
Journal of Computer Science 8 (8): 1253-1262, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Rupa Mahanti, Computer Consultancy, Tata Consultancy Services, USA
1253

Factors Affecting the Choice of Software Life

Cycle Models in the Software Industry-An Empirical Study

1Rupa Mahanti, 2M.S. Neogi and 3Vandana Bhattacherjee
1Department of Computer Consultancy, Tata Consultancy Services, USA

2Department of I and M, Xavier Institute of Social Service Ranchi, India
3Department of CSE, Birla Institute of Technology, Ranchi, India

Abstract: Problem statement: The aim of this study was to present the results of the survey conducted
with software professionals in a few Indian software companies. Approach: The study initially presents
an overview of the common software life cycle models used in the software development. Results and
Conclusion: The survey results revealed that the level of understanding of the user requirements is the
most important fact in the choice of the life cycle model used in the software project. Project Complexity
is the second most important factor. Man-machine Interaction is the least important factor in the choice of
the life cycle model used in the software project. This study will be valuable for developers, analysts and
project leaders in software organizations. This study was carried out with some boundaries like the
number of companies, available resources, time constraints and so on.

Key words: Incremental model, cycle process, important factor, agile methodologies, software project,

employee strength, software development, software life cycle models

INTRODUCTION

 Large software systems, developed over several
years, are the backbone of industries such as banking,
retail, transportation, defense, healthcare and
telecommunications. In other words, software has
become an integral part of our life.
 Developing software, which is within cost and time
schedule, fulfils customer requirements and is reliable,
seems to be the ultimate challenge for today’s software
professionals and calls for a systematic approach to
software development. Once upon a time, software
development consisted of a programmer writing code to
solve a problem or automate a procedure. In those days,
whenever a developer was tasked to perform
programming or coding, he immediately would jump to
it, start programming with or without full knowledge of
what the system would look like, how the features were
arranged. This was feasible because systems were very
simple. However, nowadays, systems are so big and
complex that teams of architects, analysts,
programmers, testers and users must work together to
create the millions of lines of custom-written code that
drive our enterprises. In the absence of a proper
software development plan, the developer is full of
ideas, he/she wants to implement them all, but tends to
forget about them because other features need to be
prioritized. To manage this, a number of System
Development Life Cycle (SDLC) models have been
created. The advantage of adhering to a life cycle

model is that it follows a systematic and discipline
manner. It saves time, features of the system are well
documented and above all, there is proper
management and execution of plans. Without a life
cycle model in place, the probability of chaos and
project failure would have been very high (Russell,
2002; Ghezzi et al., 2002).
 A lot of research has been reported on the evolution
of software life cycle models. Agile methodologies are
emerging and gaining popularity in industry (Manhart
and Schneider, 2004; Cockburn and Highsmith, 2001;
Coram and Bohner, 2005; Huo et al., 2004; Boehm,
2002; Highsmith, 2002, Kadary et al., 1989; Konito et
al., 2004). Research has been reported regarding the
suitability of different life cycle models and comparison
of different software life cycle models (Davis et al.,
1988). Some research has been reported on the
relationship between project categories and life cycle
models (Archibald and Vladmir, 2003; 2004; Archibald
et al., 2003; Archibald, 2004b; Desaulniers et al.,
2001). However, no empirical study has been reported
regarding the importance of the factors affecting the
choice of software life cycle models in the software
industry. This study begins with an overview of the
common software life cycle models used in the
software development. This is followed by the research
methodology. A survey was conducted in the Indian
software organizations to study the factors affecting the

J. Computer Sci., 8 (8): 1253-1262, 2012

1254

choice of software life cycle models in the Indian
software industry. This is followed by the presentation
of the results the survey.
 However, there is no universal life cycle model,
which is considered adequate in all situations in the
development environment . Plan driven approaches like
the waterfall model assume that requirements are static.
Other iterative methods like spiral model and evolutionary
model count on change. Agile methodologies consider
software development as an empirical process and that
people play the most important role in it. It has also been
observed that agile practices do not compromise the
quality of software products (Huo et al., 2004). A detailed
description of traditional and agile methodologies can be
found in literature (Brooks, 1995; McConnell, 1996;
Szyperski, 1998; Pressman, 2004; Ghezzi et al., 2002;
Jalote, 2005; Beck, 2000; Cockburn, 2001; Jeffries et al.,
2000; Martin, 1991; Salo, 2004; Siponen et al., 2005;
Scacchi, 2002; Neogi et al., 2007).

