Journal of Computer Science 8 (8): 1205-1211, 2012
ISSN 1549-3636
© 2012 Science Publications

Model Refinement in the Model Driven Architecture Context

12 uciane Telinski Wiedermann Agner,
Y3nali Wisniewski SoaresPaulo Cezar Stadzisz ahtkan Marcelo Simao
'Graduate School of Electrical Engineering and Caep8cience,
Federal University of Technology Parana (UTFPR),
Av. 7 de Setembro, 3165, 80.230-901, Curitiba, Rar8razil
*Department of Computer Science,
Faculty of Computer Science, Mid-West State Unitg($JNICENTRO),
Rua Padre Salvador, 875, 85.015-430, Guarapuaran&,arazil

Abstract: Problem statement: Model Driven Architecture (MDA) is a software dewpment
approach based on the design and the transformatiorodels. In MDA, models are systematically
translated to other models and to a source codaleMimansformation plays a key role in MDA.
Several model transformation languages have beenched lately, aiming to facilitate the
translation of input models to output models. Thepebyment of such languages in practical
contexts has succeed, although quite often thomputges cannot be directly applied to a particular
type of model transformation, called refinemefpproach: This study provides a general overview
on model refinement and investigates two approadoeesmodel refinement based on Atlas
Transformation Language (ATL) referred to as: Riefinmode and module superimposition. ATL is
a widely adopted language for solving model tramsftion problems in the MDA approach.
Results: This study presents the comparative results obdafnem the analysis of the Refining
Mode and the Module Superimposition approaches, hasiping their application benefits.
Conclusion: The increasing use of MDA for the design of softevaystems empowered researches
on how developers may benefit from approaches tfeform model refinement. The main
advantages achieved with the use of the Module i8upesition technique are maintainability and
reusability improvement, obtained through modulmposition and rule superimposition. In its turn,
the Refining Mode stands out for its ease of use.

Key words: Model transformation, model refinement, refiningdepmodule superimposition

INTRODUCTION particularities of a software platform, while lessstract
_) models are closer to such specifications. In aolaljti
Model Driven Architecture (MDA) promotes the jmpiementations can fully or partially derive frateir
use of models as the main artifacts through athsoke models through the applicaton of model
development stages: System specification, projeCttTansformations (Singh and Sood, 2009). According t

implementation and tests (Touegi al., 2009). MDA . :
roposal consists in reducing the semantic distancthe MDA approach, software design comprises the
brop 9 Following stages (Touzt al., 2009):

between the business domain and the implementation
platform domain. In order to achieve that, highelev « specification of a PIM - Platform Independent Model
abstraction models focus on protecting softwaréesys . specification of a PM-Platform Model
developers from the complexity of platforms. « Selection of a specific platform for the system

In the MDA approach a model is used fore Transformation of a PIM into a PSM - Platform
generating another model and those models may be Specific Model, based on a PM
either in the same or in different abstraction Isve « Transformation of the PSM into a software system
More abstract models are more distant from the code

Corresponding Author: Luciane Telinski Wiedermann Agner, Graduate Schb&lectrical Engineering and Computer Science,
Federal University of Technology Parana (UTFPRY), A de Setembro, 3165, 80.230-901, Curitiba,
Parand, Brazil Tel: + 55 41 3310 4759
1205

J. Computer <ci., 8 (8): 1205-1211, 2012

Platform-independent models represent the systemastablished by the Institut National de Recherche e
functionalities and are developed with the aid of alnformatique et en Automatique (INRIA) in resportse
modeling language, such as Unified Modelinga request from the Object Management Group (OMG)
Language (UML). UML is a general purpose modelingto propose a model transformation language that is
language applicable across different domainsCompatible with the QVT standard
Currently, UML is the standard modeling language fo (Queries/Views/Transformations) (Amsetlal., 2011).
software design and, therefore, plays a key role in In the ATL context, the definition of models is
MDA. A platform can be defined as a set of hardwargP€rformed according to their metamodels, as presdent
or software mechanisms that enable the execution df Fig: 1. In this way, transformation rules clgepbint
software applications. In its turn, a platform mide towards how the source metamodel concepts are

