
feature related to platforms refers to its independence of
the applications, i.e., its availability and operation are not
dependent on the existence or execution of the
applications. Regarding the development of embedded
software based on RTOS, the wide variety of platforms
is a consequence of the large number of suppliers and
technologies available.

Under the scope of this study, therefore, platform is
defined as a set of hardware/software tools that enable the
execution of software applications based on an RTOS.
Hardware consists of the respective hardware platforms of
embedded system based on specific processors required for
the execution of an RTOS. In its turn, software consists of
the RTOS and its respective APIs.

2.1. Platform Independence of Embedded

Software

 Embedded systems are more affected by the adopted

platform due to their incorporated hardware features and the

restrictions imposed on them. As a consequence, in order to

achieve “platform independence” in these systems, the

Inali Wisniewski Soares et al. / Journal of Computer Science 8 (11) (2012) 1932-1939

1934 Science Publications

JCS

platform to be used must be defined in an abstract way,

considering its interest attributes. That means, a software

project must perform the application modeling based on an

abstract platform model (Selic, 2012).

The X Real-Time Kernel (Renaux et al., 2010), an

example of RTOS defined in this study as a target

platform, can be employed in different platforms. Those

platforms are identified according to the core used:

ARM7TDMI, ARM9, Cortex-M4, Cortex-A8, among

others. The X Real-Time Kernel is used in Deeply

Embedded Systems.

Improving process quality and productivity for

developing embedded software has become a big

challenge due to the wide variety of existing

platforms. This study aims to contribute with this

challenge and mainly focuses on two aspects: (a) a

proposal of the UML metamodel for Real-Time

Embedded Software application and (b) a method in

which this metamodel will be applied, resulting in the

creation of platform models separated from the model

transformation process.

UML allows the creation of new languages for
different purposes. For example, in order to adapt UML
2.0 to different applications and platform domains,
extension mechanisms are provided by the language.
Extension mechanisms in UML 2.0 can be classified
into first-class and second-class extensibility (OMG,
2010; Selic, 2012).

First-class extensibility is handled through the Meta

Object Facility-MOF (OMG, 2011). This approach

allows modifications in the existing metamodels and the

creation of new metamodels without constraints. Second-

class extensibility does not allow modifications in the

existing metamodels. Instead, it enables adapting

metamodels for specific purposes by extending existing

metaclasses. Adaptations are defined by using

stereotypes, tagged values and constraints, which are

grouped in a profile.

A UML profile contains constructs that are specific to

a particular domain, platform or method. The profiles

proposed in this study utilize only the second-class

extensibility, which is considered to be suitable for

applying UML 2.0 to embedded software design.

2.2. The swxRTOS Profile

 Responsible for generating PMs, aims to facilitate

the “platform independence” in the development of

embedded software. It must describe an abstraction layer

for the RTOS X Real-Time Kernel (defined in this study

as an example of RTOS) in a generic way, not

considering a specific hardware platform, i.e., a specific

processor attached to a specific electronic board. For

instance, based on the swxRTOS profile, the following

PMs can be defined: (1) PM for X Real-Time Kernel in

NXP ARM7 processors and (2) PM for X Real-Time

Kernel in Atmel ARM7 processors. The swxRTOS

profile is composed of sub-profiles such as the

swxCoreRTOS, which represents the basic concepts of

the high-level constructs needed to support both

concurrency and interactions. In its turn, the ddxRTOS is

another example of a sub-profile of the swxRTOS,

representing the concepts related to the physical

microcontroller peripherals used in the RTOS. Due to

length limitation, only fragments of the swxCoreRTOS

and ddxRTOS sub-profiles will be considered and

described in Table 1 and 2 respectively.

2.3. PM-MDA Method

 PM-MDA is a method for developing Platform

Models in the context of the MDA approach. This

method can be used as a development guide for Platform

Models independently of the transformation rules. In this

way, the development of transformation models that are

more adaptable in the context of the MDA approach is

possible. The steps that constitute the PM-MDA method

are represented in Fig. 1 and described as follows:

2.4. Step 1-RTOS Selection

 In this step it is possible to define the RTOS for
which the Platform model will be designed. In this study
the RTOS X Real-Time Kernel will be used. This RTOS
refers to the development of embedded systems with
rigid constraints regarding time and computational
resources (Renaux et al., 2010). The RTOS X Real-Time
Kernel is used in embedded systems based on 32-bit
RISC processors with ARM architecture, more
specifically ARM7 and ARM9.