Overview of software life cycle models: The
fundamental principle of software engineering is to
design software products that minimize the intellectual
distance between the problem and solution. Today
methodical approaches to software design have evolved
and design notations have proliferated. Many steps are
involved in the successful development and deployment
of computer software. Taken together, all these steps
are referred to as the software life cycle.
 From the IEEE Standard Glossary of Software
Engineering Terminology, 1983, software life cycle is
defined as follows.
 ‘The period of time that starts when a software
product is conceived and ends when the product is no
longer available for use. The software life-cycle typically
includes a requirements phase, design phase,
implementation phase, test phase, installation and
checkout phase, operation and maintenance phase and
sometimes, retirement phase’
 The purposes of designing and documenting the
overall project life cycle process for each project
category are to:

• Enable all persons concerned with creating,

planning and executing projects to understand the
process to be followed during the life of the project

• Capture the best experience within the organization
so that the life cycle process can be
improved continually and duplicated on future
projects

• Enable all the project roles and responsibilities and
the project planning, estimating, scheduling,

monitoring and control methods and tools, to be
appropriately related to the overall project life
cycle management process (Archibald, 2003;
Archibald, 2004a)

 Life cycle models for software development provide
the basic guidelines for developing software using
engineering technique. The first task of a software life
cycle model is to determine the sequence of stages in
software development and evolution and to establish the
transition criteria for progression from one stage to the
next. There are several life cycle models and many
companies adopt their own models, but all have very
similar patterns. Different life cycle models are the Code
and Fix model, Classical Waterfall model, Iterative
Waterfall model, Incremental model, Throwaway
Prototyping Model, Evolutionary Prototyping model,
Spiral model, Agile model, Extreme programming:

• Code and Fix Model: In the beginning of the

software era, software process models included
simply writing some code and trying to fix the
problem. This is called code and fix model. It is a
two-phase model. The first phase is to write the code
and next phase is to fix it (Connell et al., 1993)

• Classical Waterfall Model: The Classical Waterfall
Model was popularized in 1970 and is the
backbone of many other software life cycle
models. This process model is structured as a
cascade of phases, where output of one phase acts
as the input to the next phase. The classical
waterfall model is an unrealistic one since there is
no provision of detecting and rectifying the error at
any stage of the life cycle. However in practical
developments, there is always chance of errors, due
to various reasons, in almost every phase of the life
cycle. Therefore in any practical software
development work, it is not possible to strictly
follow the classical waterfall model (Royce, 1987)

• Iterative Waterfall Model: Iterative waterfall model
suggests feedback paths in the classical waterfall
model from every phase to its preceding phases.
It allow for the correction of the errors
committed during a phase that are detected in
later phases. After detecting the error in later
phases, it would be necessary not only to rework
the design, but also to appropriately redo the
coding and the system testing, thus incurring
higher cost (Ghezzi et al., 2002)

• V-Shaped Model: Like the waterfall model, the V-
Shaped model is sequential path of execution of
processes i.e., linear in nature. Each phase must be
completed before the next phase starts. However,

J. Computer Sci., 8 (8): 1253-1262, 2012

1255

emphasis on testing in this model is more than that
in the waterfall model (Raymond, 2005)

• Throwaway prototyping model: It was advocated
by Brooks. It is useful in in situations where
requirements and user’s needs are unclear or poorly
specified. The approach is to construct a quick and
dirty partial implementation of the system during
or before the requirements phase (Brooks, 1995;
Gomma and Scott, 1981; Jalote, 2005)

• Evolutionary prototyping model: This is kind of
mix of Waterfall model and prototyping.
Presuppose gradual refinement of the prototype
until a usable product emerges. Might be suitable
in projects where the main problem is user
interface requirements, but internal architecture is
relatively well established and static (Jalote, 2005)