. . apped in the target metamodel concepts. A
provides a set of technical concepts that represer‘ﬁpansformation from a source Model (Ma) into a eirg

components and services of a concrete platform éDUbModeI (Mb) is therefore conducted by a transforomati

and _Il?r'lx't’ 2912)'f ¢ L il id definition (mma2mmb.atl), based on ATL construbts.
e notion of transtormation Is an essential isaue its turn, the transformation definition is also adsl

the MDA approach. The model transformation Scenari(i‘]ouaultet al., 2008). Then, the source and target

are presented in (Dube and Dixit, 2012). 54els and the transformation definition must comfo
Transformation between models can be defined as t% their metamodels (MMa, MMb and ATL

translation of a model from a higher abstractiorelé¢o respectively). In addition, the metamodels must

a lower abstraction level, based on a set of glearl : :

) : ' . conform to a meta-metamodel, in this case the Meta
defined ruIes_(Smgh and Sood, 2009). The PIM 'SObject Facility (MOF) (Dube and Dixit, 2012).
:rans::orme?_ mtob a PSthM bgsmea;r;]s of ab' m(z_del ATL is a hybrid, deeply expressive language that
bra?s ormaé)olrl\y,l elgg " € dotai ef combina .'?nmakes use of declarative and imperative constructs.
petween FIV - an € daetails o a SPECIlC hociarative constructs are clear and accurate, rtrare
implementation platform, by means of the Platiormggan ysed for writing transformations. Such cacts
Model (PM). allow expressing associations between the sourckimo

This study focuses on transformations of PIM
. . e elements and the target model elements by meaas of
models into PSM models (PIM-into-PSM). Within the arrangement of rules. Additionally, imperative

scope of this study, transformation is a refinement .,qirycts enable the simplified specification of
models that incorporates details of a specificfpiat complex problems (Tolosa al., 2011).

to the source model (PIM), being both PIM and PSM A ATL transformation is designed according to

models based on the UML metamodel. In @ modejne foliowing elements: header, import, helpers and
refinement most elements from the source model JPIMy,4nsformation rules (Jouaut al., 2008). Helpers and

are copied to the target model (PSM), while otherruIeS are constructs used for specifying the

elements must be changed in order to Incorpor"’u?ransformation functionalities. The term “execution

latform-specific aspects. According to Briaet al. " :
?2009) “mgdel-driver?development p?actices relytlom mode” refers to the act of transforming models. réhe
are two execution modes for ATL modules: normal

stepwise refinement of analysis models imo(default) mode and refining mode
increasingly detailed design models, all the wawmlo The header section (mandatory) defines the

to implementation”. ;
gansformatmn module name and specifies the source

Under this perspective, several languages wer ; ;
proposed so as to define and execute model—to—modgpd target models. In their turn, such models t

(M2M) transformations. One of the most prominentas.SOCiated with their respective mefcamodels. Figure
among these languages is called Atlas Transfornnatiob”ng|S an example of a transformation madule header

o named PIM2PSM.atl. Such header makes use of the
Language (ATL) (Tolosat al., 2011). ATL is widely ;
recognized as a solution for the development of ehod standard execution mode, set through the keyword

: . “from” and defines the PIM as source model (IN)eTh
transformations (Troya and Vallecillo, 2011). Two .
techniques used for model refinement in ATL areOUtpUt model, named OUT, refers to _the PSM and is
explored in this study: Refining Mode and Module created as a result of the transformation. Both efsod

Superimposition. Execution modes, structure,com‘ormtOthe UML2 metamodel.

benefits and technical limitations are thus desatib T_h? import section consists of AT.L I|br_ar|es
containing a set of general purpose functions, fike

MATERIALSAND METHODS example string manipulation functions. An ATL heipe
is a query based on the Object Constraint Language
Atlas Transformation Language (ATL): ATL is a (OCL), a language used for describing expressions i
model transformation language based on ruletJML models OMG, 2010.
1206

J. Computer <ci., 8 (8): 1205-1211, 2012

MOF
ATL
MMa metamodel MMb
mmaZmmb.atl
A
Ma Source : Target Mb

- —— -

—= Conforms to

------ > Executes
- «_r >Transformation

Fig. 1: ATL model transformation standard (Jouanid Kurtev, 2006)

specification, whereas lazy rules have a matching
specification, like matched rules.