2.5. Step 2-Defining Hardware and Processor

Architecture

 After defining the RTOS to be used, the hardware
and processor architectures will be determined. There are
various kinds of hardware and processors available for
usage according to the selected RTOS. For the X Real-

Time Kernel, the processors available are: ARM7 and
ARM9. Carrying out this step is essential for defining the
support to the processors’ peripheral drivers. The next
step is the composition of the software/hardware features
of the Platform Model. To do so, the platform
metamodel previously described will be used. In that

metamodel, the elements needed and the respective
associated standards will be available.

Inali Wisniewski Soares et al. / Journal of Computer Science 8 (11) (2012) 1932-1939

1935 Science Publications

JCS

2.6. Step 3-Analyzing the API of the Selected

RTOS

 In this step, the API of the selected RTOS is

analyzed in detail. In so doing, the verification of the

details related to the software and hardware concepts

identified in steps 1 and 2 is intended. After such

analysis, the definition of the elements that form the

Platform Model is possible. The following APIs are

analyzed in this study: RTOS X Real-Time Kernel

versions 1.0 and 2.0.

2.7. Step 4-Platform Model Design

 The Platform Model for the selected RTOS is

designed in this step, in accordance with the software

and hardware features identified and analyzed in the

previous steps. Then, the next step consists in composing

the software and hardware features of the Platform

Model by making use of the platform metamodel, in

which the required elements and respective associated

standards are available. Figure 2 illustrates an example

of the PM-ARM7 design through the employment of the

MPM-swxRTOS. The MPM-swxRTOS specifies two

metaclasses: (1) swxCoreRTOS: represents the

software features of the RTOS; (2) ddxSerialComm:

defines the hardware features of the RTOS,

representing a serial port driver of ARM processors’

architecture. The PM-ARM7 specifies two classes: (1)

X: represents the main class of the RTOS X Real-Time

Kernel; (2) CSerialARM7: defines the hardware

features of the RTOS X Real-Time Kernel.

Table 1. Stereotypes of the swxCoreRTOS sub-profile

Stereotype swxCore

Description Concepts regarding the software description in concurrent execution contexts

Tagged threadName: Name of a task

Values threadPriority: Execution priority of a task

 timeSuspension: Time of suspension

 sleepThreadFor: Suspension of a task for a definite period

 activateThread: Creation of a task

 threadStackSize: Number of words of which the task stack is composed

Stereotype swxSemaphore

Description Concepts regarding the creation and management of a semaphore

Tagged num: semaphore initial value

Values semaph: variable whose values are 0, 1 or negative

 checkActualVlr: checks the semaphore current value

 waitSemaphore: wait state of the semaphore

Stereotype swxTime

Description Concepts regarding time values.

Tagged nanosec: Stores time related values in nanoseconds

Values sec: Stores time related values in seconds

 time: Stores time related values

 getNanoSec: retrieves the current value of the nanosecond counter

Table 2. Stereotype of the ddxCoreRTOS sub-profile

Stereotype ddxSerialComm

Description Represents general information regarding device drivers of the serial ports of ARM processors.

Tagged configDD: Configures the Device Driver

Values stateDD: Represents the Device Driver state

 getStateDD: Retrieves the Device Driver state

 startDD: Starts a device after its configuration

 stopDD: Stops a device

 numTypeDD: Represents the device driver type code

Inali Wisniewski Soares et al. / Journal of Computer Science 8 (11) (2012) 1932-1939

1936 Science Publications

JCS

Fig. 1. Overview of the PM-MDA method

Fig. 2. Example of a PM - ARM7 created through the PM- MDA method

Fig. 3. Example of a PM integrated to the MDA approach

Inali Wisniewski Soares et al. / Journal of Computer Science 8 (11) (2012) 1932-1939

