
Journal of Computer Science 7 (6): 877-883, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Nawfal A. Mehdi, Department of Computer Science, Faculty of Computer Science and Information Technology,
 University Putra Malaysia, 43400 Serdang, Malaysia

877

Impatient Task Mapping in Elastic Cloud using Genetic Algorithm

Nawfal A. Mehdi, Ali Mamat, Hamidah Ibrahim and Shamala K. Subramaniam

Department of Computer Science,
Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 Serdang, Malaysia

Abstract: Problem statement: Task scheduling is the main factor that determines the performance of
any distributed system. Cloud computing comes with a paradigm of distributed datacenters. Each
datacenter consists of physical machines that host virtual machines to execute customers’ tasks.
Resources allocation on the cloud is different from other paradigms and the mapping algorithms need
to be adapted to the new characteristics. This study takes the problem of immediate task scheduling
under an intercloud infrastructure using a genetic algorithm. An impatient task needs to be scheduled
as soon as it enters the system taking into account the input and output files location and its QoS
requirements. Approach: This study proposes an algorithm that can find a fast mapping using genetic
algorithms with “exist if satisfy” condition to speed up the mapping process and ensures the respecting
of all task deadlines. Cloudsim simulator was used to test the proposed algorithm with real datasets
collected as a cloud benchmark. Mapping time and makespan are the performance metrics that are used
to evaluate the proposed system. Results: The results show an improvement in the proposed system
compared to MCT algorithm as illustrated throughout the study. Conclusion: Batch mapping via
genetic algorithms with throughput as a fitness function can be used to map jobs to cloud resources.

Key words: Cloud computing, datacenter, genetic algorithms, Virtual Machine (VM), scheduling,

intercloud paradigm, impatient task, QoS requirement

INTRODUCTION

 Task scheduling means finding the best resource or
Virtual Machine (VM) (cloud computing speaking) for
the requested task. It plays an essential role in the
system performance because it controls the data flow
and the execution order of the incoming tasks. The
optimal solution for task scheduling on a heterogeneous
system is proved to be an NP problem and a long list of
research has been done on many distributed system
paradigms. The interoperating between multiple clouds
is called Intercloud (Bernstein et al., 2009). It can be
defined as a “cloud of cloud” (Metz, 2010) and it is a
metaphor for the Internet Network of Networks.
Intercloud Computing has an infrastructure that can be
illustrated as a set of datacenters (i.e., cloud providers)
connected to the Internet. These datacenters can be
accessed from anywhere via simple Internet access
tools. The popularity of the Internet and web services
make cloud computing one of the best IT solutions to
many current problems. One kind of problem is the
problem of immediate or impatient tasks that need to be
executed as soon as possible. To describe this problem
in more detail, let us take the case of a natural disaster

that may happen anywhere and anytime. These disasters
need huge IT departments to analysis and recover the
situation by executing immediate or urgent tasks.
 Cloud computing is assumed to be the best solution
for these kinds of problem because of its elasticity and
growing on demand property. Dave Murphy, senior
vice president at a performance testing vendor said,
“The cloud allows for large amounts of computing
power over short periods of time- like during a disaster-
so government agencies can respond to anything in the
world”. He also noted “The government could utilize
the cloud compute power on an as-needed basis. All of
a sudden- like with the oil spill off the coast of
Louisiana-they would need to bring resources to bear,
such as money, people and equipment. Part of the
equipment is the computing power”. The primary
Benefits of Cloud Computing, which make it important
for many critical problems, need to be understood. The
main benefits are summarized below:

• Virtualization, which is the abstracting and

separation of the services from the infrastructure
needed to run it

J. Computer Sci., 7 (6): 877-883, 2011

878

• Flexibility to choose multiple vendors that provide
reliable and scalable business services,
development environments and infrastructure that
can be leveraged out of the box and billed on a
metered basis with no long term contracts

• Elastic nature of the infrastructure to rapidly
allocate and de-allocate massively scalable
resources to business services on a demand basis

• Cost allocation flexibility for customers wanting to
move Capital Expenditure (CapEx) into operational
expenditure (OpEx)

• Reduced costs due to operational efficiencies and
more rapid deployment of new business