• Rapid Application Development (RAD): Rapid
Application Development model was proposed in
1980 by IBM. This model is based on an evolving
prototype that is not thrown away. . Rapid
Application Development model is the first model,
which emphasizes a short development cycle e.g.,
60 to 90 days. It is a “high-speed” adaptation of the
waterfall model, in which rapid development is
achieved by using component based construction
approach (Butler, 1994; Martin, 1991)

• Unified Process Model: During late 1980’s and
early 1990’s, James Rumbaugh, Grady Booch and
Ivar Jacobson developed the Unified Process, a
framework, which is “use-case driven,
architecture-centric, iterative and incremental”
(Jacobson et al., 1999). The Unified Process
Model consists of five phases

• Inception phase incorporates both customer
communication and planning activities and
emphasizes on refinement and development of use-
cases as primary model

• Elaboration phase consist of customer
communication and design activity

• Construction phase produces an implementation
model that translates design classes produced
during elaboration phase into software components
that will be built to realize the system.

• Transition phase transfers the software from the
developer to the end-user for beta testing and
acceptance.

• Production phase in which on-going use of
software is monitored and infrastructure support is
provided (Jacobson et al., 1999)

• Incremental Model: It is decomposition of a large
development effort into a succession of smaller

components. The life cycle is also referred to as the
successive versions or evolutionary model.
Incremental model is an intuitive approach to the
waterfall model. Multiple development cycles take
place here, making the life cycle a “multi-
waterfall” cycle. Cycles are divided up into
smaller, more easily managed iterations. Each
iteration passes through the requirements, design,
implementation and testing phases. A working
version of software is produced during the first
iteration, so you have working software early on
during the software life cycle. Subsequent
iterations build on the initial software produced
during the first iteration (Jalote, 2005; Pressman,
2004; McDermid, 1993)

• Spiral Model: Boehm proposed the Spiral model in
1988 (Boehm, 1988). It involves repetition of the
same set of life-cycle phases such as plan, develop,
build and evaluate until development is complete.
The main emphasis is given on risk analysis. It
encounters almost all the different types of risks
such as cost overruns, change in requirements, loss
of intelligent project personnel, unavailability of
necessary hardware, competition from other
software developers, technological drawbacks
which obsolete the project and many more (Boehm
et al., 1998; Boehm et al., 2000; Boehm and
Hansen, 2001)

• Agile Software Development: In 2001, Kent Beck
and 16 other noted software developers proposed
an agile view of process. Agile software
engineering combines a philosophy and a set of
development guidelines. The philosophy
encourages customer satisfaction and early
incremental delivery of software, small, highly
motivated project teams, informal methods,
minimal software engineering work products and
overall development simplicity. The development
guidelines stress on delivery over analysis and
design and active and continuous communication
between developers and customers (Beck, 2000).
The term ‘agile’ refers to a philosophy of software
development. Extreme Programming, Scrum,
Crystal, Adaptive Software Development (ASD)
are agile methodologies (Boehm, 2002; Cockburn,
2001; Highsmith, 2002)

Research methodology: Research methodology can be
viewed as the process taken to accomplish the key
objectives of the research undertaken. The objectives of
this research project were:

J. Computer Sci., 8 (8): 1253-1262, 2012

1256

• To study the awareness/importance of software life
cycle models in the Indian software Industry

• To identify the factors affecting the choice of the
software life cycle models in the software/IT
industry

• To determine the importance of factors affecting
the choice of the software life cycle models

