
Journal of Computer Science 7 (5): 736-743, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Habibollah Haron, Faculty of Computer Science and Information Systems, University Technology
Malaysia

736

Improved Vertex Chain Code Based Mapping

Algorithm for Curve Length Estimation

1Habibollah Haron, 2Amjad Rehman, 1L.A. Wulandhari and 2Tanzila Saba
1Faculty of Computer Science and Information Systems,

University Technology, Malaysia
2College of Computer and Information Sciences,

Al-Imam M. Saud Islamic University Riyadh, KSA

Abstract: Problem statement: Image representation has always been an important and interesting topic in
image processing and pattern recognition. However, curve tracing and its relative operations are the main
bottleneck. Approach: This research presents the mapping algorithm that covers one of the vertex chain
code cells, the rectangular-VCC cell. The mapping algorithm consists of a cell-representation algorithm
that represents a thinned binary image in rectangular cells, a transcribing algorithm that transcribes the cells
into vertex chain code and a validation algorithm that visualizes vertex chain code into rectangular cells.
Results: The algorithms have been tested and validated by using three thinned binary images: L-block,
hexagon and pentagon. Conclusion/Recommendations: The results show that this algorithm is capable of
visualizing and transcribing them into vertex chain code.

Key word: Vertex Chain Code (VCC), Rectangular Cells, transcribing algorithms, Thinned Binary Image,

validation algorithm, Freeman Chain Code (FCC), mapping algorithm, L-block hexagon,
Pentagon, clockwise direction

INTRODUCTION

 Image representation is an important component in
image processing and pattern recognition. One of the
ways to represent an image simply and efficiently is by
using chain code. The first use of chain code was
introduced by Freeman known as Freeman chain code
(FCC). The code follows the contour counter-clockwise
and keeps track of the direction from one contour pixel
to the next (Saaid et al., 2009; Habibi et al., 2009;
Jahanshah et al., 2009). The codes involve 4-connected
and 8-connected paths. Figure 1(a) shows 4-connected
and Fig. 1(b) shows 8-connected FCC
 In the 8-connected FCC, each code can be
considered as the angular direction, in multiples of 450,
through which we must move to go from one contour
pixel to the next. Figure 2 shows an example of
Freeman Chain Code using an 8-connected path.
 In general, a coding scheme for line structures must
satisfy three objectives (Abdullah et al., 2009). First, it
must faithfully preserve the information of interest;
second, it must permit compact storage and be
convenient for display. Finally, it must facilitate any
required processing. The three objectives are
somewhat in conflict with each other, and any code
necessarily involves a compromise among them.

(a) (b)

Fig. 1: Example of Freeman

Fig. 2: Neighbour Directions of FCC Chain Code
Started from (1,5):0011122233344666775566

J. Computer Sci., 7 (5): 736-743, 2011

737

Fig. 3: Example of VCC Cells:
(a) Triangular cell (b) Rectangular
cell, and (c) Hexagonal cell

Fig. 4: The Example of Rectangular Cells-VCC VCC

Code: 1233113121231212312131

Some important characteristic of the VCC as described
in (Hashim and Marghany, 2009; Qicai et al., 2009;
Al-Omari et al., 2009; Selvan et al., 2010) are first, the

VCC is invariant under translation and rotation, and
optionally may be invariant under starting point and
mirroring transformation. Second, using the VCC it is
possible to represent shapes composed of triangular,
rectangular, and hexagonal cells (Fig. 3). Thirdly, the
chain elements represent real values not symbols such
as other chain code; are part of the shape; indicate the
number of cell vertices of the contour nodes; and may
be operated for extracting interesting shape properties.
Finally, using VCC it is possible to obtain relations
between contours and the interior of the shape.
 In the Vertex Chain Code, the boundaries or
contours of any discrete shape composed of regular
cells can be represented by chains. Therefore, these
chains represent closed boundaries. The minimum
perimeter of a closed boundary corresponds to the
shape composed of only one cell. An element of a chain
indicates the number of cell vertices, which are in touch
with the bounding contour of the shape in that element
position (Kumar et al., 2009). Figure 4 shows the
Vertex chain code of Rectangular-VCC cells, indicating
the number of cell vertices, in touch with the bounding
contour of the rectangle in that element position.
 This paper presents an algorithms used to derive
the rectangular cells of VCC from a thinned binary
image, transcribed cells into vertex chain code and
visualize the vertex chain code again into rectangular
cells for validation. The algorithm is tested and
validated using three thinned binary images: L-block,
hexagon, and pentagon.