 Based on the above, many researchers have tried to
define the term Cloud Computing. Dr. Buyya defines
cloud computing as “A Cloud is a type of parallel and
distributed system consisting of a collection of inter-
connected and virtualized computers that are
dynamically provisioned and presented as one or more
unified computing resource(s) based on service-level
agreements established through negotiation between the
service provider and consumers” (Buyya et al., 2009).
Managing and providing computational resources to
user applications is one of the main challenges for the
high performance computing community.
 Task scheduling has been conducted in many ways
and via many heuristics. Genetic Algorithms (GA)
(Hormwichian et al., 2009; Sarabian and Lee, 2010) are
search algorithms, which are based on the principles of
evolution and natural genetics. GA are successfully
applied to solve NP-complete problems. It is based on
the idea of random guided search, which can give a
better result for a large search space compared to an
enumerative guided search. GA starts with a generation
of individuals, containing feasible solutions. A certain
fitness function is used to evaluate the fitness of every
individual. This study takes the problem of task
scheduling in immediate mode using genetic
algorithms. This problem is divided into sub-problems,
which are: the problem of data location aware, the
problem of GA exit condition and the problem of task
starting deadline. Because of the huge infrastructure for
cloud computing, which covers the whole globe and its
ability to create a large number of virtual machines, it is
difficult to test the proposed work on a real system. The
Cloudsim simulator has been used with two real
datasets to evaluate the performance of the proposed
system. The main contribution of this study is: adopting
GA for the intercloud paradigm to serve data-intensive
and time critical tasks.
 Data location plays an essential role in determining
the efficiency of the distributed system because of the

huge growth in the application data compared to the
application itself. It is inefficient to move megabytes of
data, which might need dozens of minutes to a program,
which might need a couple of minutes or less to
execute. Recently, many researchers have studied the
case of data intensive application. Ranganathan and
Foster (2002) examine scheduling heuristics and the
impact of data replication on it. While the work
presented in Raicu et al. (2008) proposed a data
diffusion approach that combines dynamic resource
provisioning, on demand data replication and caching
and data locality-aware scheduling, to achieve
improved resource efficiency under varying workloads.
They define an abstract “data diffusion model” that
takes into consideration the workload characteristics,
data accessing cost, application throughput and
resource utilization; they validate the model using a
real-world large-scale astronomy application. Work
presented in Jin et al. (2005) proposed the adaptive
scheduling model for data-intensive applications. They
assumed a data grid model, which consists of multiple
sites. Every site has different computational capabilities
and data stores and the input datasets are replicated
among them. Fatos in his study (Xhafa et al., 2007)
considered the problem of allocation tasks using the
immediate mode in a grid environment. They
implemented five scheduling methods and used four
parameters to measure the performance of the system;
namely, (1) makespan, (2) flowtime, (3) resource
utilization and 4) matching proximity. In this study,
they did not consider the data-location of the scheduling
process, but based it on the task execution time. The
work presented in Orlando et al. (2002) examined the
on-line Minimum Completion Time (MCT) heuristic
strategy for scheduling high performance data mining
tasks on top of the Knowledge Grid. Genetic Algorithms
have been used in many scheduling problems because of
their NP-complete complexity. Most GA techniques use
the task and resource length for the fitness function.
Another paper (Zhao et al., 2009) introduces an
application of GA in task scheduling in order to adapt to
the memory constraints and high request of performance
in cloud computing. Many researchers (Wang et al.,
1997; Budin et al., 2010; Hou et al., 1994; Grajcar, 1999;
Hernane et al., 2010) proposed algorithms for
scheduling tasks on grid and other distributed paradigms.

MATERIALS AND METHODS

 Intercloud is a paradigm that has an infrastructure
of datacenters that are distributed around the globe and
connected with each other via the Internet. Each

J. Computer Sci., 7 (6): 877-883, 2011

879

datacenter consists of a storage site and computation
site, which, in turn, has sets of physical machines used
to host predefined VM images. Each task deployed to
the cloud should be mapped to one or more VM based
on its requirements. A virtual machine, which is
assumed as the basic computation unit for cloud
computing needs some delay time for its installing,
booting and starting. The resource allocation process
should take these characteristics into consideration.