 Authors have undertaken a survey-based approach
to assess use software life cycle models in Indian
Software Industry. In a survey based approach the usual
proceeding to gather information is the usage of
questionnaires or interviews. These are applied to a
representative sample group and the outcomes are then
analyzed. The aim is to derive conclusions that are
descriptive, exploratory or explanatory. With the use of
generalization the result from the sample is mapped to
the whole group. It is, however, not possible to
manipulate or control the samples. Nevertheless it is
practicable to compare the result with similar outcomes
of other surveys. Both qualitative as well as quantitative
data can be derived from this strategy. Which one it is
depends on the data that is being collected through the
questionnaires or interviews and whether statistical
analysis methods are applicable or not. Questionnaire
survey methodology was preferred for this research
since it is a reliable and economical method for data
collection. In addition to the questionnaires, telephonic
interviews were conducted to understand the relation
between the factors affecting the choice of software
life cycle models and the each individual software
life cycle model.
 Questionnaire survey methodology was preferred
for this research since it is a reliable and economical
method for data collection. An email survey was used
to gather survey data. The advantages of the email
survey approach to data collection are (Neuman, 2003;
Sarantakos, 1998):

• Inexpensive
• Results are produced quickly
• Questionnaires are completed in the respondents’

convenience
• Anonymity is greatly assured; and
• Respondents are at liberty to provide objective

views on sensitive issues,

The questionnaire used in this study consisted of
three parts:

• The software personnel information
• The background of the company
• The software process information

Table 1: Survey questionnaire
Notation Factors
F1 Nature/type of project
F2 Project size
F3 Project duration
F4 Project complexity
F5 Level and type of expected risk
F6 Level of understanding of user requirements
F7 Level of understanding of the application area
F8 Customer involvement
F9 Experience of developers
F10 Team size
F11 Man-machine interaction
F12 Availability of tools and technology
F13 Versions of the product
F14 Level of reliability required

 The first part dealt with the software personnel
information such as experience and his/her designation.
The second part was primarily aimed to understand
some of the fundamental issues such as the size of the
company and service areas. Third part of the
questionnaire dealt with understanding the type of
projects, processes and life cycle models. 14 factors
affecting the choice of software life cycle models were
derived mainly from the literature (Pressman, 2004;
Ghezzi et al., 2002; Jalote, 2005; Martin, 1991; Archibald
and Vladmir, 2004) and discussions with software quality
professionals as shown in Table 1 below.
 All factors were ranked on a five-point scale (1 =
not very important, 2 = not important, 3 = important, 4
= very important and 5 = critical). The list of companies
was obtained from National Association of Software
and Services Companies (NASSCOM) database as well
as using search engines (www.google.com). In this
study, a total of 100 questionnaires were sent by email
to software companies. The response rate from the
companies was 51% (i.e., 51companies).

Results of the empirical investigation: The service
areas of the companies participating in the survey
comprised of Internet, software consultancy and
services, data warehousing, IT enabled services, data
mining, embedded technology, training and education,
advanced databases, software vendor,
telecommunication, ERP, mainframe technology,
engineering design services and transportation sector
services. 60% of the companies participating in the
survey had multiple service areas. The rest 40% had
only one service area. 50% of the companies had
software consultancy and services as one of their
service area. As shown in Fig. 1, 52% of the
participants of the Software Development Life Cycle
model survey were big companies with more than 1000
employees; 18% of the respondent hailed from
companies with employee strength between 501 and
1000; 12% of the respondents were companies with
301-500 employees. 12% of the respondents were

J. Computer Sci., 8 (8): 1253-1262, 2012

1257

companies with 301-500 employees. The remaining 6%
of the companies had employee strength of less than
100. Figure 2 shows the total work experience of the
participants of survey. Figure 3 shows the designations
of the individuals participating in the survey. All the
respondents had worked in more than multiple projects
in different technologies and business domains in the

software industry. 50% of the respondents had worked
on Commercial software projects; 30% had worked on
open source software projects and web applications
respectively; 25% had worked on ERP projects; 15%
had worked on mission critical software projects; 10%
of the respondents had worked on embedded
software projects as shown in Table 2.