ATL is part of the Eclipse Modeling Framework
(EMF), a modeling framework for the design of tools

module PIM2PSM;
create OUT : UML2 from IN : UML2;

Fig. 2: Configuration header based on structured data models (Amstall., 2011).
In addition, ATL accepts several models as inpuha
module PIM2PSM; transformation process. ATL transformations are-one
create OUT : UML2 refining IN : UML2; way and access the source and target models in the

read-only and write-only modes, respectively.

Fig. 3: Refining Mode: Configuration header
Model refinement: This study comprises a PIM-into-
Transformation rules are distinguished betweerPSM model transformation and refers to an endogenou
matched rules and called rules. Matched rules cpmplrefinement of models based on the UML metamodel. In
with the declarative approach and are automatically model refinement most elements from the source

executed. A matched rule specifies a mapping betweey,,qel (PIM) are copied to the target model (PSM),

a set of elements from the source model and afset Qhile other elements must be changed in order to
elements from the target model. Thus, matched rules

are used to implicity match source elements andncorporate platform-specific aspects. A refinemiera

produce target elements. As opposed to matched’ru|etransformation that adds details pertaining to a

a called rule may take parameters and has to kel particular target platform to an existing model (Bey
from an ATL imperative block in order to be execute € al., 2010) Performing refinements means
Thus, called rules comply with the imperative agmto transforming an abstract model into a detailed giesi
and must be explicitly invoked by another rule. model, i.e., a top-down evolution.

Also, there is a specific type of matched rule, According to the reference metamodel used to
namely lazy rule that does not automatically trigge express source and target models, transformatioms a
Therefore, a lazy rule is triggered by other rlB®ya classified as endogenous or exogenous. In endogenou
and Vallecillo, 2011). The difference between lany transformations both source and target models confo
called rules is that called rules have a parameteto the same metamodel, whereas exogenous

1207

J. Computer <ci., 8 (8): 1205-1211, 2012

transformations occur between models expressed by The ATL2010 compiler is responsible for
different metamodels (Suet al., 2009). Because the implementing the in-place strategy, that is, charge
source (PIM) and the target (PSM) models conform tgerformed directly in the source model without dogy
the same metamodel, the PIM-into-PSM transformatiorthe elements. In so doing, the transformation rokssd
is endogenous. to specify only the changes to be performed in otde

In ATL it is possible to perform a model refinerhen generate the new model, whereas all the other elisme
by making use of the following approaches: Refiningremain unchanged. Figure 4 illustrates a Refinirafi
Mode and the composition technique named Moduldransformation that produces a model Ma’ from a ehod
Superimposition. These techniques are detailed next ~ Ma based on the in-place strategy. In additions thi

version of the ATL compiler supports the deletidn o

Refining mode: The Refining Mode is an explicit €lements, therefore enhancing previous versions
support for performing ATL refinements in execution (ATL2006 and ATL2004).
mode (Troya and Vallecillo, 2011). ATL has two
execution modes, the default execution mode and t
refining mode. The Refining Mode is set by adding t
ﬁiggg:%e;?gg';?t c;g bteh(eam::)rlz nggrgpl?;l?nnenrgg;f transformation module (Wagelaetr al., 2010). In this

t f " . h both dt \ﬁay, multiple transformation definitions are consdn
ransiormations, 1.e., when both source and targef, o single definition. Consequently, definitionsush

models share the same metamodel. In this manneﬁecessarily use the same model transformation

elements of the target model are generated by thl%mguage e.g., ATL.