Problem formulation: Each task comes with a set of
input files, a set of output files and a set of QoS
requirements. The time needed to stage in the input files
or stage out the output files may be too expensive to be
cancelled, so, the scheduling algorithm should take
these two times into consideration while mapping the
tasks to the VMs. Datacenters use VMs as a basic
computation unit; these VMs need a particular time for
installing, booting and starting up. This time should be
considered and vary from one datacenter to another. To
describe the problem of impatient tasks under the cloud
paradigm formally, let: D Set of datacenters/cloud
providers such that D = {d0, d1,..., d|D|}. Let T set of
tasks, T = {t0, t1,..., t|T|}. Let QoS(t) be the set of QoS
requirement for task, Fint is the set of input files for
task t and Foutt is the set of output files for task t. Let V
be the set of virtual machine image types, such that V =
{v0, v1,..., v|V|} and SpC(v) is the set of virtual machine
specifications.
 Each task has two deadlines, namely, (sdt and dlt).
Formally:

stt ≥ BETtvd (1)

and:

dlt ≥ FT(t) (2)

Where:
stt = The allowed start time such that any

execution after it is useless
BETtvd = The Begin Execution Time, which returns

the time that the task t on VM v on
datacenter d starts its execution

dlt = The allowed finish deadline, such that the
results after it are useless

FT(t) = A Finish Time function, which returns the
estimated time that task t finishes. Mapping
a task t to any VM v should not violate any
QoS requirement, as written formally:

QoS(t) ≤ SpC(v) (3)

 The main objective function of this work is to
minimize the task starting time by speeding up the
mapping process with the satisfaction of all QoS
requirements. For the purpose of GA, we use
throughput as a main objective function (i.e., fitness
function), which can be defined as the number of tasks
executed per time as shown in Eq. 5. Formally, it can be
written as:

t

1, job t has been executed
x

0, otherwise
⎧

= ⎨
⎩

 (4)

 So, the throughput can be written as:

t
t T

Throughput x
∀ ∈

= ∑ (5)

Where:
x = A decision veritable used to indicate whether task
t = Executed or not

 Makespan is the maximum execution time among
all received tasks, which can be written formally as:

tMakespan max{FT } t T= ∀ ∈ (6)

where, FT is the finish time of task t.
 From the GA side, there is a problem of mapping
time because of its exhaustive search. This study
addresses this problem and tries to solve it.

GA for scheduling in cloud computing: GA is a
search technique that simulates the process of natural
evolution. This heuristic is used to generate useful
solutions to search problems and optimization.
Algorithm (1) illustrates the main steps that are used in
our implementation.

Encoding: Encoding is the process of designing the
chromosomes in such a way that it is possible to encode
all the tasks and resources in one string of bits. System
performance depends totally on this design.

Algorithm 1 genetic algorithm:

1: Initialization: Great initial random population
2: Evaluate
3: Keep the best
4: While termination not true do
5: Selection
6: Crossover
7: Mutation
8: Evaluate

J. Computer Sci., 7 (6): 877-883, 2011

880

9: Elitist
10: Check exit
11: End while
12: Return mapping result

 For mapping resources under the cloud computing
environment with the requirement of impatient tasks, it
is important to speed up the system as fast as possible
by encoding the individuals (chromosome) efficiently.
As described before, the intercloud paradigm is based
on the infrastructure of datacenters connected to each
other via the Internet, each one has a set of predefined
VM images. The dynamism in the number of
datacenters and the number of offered VM images is
less than the dynamism under grid computing and other
distributed systems, so it is possible to use the number
of datacenters multiplied by the total number of VMs as
the number of resources for our proposed system.
Figure 1 depicts the proposed chromosome encoding.
 Each t represents a single task while each res
represents an index to a mapping table. This table
represents the list of all datacenters and their VMs. This
algorithm takes into account the available resources in
each datacenter (i.e., How many images each datacenter
can create), which is done at the evaluation (i.e.,
compute fitness function) process.

Population: The population size is set to 25 to have
potential solutions in a population. Random generation
is done on the initial chromosomes. These parameters
can be adjusted as needed.