MATERIALS AND METHODS

 The mapping algorithm of rectangular-VCC
consists of four processes: pre-processing, cell-
representation, transcribing, and validation, as shown in
Figure 5. Pre-processing is the step of thinning a binary
image into a thinned binary image. The thinned binary
image is then represented by rectangular-VCC cells in
the cell-representation process. The next process is to
transcribe the rectangular-VCC cells into vertex chain
code, the transcribing process. Last is the validation
process; in which the vertex chain code is visualized
into rectangular cells to validate the cell-representation
and transcribing algorithms. The result of the validation
will show the similarity between the visualization
thinned binary image into rectangular cells and the
visualization vertex chain code into rectangular cells.
These last three processes, the cell-representation,
transcribing and validation algorithms are called the
mapping algorithm. Finally, mapping algorithm is
presented.

J. Computer Sci., 7 (5): 736-743, 2011

738

Fig. 5: Flow of the mapping algorithm

Fig. 6: Binary image

Fig. 7: Thinned binary image

Pre-processing: This algorithm takes thinned binary
image as input. Binary images have only two possible
intensity values pixels and are normally displayed as
black and white. Numerically, the two values are
normally 0 for black and, either 1 or 255 for white. In
the simplest case, an image may consist of a single
object or several separated objects of relatively high
intensity. In order to create the two-valued binary
image, a simple threshold may be applied so that all the
pixels in the image plane are classified into foreground
(actual object) and background pixels. A binary image
function can then be constructed such that pixels above
the threshold are foreground (“1”) and below the
threshold represent background (“0”) (Fig. 6).
 For several purposes a binary image needs to be
thinned. A thinned binary image is a binary image
whose width is reduced to a single pixel (Fig. 7). The
thinning process (Sikong et al., 2010) is an important
pre-processing step in pattern analysis because it
reduces memory requirements for storing the essential
structural information presented in pattern. For this
purpose, the thinning algorithm is created in (Marghany
et al., 2009) is applied. This thinning algorithm uses
two-valued connectivity rules. The pixel of 1 will be
replaced by pixel 0 when the number of pixels 1 of the
neighbouring eight directions of connectivity pixel is
greater than 3.
 In this algorithm, every element of the thinned
binary image is declared as an array variable. And all
the operations of the images are according to rows and
columns.

The mapping algorithm of rectangular-VCC: The
Cell-representation Algorithm: The visualizing
algorithm of Rectangular-VCC is an algorithm that
represents a thinned binary image as rectangular cells.
The algorithm has two-valued connectivity thinned
binary images as input. Each code 1 in the thinned
binary image represents each form of the rectangular
cell. The direction of code 1 adjacent to another code 1
leads to the formation of the next rectangle. Figure 8
shows the representation of Rectangular-VCC
formatted by the direction of code 1 adjacent to another
code 1. When each code in the binary image is
visualized, a line drawing consisting of rectangle cells
will be created (Sarabian and Lee, 2010).
 The algorithm considers eight directions of code
adjacent to the others. Each code 1 is compared with
the other eight directions. Table 1 shows the eight-
direction connectivity used in this research. Each code
1 fills one rectangle of the length 1. In this algorithm,
every horizontal line is drawn from the left to the right,
and every vertical line is drawn from the bottom to the
top.

J. Computer Sci., 7 (5): 736-743, 2011

739

Fig. 1: Representation of rectangular-VCC

Table 1: Eight direction connectivity
(row+1, (row+1, column) (row+1, colum+1)
column-1)
 (row, (row, column) (row, column+1)
column-1)
(row-1, (row-1, column) (row-1, column+1)
column-1)

 Based on these rules, the visualizing algorithm of
rectangular VCC is created. The pseudo code of cell-
presentation is presented in Appendix 1.

Appendix 1:

Input = thinned binary image
image≠ 0
for row = 1 to row = maxrow
 for column = 1 to column = maxcolum
 if image (row,column)= 1 then
 column _A = column+1
 row_A = row +1
 column_B = column -1
 row_B = row – 1
 if image (row, column_A) = 1 then
 for x = column to x<=column_A
 y = row
 draw a horizontal line whose length = 1
from coordinate (x,y)
 end for
 end if
 if image (row_A, column)=1 then
 for y= row to y<=row_A
 x= column
 draw a vertical line whose length = 1 from
coordinate (x,y)
 end for
 end if
 if image (row_A, column_A)=1 then
 x = column_A
 y = row_A

 draw a vertical line whose length = 1 from
coordinate (x,y)
 x = column
 y = row_A
 draw a horizontal line whose length = 1 from
coordinate (x,y)
 end if
 if image(row, column_B) = 1 then
 for x = column_B to x<= column
 y = row
 draw a horizontal line whose length = 1 from
coordinate (x,y)
 end for
 end if