Fig. 1: Distribution of the employee strength of the companies

Fig. 2: Percentage distribution of experience of employees participating in the study

Fig. 3: Percentage distribution of employees participating in the study

J. Computer Sci., 8 (8): 1253-1262, 2012

1258

Table 2: Different types of projects tackled by the respondents

Different types of projects Percentage of respondents

Commercial software projects 50
Open source software projects 30
Web application projects 30
ERP projects 25
Mission critical software projects 15
Embedded software projects 10

 Figure 4 shows the usage of the software life models.
As shown in Fig. 4: Agile methodologies have a high
popularity with 40% of the projects using Agile
methodologies. Classical Waterfall Model and Code and
Fix Model were each used by 2% of projects. Classical
Waterfall Model and Code and Fix Model were each
used by 2% of projects. The survey revealed that
software professionals were most comfortable working
with iterative life cycle model because it was easy to
follow. In terms of rigidity of entry-exit criteria of phases
in life cycle models the Classical Waterfall Model was
most rigid with a rating of 5 the scale being 1-5 with 1
being least rigid and 5 being most rigid. In all the other
models, the rigidity of entry-exit criteria of phases in life
cycle models was less rigid with a rating of 3.
 The participants were also asked to prioritize the 14
key attributes which are important in the software
development process. These attributes were derived
from the literature (Pressman, 2004; Ghezzi et al., 2002;
Jalote, 2005) and through interactions with
professionals in the software industry. The participants
were asked to assign a rank in the range of 1-14 with 1
being the most important and 13 being the least). The
average scores are as follows:

• Functionality-1.4
• Correctness, reliability-1.6
• Consistency-1.8
• Cost, timeliness-2
• Efficiency-2.4
• Integrity-2.5
• Maintainability-3
• Usability-3.2
• Complexity, reusability-4
• Portability-6

 The respondents were asked to rate each factor on
a Likert scale of 1-5 (1 = least important and 5 =
crucial). The scores were added together and then
divided by the number of observations per factor to
determine the mean score of each factor. The results of

the analysis showing the mean scores and standard
deviation of each essential factor affecting the choice of
software life cycle models is shown in Table 3. Fig. 5:
shows the mean score of each factor, the higher the
score, the greater the importance of the factor. F6 has
the highest score. F1, F4, F6 and F8 have mean scores
of more than 4. Factor F5 has a mean score of 4. It was
observed from the analysis that the following factors
were critical to choice of software life cycle models
within software industry:

Factor 1 - Nature of Project
Factor 4 - Project Complexity
Factor 5 - Level and type of expected risk
Factor 6 - Level of understanding of user requirements
Factor 8 - Customer Involvement

5. Results of the telephonic interviews: Telephonic
interviews were conducted with project managers with
approximately 10 years of software development and
project management experience to understand the
relation between the factors affecting the choice of
software life cycle models and the each individual
software life cycle model. Classical Waterfall Model is
suitable for complicated mainframe projects where
requirements are clear and stable, the team members are
moderately experienced and have a fairly good
understanding of the application area, customer
involvement is low, project risk is low and high
software reliability is required. Iterative Waterfall
Model is suitable for large projects where the
requirements are not very clear and customer is
involved during the development. RAD is apt for small
or medium sized less complex projects where the
project duration was short, team is small, high level of
reliability is not required, active customer involvement
is required and developers are highly skilled with good
knowledge of CASE tools, DBMS, GUI tools, Object
Oriented Techniques as well as the application area.
The V Process Model works well with medium sized,
moderately complex projects with moderate risk
involved and the customer is available for giving
feedback. The Unified Process model works for small,
medium as well as large projects with varied degrees of
technical complexity, where changing requirements are
involved and considerable risk is involved. The Unified
Process Model works well with all team sizes. Agile
methodologies are apposite for small to medium sized
projects where requirements are changing and unstable,

J. Computer Sci., 8 (8): 1253-1262, 2012

1259

high reliability is not required, team is small,
developers are experienced and customer involvement
and interaction is high. Agile is good at dealing with
project risks. Evolutionary prototyping model is
appropriate for projects where the project deadlines are
not rigid, requirements are not well understood, level of
reliability required is moderate, project risk is high, the
developers are skilled and experienced, customer
involvement is necessary and the system is implemented
via number of versions. Throwaway Prototyping Model
is suitable for projects where the project deadlines are not
rigid, requirements are not well understood, level of
reliability required is moderate, project risk is high, the

developers are skilled and experienced and customer
involvement is necessary. Code and fix model works
with very small simple projects where the requirements
are well understood, risks are minimum or absent and
low level of reliability is required. Incremental models
are suitable for large event driven projects, where
requirements are not clearly understood, project risk is
high. Spiral Model is apt for large complex real time
application projects (mostly in house projects) requiring
high reliability, where the requirements are unstable and
not well understood and project risk is high, where their no
restriction on the team size and the project manager is
highly experienced and project deadlines are not rigid.