transformation regarding the type of the elements “Tnhe module superimposition technique allows a
existing in the source model. All properties of thev transformation module to replace certain rules haf t
elements are, then, started up with the same valuegperimposed transformation module. The originkd ru
defined in the corresponding properties of the seur s thus replaced by a new rule with the same namde a
elements. Figure 3 presents the header of a reinem within the same context. That is to say, the Module
transformation that makes use of the UML2 metamode$Superimposition technique enables the divisionhef t
as reference for defining the source and targetetsod transformation into modules, therefore improving
To do so, the keyword ‘“refining” must replace thereusability and maintainability of the model

hM odule superimposition: Module Superimposition is
an internal composition technique in which a
transformation module is superimposed by another

keyword “from” in the transformation header. transformations.
MOF
ATL
MMa Metamodel MMa

- Target
Source Refining -
Ma - —— mode 7 Mar

—> Conforms to
- - () >Transformation

Fig. 4: Refining Mode-in-place strategy
1208

J. Computer <ci., 8 (8)

: 1205-1211, 2012

UML ATL UML
Metamodel Metamodel Metamodel
N
Source Target
PIM —— ——| PIM2PSM.atl |—— — = PSM

UML2Copy.atl
———> Conforms to

...... > Superimposed on
-) >Transformation

Fig. 5: Module superimposition technique

The UML2Copy.atl module proposed by Wagelaare

et al. (2010) copies a UML model based on the UML
metamodel. Thus, the superimposition technique cal

make use of this module to solve problems regarding

model refinement in the MDA context. In this case,
transformation rules of the UML2Copy.atl module are
either reused in their original form or, if needed,
replaced by homonymous rules defined in the refinin
specific module. The UML2Copy.atl module consists
of approximately 200 rules, including a transforimat
rule for each metaclass of the UML metamodel.

Figure 5 illustrates a model refinement that makeg
use of the Module Superimposition technique based o
the UML2Copy.atl module. PIM and PSM models stem
from the same metamodel, in this case the UMLs
metamodel. The UML2Copy.atl module contains the

copying rules of the PIM elements to the PSM. & it
turn, module PIM2PSM; the PIM2PSM.atl module
contains the refining specific rules that alter soeirce

model (PIM) based on the details of the adopted

Platform Model (PM). The transformation modules
must comply with the transformation metamodel, gein
the latter the definition of a Domain-Specific Lalage
(DSL), i.e., the ATL.

RESULTS

In-place execution support: Changes are performed
directly in the source model without copying the
elements to another model

Apply profiles: Apply the profiles associated with
the source model in the target model

Apply stereotypes: Apply the stereotypes of the
source model elements to target model elements.
Better execution time: Better performance in the
transformation execution

Smaller transformation modules: Number of code
lines needed to perform the transformation

Action blocks support: Support for using
imperative code statements so as to set the fasature
of the generated target model element

Lazy rules support: Support for lazy rules, rules
invoked by another rules

Called rules support: Support for using calledsule
Complexity: Lower complexity in development
and configuration of model transformation

Iterative target patterns: Makes it possible to
generate a set of target model elements conforming
to a same type

n

Table 1 illustrates the support provided by the
approaches assessed in comparison to the features
analyzed. Refining Mode copies the profiles apptied
the source model, as well as the stereotypes abfdie
the source model elements. On the other hand,en th

This study proposes a comparative analysissyperimposition technique the UML2Copy.atl module

between the refinement approaches presented, i.lpes not

define rules concerning profiles and

Refining Mode and Module Superimposition using thestereotypes. Such rules must be defined, if nedted,

UML2Copy.atl module. Such analysis assessed th
approaches with regard to the following features:

@creasing the complexity of the transformation

development process.