1937 Science Publications

JCS

Fig. 4. Example of a PSM created through the abstract PM based on the swxRTOS profile

2.8. Step 5-Platform Model Integration to the

MDA Approach

 The last step of the PM-MDA method refers to the
integration of the Platform Model to the MDA approach.
The PIM and PM models are used as input parameters in
the model transformation process. In so doing, a model

transformation language, e.g., the Atlas Transformation
Language (Troya and Vallecillo, 2010), is selected to be
used in the creation of a model transformation. A model
transformation, as described in (Agner et al., 2012), can
be used to insert the PM defined in this method and a
PIM into a PIM-into-PSM model transformation. Such

approach refers to an endogenous refinement of models
based on the UML metamodel. In a model refinement
most elements of the source model (PIM) are copied to
the target model (PSM), while other elements must be
changed in order to incorporate platform-specific
aspects. Refinement is described as a model

transformation process in which more details are added
to a previously defined model (Straeten et al., 2007).

2.9. Example of an Application of the PM-MDA

Method

 A simplified example of the PM-MDA Method
application is illustrated in Fig. 3. In this example, the
RTOS selected was the X Real-Time Kernel (step 1), the
hardware and processor architecture selected was the
ARM7 (step 2), the API analysis of the RTOS X Real-
Time Kernel version 1.0 was conducted (step 3), the
platform model was created by using the profile
swxRTOS (step 4). The last step consists in integrating

the PM to the MDA approach, as showed in Fig. 3 as for
representing its operation and illustrating the impact of
hardware and software aspects in embedded systems
development. Figure 3 illustrates a simple example of
generic transformation of models and uses a PIM and a
PM model as input parameters, once the PM was defined
regarding the profile swxRTOS.

The PIM defines a part of an application model that,
in its turn, defines a class for controlling data
transmission through the serial port driver, named
ControlSerial. PIM is a platform independent model, so
the RTOS services are defined in an abstract (generic)
way and are not related to a specific platform. The PM
was defined regarding the profile swxRTOS for the
RTOS in ARM7 processors. Figure 4 ilustrates an
example of a PSM created through a generic
transformation approach based on a PM built by using
the profile swxRTOS.

3. RESULTS

The present study proposed a method for defining
platform models for embedded software based on RTOS.
The main objective of such method resides in enabling
the development of applications based on RTOS-based
embedded software and that are more independent of
platform. Platform independence increases productivity
in software development, one of the main objectives of
Software Engineering.

Using this method allows the creation of platform

models that can be inserted into a model transformation,

i.e., it is possible to separate platform concerns from

Inali Wisniewski Soares et al. / Journal of Computer Science 8 (11) (2012) 1932-1939

1938 Science Publications

JCS

model transformation concerns. The definition of

methods for building platform models promotes the

improvement of the MDA approach, once model

transformations can be generically developed and reused

for each platform selected.

In the creation of the platform model, the swxRTOS

platform metamodel was used. It consists of a UML

profile that is easy to be applied and sufficient to model

the artifacts required for the platform models used by the

RTOS X Real-Time Kernel, presented as an example of

RTOS in the PM-MDA method.

The PM-MDA method meets the highest abstraction
level of the MDA approach by adopting a high
abstraction level from the metamodel swxRTOS. In
addition, the PM-MDA method enables the integration of
the platform model to the MDA approach and illustrates
a simplified example of such integration.

4. DISCUSSION

Cheng (2010) proposes a model-driven method to
describe platform. This method is described with
action semantic meta language, including PIM
designing, mapping from PIM to PSM and mapping
from PSM to application program. However, such
work does not take into account the operating system as a
platform (Cheng 2010). A model-driven modelling
approach allowing describing an execution platform is
proposed in (Lafaye et al., 2011). Such modelling enables
a systematic approach to set platform aspects; however this
aprroach does not provide specific artifacts to model RTOS
execution resources. This related work does not provide
artifacts to produce a code that can be easily interfaced with
a platform based on an RTOS.