Fig. 4: Usage of software life cycle models

Fig. 5: Scores of each factor from survey results

J. Computer Sci., 8 (8): 1253-1262, 2012

1260

Table 3: Factor affecting the choice of software life cycle models
Factor notation Factor name Mean Standard deviation
F1 Nature of project 4.23529 0.70189
F2 Project size 3.58824 0.87026
F3 Project duration 3.76471 0.83137
F4 Project complexity 4.35294 0.60634
F5 Level and type of expected risk 4.00000 0.93541
F6 Level of understanding of user requirements 4.41177 0.71229
F7 Level of understanding of the application area 3.88235 0.99262
F8 Customer Involvement 4.05882 0.74755
F9 Experience of developers 3.64706 0.99632
F10 Team size 3.00000 0.79057
F11 Man-machine interaction 1.64706 0.78591
F12 Availability of tools and technology 2.88235 0.99262
F13 Versions of the product 2.11765 0.85749
F14 Level of reliability required 3.88235 0.70189

CONCLUSION

 This article presents the results of a survey and
telephonic interviews carried out in the Indian software
industry regarding software life cycle models. The
study presents the factors which are critical to choice of
software life cycle models within software industry and
the relation between the factors and the software life
cycle models. A total of 14 factors were considered in
the study. The survey revealed that Agile methodologies
are the most popular models in the Indian software
industry. This study was carried out with some boundaries
such as the number of companies, available resources,
time constraints and so on.
 Different positions of the respondents may have
different opinions. The limited sample size of the
current study, calls for a survey on a larger scale for
greater validity of the findings from this research.
Because of limited budget and time constraints, an
email survey was carried out for the companies.
According to Gillham (2000), the scaled questions
have disadvantages because respondents often do not
use the whole scale, whatever response they tick, we
do not know why a particular response was chosen.
Semi-structured interviews with people at different
levels of software development expertise are
currently being conducted to obtain a deeper
understanding of the obstacle and challenges in
software development life cycles in the software
industry. This research is a part of ongoing doctoral
research project on software development life cycle
models (Neogi et al., 2007). A part of this research
involves the evolution of a new software
development life cycle model to ensure better quality
software (Bhattacherjee et al., 2008, Bhattacherjee et
al., 2009a; 2009b).

REFERENCES

Archibald, D.R. and I.V. Voropaev, 2003.

Commonalities and differences in project
management around the world: A survey of project
categories and life cycle models.

Archibald, D.R. and I.V. Voropaev, 2004. Project
categories and life cycle models: Report on the 2003
IPMA Global Survey. Proceedings of the 18th
IPMA World Congress on Project Management,
Jun. 18-21, Budapest, Hungary, pp: 1-6.

Archibald, D.R., 2003. Life cycle models for high-
technology projects-applying systems thinking to
project.

Archibald, D.R., 2004a. Life cycle models for high-
technology projects. Proceeding of the 4th
International Project Management Seminar-PMI-
SP Chapter, Dec. 9-10, Brazil, pp: 1-10.

Archibald, D.R., 2004b. State of the art of project
management: 2004. Proceedings of the
International Seminar on Project Management,
Dec. 9-10, Sao Paulo, Brazil.

Beck, K., 2000. Extreme Programming Explained:
Embrace Change. 2nd Edn., Addison-Wesley
Professional, Reading, ISBN-10: 0201616416,
pp: 190.