Crossover: Crossover is the process of reproduction. It
is used to change the programming of a chromosome(s)
from one generation to another. Two chromosomes are
picked randomly from the population and apply
crossover on them when a random value is less than a
threshold (cthr). Another random variable is generated
and used to select two genes for the exchange operation
in each chromosome.

Mutation: This study uses random uniform mutation to
implement the process of mutation. The selected
variable is replaced by a random value in range
between the lower and upper bands of the selected
variable.
 Each gene in each chromosome has a random
value, which nominates it for mutation operation or not
if its value is less than the first mutation threshold
(mthr1). If a gene is selected, its value is replaced by
another random value between the lower and upper
bounds (mthr2).

Fig. 1: Chromosome design

Elitist: The best chromosome of the previous
generation is stored as the last in the array. If the best
chromosome of the current generation is worse than the
best chromosome of the previous generation, the latter
one would replace the worst chromosome of the current
population.

Stopping condition: Two ways to exit from the
mapping process have been implemented. The first way
is to do all the iterations, which is exhaustive for
impatient tasks. The second one is when all the tasks
are mapped with the meeting to all their QoS
parameters.

Evaluation: The algorithm has to evaluate each
chromosome to find the best fitness value. The fitness
values represent the number of tasks mapped to VMs
(i.e., throughput). A bigger number gives better
throughput. This work needs some pre-requested data,
such as the list of datacenters, the list of VMs for each
datacenter and the specifications of each VM image.
The algorithm finds the estimated completion time of
each task via Eq. 7:

TCTtvd = VMCvd + Sintvd + Exectvd + Souttvd (7)

 TCT stands for Task Completion Time, which is
the estimated time to finish executing the task and
sending the result back. While cloud computing is
based on virtualization, each virtual machine needs a
time for creating and loading. VMC is the virtual
Machine Creating time, which is pre-defined to the
algorithm. Exec is the time needed to execute the task
after all the input files are fetched and it is equal to the
task length over VM speed. Sin is the process of
fetching in all the required input files and Sout is the
process of sending out the result data to pre-define
destinations as shown in Eq. 8 and 9, respectively:

t

t vd
f Fin v

size(f)Sin
min(BW(VM),BW(dist))∀ ∈

= ∑ (8)

t

t vd
f Fout v

size(f)Sout
min(BW(VM),BW(dist))∀ ∈

= ∑ (9)

J. Computer Sci., 7 (6): 877-883, 2011

881

System model and experiments: In the intercloud
paradigm, datacenters might have the ability to create
VM, or provide storage only, or both. An example of a
cloud provider that only has a computation service is
GoGrid, while a cloud storage provider can be found in
3Tera and, lastly, Amazon as a cloud provider offering
both services. Figure 2 depicts the proposed model. It
consists of three datasets, meta-scheduler (i.e., computer
icon) and users to submit their requests. Meta-scheduler
is the main broker that controls the execution of tasks
among the cloud providers (i.e., datacenters).

Dataset: The proposed algorithm has been tested on
real datasets, which are:

• Montage: Montage was created by the

NASA/IPAC Infrared Science Archive as an open
source toolkit that can be used to generate custom
mosaics of the sky using input images in the
Flexible Image Transport System (FITS) format.

• Ligo (Brown et al., 2007): The Laser
Interferometer Gravitational Wave Observatory
(LIGO) is attempting to detect gravitational waves
produced by various events in the universe as per
Einstein’s theory of general relativity.

Simulation: Because of the difficulty in testing the
proposed system on a real system, a simulation
evaluation has been conducted on the two datasets
described previously. CloudSim (Calheiros et al., 2009)
is a discrete event simulator that is used to simulate
cloud environments.
 Cloudsim has the ability to create datacenters,
virtual machines and physical machines and configure
system brokers, system storage. The proposed algorithm
has been tested and evaluated on the four real datasets.
 Table 1 shows the main configurations for
cloudsim simulator.