A metamodel for describing multitask computing
platforms is proposed in (Thomas et al., 2008). This
metamodel works like a language, describing the
Application Programming Interface (API) for such
platforms. This study proposed the UML Software
Resource Modeling (SRM)-sub-profile of MARTE-for
RTOS multitask platforms. The model of a platform is
considered a model of such interface and thus the
platform metamodel as a language for describing that
interface. MARTE is a UML profile designed for model
driven development of Real-Time and Embedded
Systems. However, modeling for a specific RTOS
requires adapting the MARTE profile to the modeling
conventions of that RTOS and, as a consequence, the
modeling will not always be straightforward.

The importance of this research lies in the proposition of

a metamodel for designing PMs as well as the proposition

of a method called PM-MDA for creating PMs that can be

easily applied to a specific platform, using similar

nomenclature and semantics of a specific RTOS.

5. CONCLUSION

Embedded software development benefits from the
use of the MDA approach due to the inherent complexity
of such systems. In RTOS embedded systems, software
needs to be integrated with the underlying hardware, so
that such integration causes embedded software hard to
be developed, analyzed and reused.

In this study, we propose the integration of platform
models for RTOS embedded systems into the MDA
approach. We illustrated our strategy with the PM-MDA
method, which helps the embedded software designer
create platform models and, then, integrate them into a
generic model transformation approach. For defining the
PM-MDA method, the swxRTOS metamodel was
proposed. It is used to represent PMs, enabling RTOS
services, attributes and the corresponding associated
hardware to be used and depicted in a generic way.

In our future work we intend to propose the mapping
at the meta-meta level, i.e., from an architectural meta-
meta model into MOF, so as to extend the use of the
swxRTOS metamodel to specify platform models for
other RTOS. Furthermore, we intend to develop an
automatic elaboration of the correspondence
specification concepts between MDA PIM, MDA PM
and MDA PSM metamodels for the model
transformation process.

6. REFERENCES

Agner, L.T.W., I.W. Soares, P.C. Stadzisz and J.M.

Simao, 2012. Model refinement in the model driven

architecture context. J. Comput. Sci., 8: 1205-1211.

DOI: 10.3844/jcssp.2012.1205
Baskaran, K. and G. Vijula, 2012. Multicore based open

loop motor controller embedded system for
permanent magnet direct current motor. Am. J.
Applied Sci., 9: 924-933.
DOI: 10.3844/ajassp.2012.924.933

Bendraou, R., J.M. Jezequel, M.P. Gervais and X. Blanc,
2010. A Comparison of six UML-based languages
for software process modeling. IEEE Trans. Softw.
Eng., 36: 662-675. DOI: 10.1109/TSE.2009.85

Cheng, F., 2010. MDA implementation based on patterns
and action semantics. Proceedings of the 3rd
International Conference on Information and
Computing (ICIC), Jun. 4-6, IEEE Xplore Press,
Wuxi, Jiang Su, pp: 25-28. DOI:
10.1109/ICIC.2010.100

Inali Wisniewski Soares et al. / Journal of Computer Science 8 (11) (2012) 1932-1939

1939 Science Publications

JCS

Chong, S., C.B. Wong, H. Jia, H. Pan and P. Moore et al.,
2011. Model driven system engineering for vehicle
system utilizing model driven architecture approach
and hardware-in-the-loop simulation. Proceedings of
the International Conference on Mechatronics and
Automation (ICMA), Aug. 7-10, IEEE Xplore Press,
Beijing, pp: 1451-1456. DOI:
10.1109/ICMA.2011.5985964

Dube, M.R. and S.K. Dixit, 2012. Modeling theories and
model transformation scenario for complex system
development. Int. J. Comput. Appli., 38: 11-18.
DOI: 10.5120/4698-6847

Hamous-Lhadj, A., A. Gherbi and J. Nandigam, 2009.
The impact of the model-driven approach to
software engineering on software engineering
education. Proceedings of the 6th International
Conference on Information Technology, Apr. 27-29.
Las Vegas, Nevada, pp: 719-724. DOI:
10.1109/ITNG.2009.160

Izquierdo, J.L., J. Frederic, C. Jordi and G.M. Jesus,
2012. API2MoL: Automating the building of
bridges between APIs and model-driven
engineering. Inform. Software Technol., 54: 257-
273. DOI: 10.1016/j.infsof.2011.09.006