1209

J. Computer <ci., 8 (8): 1205-1211, 2012

Table 1: Support provided by the ATL refinement iagghes performance when compared to the Module
ATL refinement approaches/ Refining Module Syperimposition technique. Refining Mode does not
Features/Support Mode Superimp.

support advanced features needed for the design of

In-place execution
Apply profiles

Apply stereotypes
Better execution time
Smaller modules
Action blocks support
Lazy rules support
Called rules support
Complexity v
Iterative output patterns

more complex transformations, e.g., the ones inkglv
lazy and called rules.

The employment of the Module Superimposition
technique for UML-based refinements requires the us
of the UML2Copy.atl module. That is to say, it is
necessary that the developer masters the rulesedefi
in this module so as to superimpose these rules
according to the specific transformation requiretsien

L

< L <

Another aspect taken into account was that thectigres

As depicted by Tisét al. (2011), the transformation annotated in the PIM elements were not copied ¢ th
execution time is shorter in the Refining Mode inPSM, once the UML2Copy.atl module does not defime a
comparison to the Module Superimposition technigiae. ~ Ul€ for copying the profile application and thersbtypes
Refining Mode presented a better performance, dnce €XiSting in the source model.

does not require copying model elements of theceour ~ AS acknowledged by the authors, the techniques
model unchanged part. It is important to point that ~Presented in this study are the most spread anpedio
transformation time is a relevant aspect to enasie for ATL model refinement. Other researches explore

eligible performance of Computer-Aided Software (€ _model refining implementation in other model
Engineering (CASE) tools, for example. Also, thetransformauon languages (Kapova and Goldschmidt,
Refining Mode allows shorter transformation rulgisce 2009; Guerraet al., 2011). Those researches are not

. . oriented to the ATL language, nevertheless. €isil.
tnheececsospzycgﬁlggllag%eldl)propertles and referencetis (2011) dealt with model refinement by using rulesdxh

. . languages, such as ATL. However, this study asdesse
Some advanced features available in the ATL[he Refining Mode and Module Superimposition

stan_dard mode are not supported by the_ Refi_ningd\/lod approaches only with regard to the following aspect
for instance: lazy rules, called rules, iterativetpuit Execution performance and code final size. Theegfor

patterns and action bI(_)cks (E_clipse, 2012). Anaacti i vesearch did not depict all criteria herelseased.
block is a sequence of imperative statements @rabe

used in both matched and called rules. Imperative CONCLUSION
statements in ATL are the usual constructs for
attributing assignments and control flow: conditon The aim of the study was to evaluate the existing
and loops. In the development of more compleXechniques used in ATL model refinement. The main
transformations those advanced features play akey a4vantages pointed out by the Refining Mode are Us
and the lack of them often hinders the developmoént strajghtforwardness and execution quickness. On the
such transformations. other hand, this technique has severe restrictisush
Besides the advantages regarding better perfoenangs: incompatibility with action blocks and lazy esl
and shorter code size, programming refinementThese restrictions hamper and quite often hinder th
transformations in the Refining Mode is simpler anddevelopment of more complex model transformations.
easier, once it dispenses with both the expertisthe Composition techniques are considerably new in
UML2Copy.atl module and the advanced configuratibn the domain of model transformation languages. This
the module superimposition. On the contrary, théniRg study assessed the composition technique named
Mode has limitations that often hamper the develim Module Superimposition using UML2Copy.atl. The
of more complex transformations, e.g., transforomati main advantages obtained with the use of this igcien
that define imperative constructs. On the otherdhan are: maintainability and usability improvement,
Module Superimposition can deal with nonstandardobtained through module composition and rule
situations, such as defining imperative statementsuperimposition in the same context. Further, this

(Wagelaaet al., 2010). technique proved to be more flexible and efficiemce
it got rid of the limitations present in the Refigi
DISCUSSION Mode. However, it is worth pointing out that the

Module Superimposition technique requires the
The results obtained demonstrated that theleveloper’'s mastery with regard to the configuratd
Refining Mode is simpler to use and had a bette/ATL composition techniques and to the UML2Copy.atl
1210