Table 1: Cloudsim configurations
Item Value
Number of datacenters 10
Number of VM 400
Number of CPU/VM 1
CPU Speed/VM 1, 2, 2.5 and 4 GHZ
Number of tasks 10, 15, 20, 40, 60, 80, 100

Fig. 2: General system model

 All the experiments are done on a computer with
CPU Intel Core 2 Duo 2.4GHz, RAM 4GB and using
Windows Server 2008 operation system. Two
performance metrics have been used to test the
proposed algorithm. The mapping time, which is the
time, needed to finish the mapping process and it is
computed as a computer time difference before and
after the mapping procedure call. Makespan is used to
find the impact of speeding GA on total execution time.
The Minimum Completion time (MCT) heuristic has
been adopted to the cloud computing paradigm and
used to compare the proposed algorithm.

RESULTS

 One of the main features of GA is the random
guided search, which is faster than an enumerative
search (which is required to test every point in the
search space) if the iterations are controlled. This study
looks for the nearest local optima, which means the
nearest mapping for the given tasks. The first
experiment is used to calculate the mapping table of
GA and MCT algorithms. Figure 3 and 4 depict the
mapping time on the two datasets. Seven bags of tasks
were assumed to be impatient tasks submitted to the
simulator. These bags differ in the number of tasks. The
results show the divergence in mapping time of the
MCT algorithm because of the growth in search space.
GA gives a simple increase in mapping time.

Fig. 3: Mapping time of tasks from montage dataset

using MCT and GA algorithm

Fig. 4: Mapping time of tasks from ligo dataset using

MCT and GA algorithm

J. Computer Sci., 7 (6): 877-883, 2011

882

Fig. 5: Makespan of tasks from Montage dataset using

MCT and GA algorithm

Fig. 6: Makespan of tasks from ligo dataset using MCT

and GA algorithm

 The second experiment is used to compute the
makespan. Makespan, which is defined as the
maximum finish time among all the given tasks, is
depicted in Fig. 5 and 6. These two figures represent
two different real projects. Each project has its own
tasks and file length. This explains the difference in
makespan between the two datasets. In both figures, the
MCT is superior to GA in makespan because the
makespam in MCT is the best choice among all search
spaces.

DISCUSSION

 Cloud computing has resources charged per use.
These resources assumed as virtual machines and need
for booting and loading. The main benefit from this
new paradigm is the design of datacenters, which is
assumed as cloud providers. Each datacenter has set of
physical machine and list of virtual machine images.
 The chromosome design depicts this new paradigm
by map the jobs to virtual machines images.
 These two experiments show the trade-off between
the makespan and waiting time. If the set of jobs needs
fast attention then the proposed model can give better
results, while the MCT can be better from makespan
prospective. In this study, we tried to explore the ability
of genetic algorithm in mapping jobs to resources.

 The real datasets reflect real workloads that have
been used in real projects. The assumption of this work
is “the user needs a fast attention to his/her jobs”, which
leads to the problem of designing the fitness function.
The fitness function is designed to ensure the execution
of all/most submitted job list. The experiments that
have been sown illustrate the ability to use genetic to
map the jobs to resources but with some lose in global
optima solution.

CONCLUSION

 The two experiments show the superiority of the
random guided search, represented by GA, to the
enumerative search, represented by MCT, in mapping
time if the GA stop condition is controlled on exit if
satisfied. In addition, the way of using the throughput
as an objective function can increase the mapping time.
Our future work is to discover the message passing
between the clouds for impatient tasks.

REFERENCES

Bernstein, D., E. Ludvigson, K. Sankar, S. Diamond

and M. Morrow, 2009. Blueprint for the intercloud-
protocols and formats for cloud computing
interoperability. Proceedings of the 2009 4th
International Conference on Internet and Web
Applications and Services, May 24-28, IEEE
Computer Society, Venice/Mestre, Italy, pp: 328-
336. DOI: 10.1109/ICIW.2009.55

Brown, D.A., P.R. Brady, A. Dietz, J. Cao and B.
Johnson et al., 2007. A case study on the use of
workflow technologies for scientific analysis:
Gravitational wave data analysis. Workflows e-
Science, 39-59. DOI: 10.1007/978-1-84628-757-
2_4

Budin, L., M. Golub and A. Budin, 2010. Traditional
techniques of genetic algorithms applied to
floating-point chromosome representations. Sign,
1: 11-52.
http://www.zemris.fer.hr/~golub/clanci/krema96.pdf