 if image(row_A, column_B) = 1 then
 x = column
 y = row
 draw a vertical line whose length = 1 from
coordinate (x,y)
 x = column_B
 y = row_A
 draw a horizontal line whose length = 1 from
coordinate (x,y)
 end if
 if image(row_B, column_B)=1 then
 x= column_B
 y= row
 draw a horizontal line whose length = 1 from
coordinate (x,y)
 x = column
 y = row
 draw a vertical line whose length = 1 from
coordinate (x,y)
 end if
 if image(row_B,column) =1 then
 for y = row_B to y<=row
 x = column
 draw a vertical line whose length = 1 from
coordinate (x,y)
 end for
 end if
 if image(baris_B, column_A) then
 x = column_A
 y = row_B
 draw a vertical line whose length = 1 from
coordinate (x,y)
 x = column
 y = row
 draw a horizontal line whose length = 1 from
coordinate (x,y)
 end if
 end if

J. Computer Sci., 7 (5): 736-743, 2011

740

 end for
end for

Appendix 2:

Input = Rectangular-VCC and thinned binary image
image≠ 0
for row = 1 to row = maxrow
 for column = 1 to column = maxcolum
 if corner in position A then
 if image (row,column)=1 and image
(row,column_B)= 0 and image(row_B,column_B)=0
and image (row_B,column)=0 then VCC=1
 end if
 if image (row,column)=1 and image
(row,column_B)= 1 and image(row_B,column_B)=0
and image (row_B,column)=0 then VCC = 2
 end if
 if image (row,column)=1 and image
(row_B,column)= 1 and image(row,column_B)=0 and
image (row_B,column_B)=0 then VCC = 2
 end if

 if image (row,column)=0 and image
(row,column_B)= 1 and image(row_B,column)=1 and
image (row_B,column_B)=0 then VCC = 3
 end if
 end if
 if corner in position B then
 if image (row,column)=1 and image
(row,column_A)= 0 and image(row_B,column)=0 and
image (row_B,column_A)=0 then VCC=1
 end if
 if image (row,column)=1 and image
(row,column_A)= 1 and image(row_B,column)=0 and
image (row_B,column_A)=0 then VCC=2
 end if
 if image (row,column)=1 and image
(row_B,column)= 1 and image(row,column_A)=0 and
image (row_B,column_A)=0 then VCC=2
 end if
 if image (row,column)=0 and image
(row,column_A)= 1 and image(row_B,column)=1 and
image (row_B,column_A)=0 then VCC = 3
 end if
 end if
 if corner in position C then
 if image (row,column)=1 and image
(row_A,column)= 0 and image(row_A,column_A)=0
and image (row,column_A)=0 then VCC = 1
 end if
 if image (row,column)=1 and image
(row_A,column)= 1 and image(row,column_A)=0 and
image (row_A,column_A)=0 then VCC = 2

 end if
 if image (row,column)=1 and image
(row,column_A)= 1 and image(row_A,column)=0 and
image (row_A,column_A)=0 then VCC = 2
 end if
 if image (row,column)=0 and image
(row_A,column)= 1 and image(row,column_A)=1 and
image (row_A,column_A)=0 then VCC = 3
 end if
 end if
 if corner in position D then
 if image (row,column)=1 and image
(row_A,column_B)= 0 and image(row,column_B)=0
and image (row_A,column)=0 then VCC = 1
 end if
 if image (row,column)=1 and image
(row_A,column)= 1 and image(row_A,column_B)=0
and image (row,column_B)=0 then VCC = 2
 end if
 if image (row,column)=1 and image
(row,column_B)= 1 and image(row_A,column)=0 and
image (row_A,column_B)=0 then VCC = 2
 end if
 if image (row,column)=0 and image
(row_A,column)= 1 and image(row,column_B)=1 and
image (row_A,column_B)=0 then VCC = 2
 end if
 end if
 end for
end for

The transcribing algorithm: The transcribing
algorithm converts the rectangular cells into vertex
chain code. The algorithm uses 8-directions
connectivity. Rectangular Vertex chain code has three
different codes, namely 1, 2, and 3. The code indicates
the number of cell vertices, which are in touch with the
bounding contour of the shape in that element position.
The algorithm focuses on the corner of each rectangular
cell; the corners are named by A, B, C, and D (Fig. 9).
The algorithm covers every corner of rectangle the by
its own rules according to the eight-direction
connectivity (Yang and Mareboyana, 2009). The
algorithm that is to transcribe a thinned binary image
into vertex chain code is shown in Appendix 2.

The validation algorithm: The validation algorithm of
rectangular-VCC is used to validate the visualizing and
transcribing algorithms. It visualizes the vertex chain code
into rectangular cells again (Sarabian and Lee, 2010). It is
developed by dividing the direction in two ways, namely
clockwise and counter-clockwise. The algorithm
visualizes the vertex chain code into rectangular cells.