J. Computer <ci., 8 (8): 1205-1211, 2012

module. In addition, the UML2Copy.atl module neithe Kapova, L. and T. Goldschmidt, 2009. Automated
defines the rules for copying a profile applicatimna feature model-based generation of refinement
model, nor specifies the rules that apply the stypes transformations. Proceedings of the 35th
existing in the source model to the target model. Euromicro Conference on Software Engineering

Therefore, the choice between one of the ang Advanced Applications, Aug. 27-29, IEEE
technlql_Jes presented must be pondered as th_e_eqse m Xplore Press, Patras, pp: 141-148. DOI:
be, relying on the features and transformation isigps 10.1109/SEAA.,2009.67 '

intended to be developed. Singh, Y. and M. Sood, 2009. Model driven
architecture: A perspective. Proceedings of the
IEEE International Advance Computing

Amstel, M.V., S. Bosems, |. Kurtev and L.F. Pires Conference, Mar. 6-7, IEEE Xplore Press, Patiala,

2011. Performance in model transformations: PP: 1644-1652. DOL:

Experiments with ATL and QVT. Theory Pract. 10.1109/1ADCC.2009.4809264

Model Transform., 6707: 198-212. DOI: Sun, Y., J. White and J. Gray, 2009. Model

10.1007/978-3-642-21732-6_14 transformation by demonstration. Model Driven
Baudry, B., S. Ghosh, F. Fleurey, R. France and Y.L Eng. Languages Syst., 5795: 712-726. DOI:

Traon et al., 2010. Barriers to systematic model 10.1007/978-3-642-04425-0_58

transformation testing. Mag. Commun. ACM, 53: Tisi, M., S. Martinez, F. Jouault and J. Cabot, 201

. 139-143. DOI: 101145/17435461743583 Refining models with rule-based model
Bna?rg,c Ie_éct:)'i,lit\)(/. ;—rig';sr}g ?(;]rdJM\L(uribgg??é Q\uet?nneuﬁg transformations. Institut National De Recherche En
X : Informatique Et En Automatique.
Inform. Software Technol.,, 51: 512-527. DOLI: Tolosa, J.B., O. Sanjuan-Martinez, V. Garcia-Diaz,

10.1016/j.infsof.2008.06.002
Dube, M.R. and S.K. Dixit, 2012. Modeling theories B.C.P. G-Bustelo and_ JM.C. Lovelle, 2011.
Towards the systematic measurement of ATL

REFERENCES

and model transformation scenario for complex

system development. Int. J. Comput. Appli., 38:

11-18.

transformation models. Software: Pract. Exp., 41:
789-815. DOI: 10.1002/spe.1033

Eclipse, 2012. ATL/User Guide-The ATL Language. Touzi, J., F. Benaben, H. Pingaud and J.P. Lo0692

The Eclipse Foundation.

Guerra, E., J.D. Lara, D.S. Kolovos, R.F. Paige and
O.M.D. Santos, 2011. Engineering model
transformations withtransML. Software Syst.

Model. DOI: 10.1007/s10270-011-0211-2

A model-driven approach for collaborative service-
oriented architecture design. Int. J. Produ. Econ.,
121: 5-20. DOI: 10.1016/j.ijpe.2008.09.019

Troya, J. and A. Vallecillo, 2011. A rewriting layi

semantics for ATL. J. Object Technol., 10: 1-29.

Jouault, F. and I. Kurtev, 2006. Transforming medel DOI: 10.5381/j0t.2011.10.1.a5
with ATL. Satellite Events MODELS 2005 Conf., \wagelaar, D., R.V.D. Straeten and D. Deridder, 2010
3844 128'138- _DOl: 10-1997/11663430_14 Module superimposition: A composition technique
Jouault, F., F. Allilaire, J. Bezn_/ln and . Ku_rte2008. for rule-based model transformation languages.
ATL: A model transformation tool. Sci. Comput. Software Syst. Model., 9: 285-309. DOI:

Programm., 2 31-39. DOL: 10.1007/510270-009-0134-3
10.1016/}.5¢ic0.2007.08.002 IR

1211