Bhattacherjee, V., M.S. Neogi and R. Mahanti, 2009a.
Are our students prepared for testing based
software development. Proceedings of the 22nd
Conference on Software Engineering Education
and Training, Feb. 17-20, IEEE Xplore Press,
Hyderabad andhra Pradesh, pp: 210-211. DOI:
10.1109/CSEET.2009.57

Bhattacherjee, V., M.S. Neogi and R. Mahanti, 2009b.
A Process model for software development
amongst students. Int. J. Rece. Trend. Eng., 1: 69-
74.

J. Computer Sci., 8 (8): 1253-1262, 2012

1261

Bhattacherjee, V., N.S. Madhumita and M. Rupa, 2008.
Software development approach of students: An
evaluation. Proceedings of National Conference on
Methods and Models in Computing, (MMC’ 08),
New Delhi, pp: 21-29.

Boehm, B. and W.J. Hansen, 2001. The spiral model as
a tool for evolutionary acquisition. Software
Engineering Institute.

Boehm, B., 2000. Spiral development: Experience,
principles and refinements. Carnegie Mellon
University.

Boehm, B., 2002. Get Ready for Agile Methods, with
care. IEEE Comput., 35: 64-69. DOI:
10.1109/2.976920

Boehm, B., A. Egyed, J. Kwan, D. Port and A. Shah et
al., 1998. Using the WinWin Spiral Model: A Case
Study. IEEE Comput., 31: 33-44. DOI:
10.1109/2.689675

Boehm, B.W., 1988. A spiral model of software
development and enhancement. IEEE Comput., 21:
61-72. DOI: 10.1109/2.59

Brooks, Jr., F.P., 1995. The Mythical Man-Month. 1st
Edn., Addison-Wesley Professional, ISBN-10:
0201835959, pp: 336.

Butler, J., 1994. Rapid application development in
action, managing system development. Applied
Comput. Res., 14: 6-8.

Cockburn, A. and J. Highsmith, 2001. Agile software
development, the people factor. IEEE Comput., 34:
131-133. DOI: 10.1109/2.963450

Cockburn, A., 2001. Agile Software Development. 1st
Edn., Addison-Wesley Professional, ISBN-10:
0201699699, pp: 304.

Connell, M.C., J.J. Carta and D.M. Baer, 1993.
Programming generalization of in-class transition
skills: Teaching preschoolers with developmental
delays to self-assess and recruit contingent teacher
praise. J. Applied Behav. Anal., 26: 345-352. DOI:
10.1901/jaba.1993.26-345

Coram, M. and S. Bohner, 2005. The impact of agile
methods on software project management.
Proceedings of the 12th IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems, Apr. 4-7, IEEE Xplore
Press, pp: 363-370. DOI: 10.1109/ECBS.2005.68

Davis, A.M., E.H. Bersoff and E.R. Comer, 1988. A
strategy for comparing alternative software
development life cycle models. IEEE Trans. Softw.
Eng., 14: 1453-1461. DOI: 10.1109/32.6190

Desaulniers, H., A. Douglas and J. Robert, 2001.
Matching software development life cycles to the
project environment. Proceedings of the Project
Management Institute Annual Seminars and
Symposium, Nashville, TN. Newtown Square, PA:
Project Management Institute.

Ghezzi, C., M. Jazayeri and D. Mandrioli, 2002.
Fundamentals of Software Engineering. 2nd Edn.,
Prentice-Hall, India, ISBN-10: 0133056996, pp:
604.

Gillham, B., 2000. Developing a Questionnaire. 1st
Edn., Continuum International Publishing Group,
London, ISBN-10: 0826447953, pp: 93.

Gomma, H. and D.B.H. Scott, 1981. Prototyping as a
tool in the specification of user requirements.
Proceedings of the 5th International Conference on
Software Engineering, (SE’ 81), IEEE Press
Piscataway, NJ, USA., pp: 333-341.

Highsmith, J., 2002. Agile Software Development
Ecosystems. 1st Edn., Addison-Wesley, Boston,
ISBN-10: 0201760436, pp: 448.