Kessaci, Y., M. Mezmaz, N. Melab, E. Talbi and D.
Tuyttens, 2011. Parallel evolutionary algorithms for
energy aware scheduling. Int. Decision Syst. Large-
Scale Distributed Environ., 362: 75-100. DOI:
10.1007/978-3-642-21271-0_4

Lafaye, M., M. Gatti, D. Faura and L. Pautet, 2011.
Model driven early exploration of IMA execution
platform. Proceedings of the 30th IEEE/AIAA
Digital Avionics Systems Conference (DASC), Oct.
16-20, IEEE Xplore Press, Seattle, WA, pp: 7A2-1-
7A2-11. DOI: 10.1109/DASC.2011.6096113

Lecomte, S., S. Guillouard, C. Moy, P. Leray and P.
Soulard, 2011. A co-design methodology based on
model driven architecture for real time embedded
systems. Math. Comput. Modell., 53: 471-484. DOI:
10.1016/j.mcm.2010.03.035

Loniewski, G., A. Armesto and E. Insfran, 2011. An
Architecture-oriented model-driven requirements
engineering approach. Proceedings of the Model-
Driven Requirements Engineering Workshop
(MoDRE), Aug. 29-29, IEEE Xplore Press, Trento,
pp: 31-38. DOI: 10.1109/MoDRE.2011.6045364

Meertens, L.O., M.E. Iacob and L.J.M. Nieuwenhuis,

2010. Goal and model driven design of an

architecture for a care service platform. Proceedings

of the 2010 ACM Symposium on Applied

Computing, (ASAC’ 10), ACM, New York, USA.,

pp: 158-164. DOI: 10.1145/1774088.1774119

Omar, M., S.L. Syed-Abdullah and A. Yasin, 2011. The

impact of agile approach on software engineering

teams. Am. J. Econ. Bus. Admin., 3: 12-17. DOI:

10.3844/ajebasp.2011.12.17

OMG, 2010. Model driven architecture: The architecture

of choice for a changing world OMG.

Renaux, D.P.B., R.E. Goes and R.R. Linhares, 2010.

Performance characterization of real-time operating

systems for systems-on-silicon. Proceedings of the

12th Brazilian Workshop on Real-Time and

Embedded Systems, (BWRTES’ 10).

Selic, B., 2005. On software platforms, their modeling

with UML 2 and platform-independent design.

Proceedings of the 8th IEEE International

Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC’ 05), Seattle, USA.,

pp: 15-21. DOI: 10.1109/ISORC.2005.40

Selic, B., 2012. The less well known UML: A short user

guide. Proceedings of the 12th international

conference on Formal Methods for the Design of

Computer, Communication, and Software Systems,

(SFM’ 12), Springer-Verlag Berlin, Heidelberg, pp:

1-20. DOI: 10.1007/978-3-642-30982-3_1

Straeten, R.V.D., V. Jonckers and T. Mens, 2007. A

formal approach to model refactoring and model

refinement. Software Syst. Modell., 6: 139-162.

DOI: 10.1007/s10270-006-0025-9

Thomas, F., S. Gerard, J. Delatour and F. Terrier, 2008.

Software real-time resource modeling. Lecture

Notes Elect. Eng., 10: 169-182. DOI: 10.1007/978-

1-4020-8297-9_12

Troya, J. and A. Vallecillo, 2010. Towards a rewriting

logic semantics for ATL. Proceedings of the 3rd

International Conference on Theory and Practice of

Model Transformations, (ICMT’ 10), Springer-

Verlag Berlin, Heidelberg, pp: 230-244. DOI:

10.1007/978-3-642-13688-7_16

Tucci-Piergiovanni, S., C. Mraidha, E. Wozniak, A.

Lanusse and S. Gerard, 2011. A UML model-based

approach for replication assessment of AUTOSAR

safety-critical applications. Proceedings of the IEEE

10th International Conference on Trust, Security and

Privacy in Computing and Communications,

(TRUSTCOM), IEEE Computer Society

Washington, DC, USA., pp: 1176-1187. DOI:

10.1109/TrustCom.2011.159