Buyya, R., C.S. Yeo, S. Venugopal, J. Broberg and L.
Brandic, 2009. Cloud computing and emerging IT
platforms: Vision, hype and reality for delivering
computing as the 5th utility. Future Generat.
Comput. Syst., 25: 599-616. DOI:
10.1016/J.FUTURE.2008.12.001

Calheiros, R.N., R. Ranjan, C.A.F. De Rose and R.
Buyya, 2009. CloudSim: A novel framework for
modeling and simulation of cloud computing
infrastructures and services.
http://www.cloudbus.org/reports/CloudSim-
ICPP2009.pdf

J. Computer Sci., 7 (6): 877-883, 2011

883

Grajcar, M., 1999. Genetic list scheduling algorithm for
scheduling and allocation on a loosely coupled
heterogeneous multiprocessor system. Proceeding
of the 36th Design Automation Conference, June
21-25, New Orleans, LA, USA., pp: 280-285. DOI:
10.1145/309847.309931

Hernane, S., Y. Hernane and M. Benyettou, 2010.
Migration algorithm of particle swarm optimization
for a scheduling problem. J. Applied Sci., 10: 699-
703.
http://docsdrive.com/pdfs/ansinet/jas/0000/17217-
17217.pdf

Hormwichian, R., A. Kangrang and A. Lamom, 2009.
A conditional genetic algorithm model for
searching optimal reservoir rule curves. J. Applied
Sci., 9: 3575-3580. DOI:
10.3923/jas.2009.3575.3580

Hou, E.S.H., N. Ansari and H. Ren, 1994. A genetic
algorithm for multiprocessor scheduling. IEEE
Trans. Parallel Distribut. Syst., 5: 113-120. DOI:
10.1109/71.265940

Jin, H., X. Shi, W. Qiang and D. Zou, 2005. An
adaptive meta-scheduler for data-intensive
applications. Int. J. Grid Utility Comput., 1: 32-37.
DOI: 10.1504/IJGUC.2005.007058

Metz, C., 2010. The meta cloud-flying datacenters enter
fourth dimension. http://www.theregister.co.uk-
/2009/02/24/the_meta_cloud/page3.html

Orlando, S., P. Palmerini, R. Perego and F. Silvestri,
2002. Scheduling high performance data mining
tasks on a data grid environment. Eur. Par Parallel
Proc., 121-137. DOI: 10.1007/3-540-45706-2_49

Raicu, L., Y. Zhao, L. Foster and A. Szalay, 2008. Data
diffusion: Dynamic resource provision and data-
aware scheduling for data-intensive applications.
http://arxiv.org/abs/0808.3535

Ranganathan, K. and I. Foster, 2002. Decoupling
computation and data scheduling in distributed
data-intensive applications. Proceeding of the 11th
IEEE International Symposium on High
Performance Distributed Computing, pp: 352-358.
DOI: 10.1109/HPDC.2002.1029935

Sarabian, M. and L.V. Lee, 2010. A modified partially
mapped multicrossover genetic algorithm for two-
dimensional bin packing problem. J. Math. Stat., 6:
157-162. DOI: 10.3844/jmssp.2010.157.162

Wang, L., H.J. Siegel, V.P. Roychowdhury and A.A.
Maciejewski, 1997. Task matching and scheduling
in heterogeneous computing environments using a
genetic-algorithm-based approach. J. Parallel
Distribut. Comput., 47: 8-22. DOI:
10.1006/JPDC.1997.1392

Xhafa, F., J. Carretero, L. Barolli and A. Durresi, 2007.
Immediate mode scheduling in grid systems. Int. J.
Web Grid Serv., 3: 219-236. DOI:
10.1504/IJWGS.2007.014075

Zhao, C., S. Zhang, Q. Liu, J. Xie and J. Hu, 2009.
Independent tasks scheduling based on genetic
algorithm in cloud computing. Proceedings of the
5th International Conference on Wireless
Communications, Networking and Mobile
Computing, Sept. 24-26, IEEE Press, Beijing, pp:
5548-5551. DOI: 10.1109/ WICOM.2009.
5301850