Huo, M., J. Verner, L. Zhu and M.A. Babar, 2004.
Software quality and agile methods, Proceedings of
the 28th Annual International Computer Software
and Applications Conference, Sept. 28-30, IEEE
Xplore Press, pp: 520-525. DOI:
10.1109/CMPSAC.2004.1342889

Jacobson, I., G. Booch and J. Rumbaugh, 1999. The
Unified Software Development Process. 1st Edn.,
Addison-Wesley Professional, ISBN-10:
0201571692, pp: 512.

Jalote, P., 2005. An Integrated Approach to Software
Engineering. 3rd Edn., Springer, ISBN-10:
038720881X, pp: 580.

Jeffries, R., A. Anderson and C. Hendrickson, 2000.
Extreme Programming Installed. 1st Edn.,
Addison-Wesley Professional, ISBN-10:
0201708426, pp: 288.

Kadary, V., D. Even-Tsur, N. Halperin and S. Koenig,
1989. Software life cycle models-industrial
implications. Proceedings of the 4rth Israel
Conference on Computer Systems and Software
Engineering, Jun. 5-6, IEEE Xplore Press, Herzlia,
pp: 98-103. DOI: 10.1109/ICCSSE.1989.72722

Konito, J., M. Hoglund, J. Ryden and P. Abrahamson,
2004. Managing commitments and risks:
challenges in distributed agile development.
Proceeding of the 26th International Conference on
Software Engineering, May, 23-28, IEEE Xplore
Press, pp: 732-733. DOI:
10.1109/ICSE.2004.1317510

J. Computer Sci., 8 (8): 1253-1262, 2012

1262

Manhart, P. and K. Schneider, 2004. Breaking the Ice
for agile development of embedded software: An
industry experience report. Proceedings of the 26th
International Conference on Software Engineering,
May 23-28, IEEE Xplore Press, pp: 378-386. DOI:
10.1109/ICSE.2004.1317460

Martin, J., 1991. Rapid Application Development. 3rd
Edn., Macmillan Coll Div, ISBN-10: 0023767758,
pp: 736.

McConnell, S., 1996. Rapid Development: Taming
Wild Software Schedules. 1st Edn., Microsoft
Press, Redmond, Washington, ISBN-10:
1556159005, pp: 680.

McDermid, J., 1993. Software Engineer’s Reference
Book. 1st Edn., CRC Press, London, ISBN-10:
0849377668, pp: 1015.

Neogi, M.S., R. Mahanti and V. Bhattacherjee, 2007.
Evolution of software process models. Proceedings
of the National Conference on Technological
Advances and Emerging Societal Implications,
(TAESI’ 07), NIT Rourkela, pp: 402-415.

Neuman, W.L., 2002. Social Research Methods:
Qualitative and Quantitative Approaches. 5th Edn.
Allyn and Bacon, ISBN-10: 0205353118, pp: 592.

Pressman, R., 2004. Software Engineering: A
Practitioner’s Approach. 6th Edn., McGraw Hill,
ISBN-10: 007301933X, pp: 880.

Raymond, L., 2005. Software development life cycle
models.

Royce, W.W., 1987. Managing the development of
large software systems: Concepts and techniques.
Proceedings of the 9th International Conference on
Software Engineering, (SE’ 87), IEEE Computer
Society Press Los Alamitos, CA, USA., pp: 328-
338.

Russell, K., 2002. QuickStudy: System development
life cycle. Computer World.

Salo, O., 2004. Improving software process in agile
software development projects: Results from two
XP case studies. Proceedings of the 30th
EUROMICRO Conference, Aug. 31-Sep. 03, pp:
310-317.

Sarantakos, S., 1998. Social Research. 2nd Edn.,
Macmillan, London.

Scacchi, W., 2002. Process models in software
engineering. Encyclopedia Software Eng. DOI:
10.1002/0471028959.sof250

Siponen, M., R. Baskerville and T. Kuivalainen, 2005.
Integrating security into agile development
methods. Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, Jan.
03-06, IEEE Xplore Press, pp: 185a-185a. DOI:
10.1109/HICSS.2005.329

Szyperski, C., 1998. Component Software: Beyond
Object-Oriented Programming. 1st Edn., Addison-
Wesley, ISBN-10: 0201178885, pp: 411.