J. Computer Sci., 7 (5): 736-743, 2011

741

Table 2: Shapes of rectangular-VCC according to the direction
 Clockwise direction Counter clockwise direction
 -- --
No 1 2 3 1 2 3

a 1 2 3 1 2 3

b 1 2 3 1 2 3

c 2 3 1 2 3

 1

d 1 2 3 1 2 3

Fig. 9: Rectangle in Rectangular Cells

It is formed according to 24 shapes of rectangular cells.
Every eight-shape represents every code 1, 2, and 3.
Every code except the starting point code is used by
previous code. This algorithm is invariant under the
starting point, so it is immaterial which that is chosen as
the starting point. Table 2 shows the shape of
rectangular VCC according to direction (Yang and
Mareboyana, 2009). Based on Table 2, the validation
algorithm of rectangular VCC is created, also divided
into two directions, because the difference in direction
influences the next shape of the cells. Appendix 3
shows the validation algorithm of rectangular VCC.

RESULTS

 All algorithms are tested and validated using three
thinned binary images, L-block, hexagon, and
pentagon. Thinned binary images are transformed into
rectangular-VCC by using the cell-representation
algorithm, rectangular-VCC is transcribed into Vertex
Chain Cod using the transcribing algorithm, and finally
Table 3 shows experimental results using the cell-
representation, transcribing, and validation algorithms.

Fig. 10: The Interface of the Prototype System

The cell-representation and transcribing algorithms are
validated by using the validation algorithm that
visualizes the vertex chain code into rectangular cells
again. The entire algorithm is termed as mapping
algorithm.

The interface: The interface of the mapping algorithm
of the rectangular VCC system is programmed in
Visual Basic 6. Figure 10 shows the interface for testing
and validating the mapping algorithm.
 Part 3 in Fig. 10 is the interface of the validation
algorithm. The input is vertex chain code, then
visualized into rectangular cells. The interface shows
that the rectangular cell from the vertex chain code
visualizing is similar to the rectangular cells from the
thinned binary image visualizing.

J. Computer Sci., 7 (5): 736-743, 2011

742

Table 3: Rectangular-VCC Cells and Vertex chain code of Three Thinned Binary Images (a) L-block, (b) Hexagon, (c) Pentagon
 Rectangular VCC
No. Thinned Binary Image Rectangular VCC Cells Vertex chain code Cells (2)

a. 213131321321313131321313213131313
 212131231313131313131213132131313231
 313131231312313123131221313132131231
 3131313131213131231
 31313131313123131231313123131231

b. 22222222222222222213131313131313131312
 1313131313131313131312222222222
 222222221313131313131
 31313121313131313131313131

c. 221321313132131321313132131313
 12222222222222122222222222222
 22222222212222222222222131
 31312313131231312313131231

 The interface shown in Fig. 10 consists of three
processes involved in the mapping algorithm. The input
is a thinned binary image. It is further represented as
rectangular-VCC cells. The process continues by
transcribing the rectangular-VCC cells into vertex chain
code. The last process is to visualize the vertex chain
code back into rectangular cells. The rectangular cell
and code will be displayed automatically when the
process is finished.

CONCLUSION

 The mapping algorithm tested and validated in cell-
representation and transcribing thinned binary images
into VCC by using three thinned binary image objects,
L-block, hexagon and pentagon. The results show that
the cell-representation algorithm is capable of
representing thinned binary image as rectangular-VCC
cells. Reciprocally the transcribing algorithm is capable
of transcribing the rectangular-VCC cells into vertex
chain code and the validation algorithm result shows a
rectangular cell that is similar with the rectangular cell
from cell-representation algorithm. The entire algorithm
is called the mapping algorithm of rectangular vertex
chain code.

REFERENCES

Abdullah, H., A. Lennie, M.J. Saifuddin and I. Ahmad,

2009. The effect of electrical properties by
texturing surface on gaas solar cell efficiency. Am.
J. Eng. Applied Sci., 2: 189-193. DOI:
10.3844/ajeassp.2009.189.193

 Al-Omari, S.A.K., P. Sumari, S.A. Al-Taweel and
A.J.A. Husain, 2009. Digital recognition using
neural network. J. Comput. Sci., 5: 427-434. DOI:
10.3844/jcssp.2009.427.434

 Habibi, H. Shahmohammadi, V. Taraghi, S.D. Safari
and B. Arezoo, 2009. A prototype two-axis laser
scanning system used in stereolithography
apparatus with new algorithms for computerized
model slicing. Am. J. Applied Sci., 6: 1701-1707.
DOI: 10.3844/ajassp.2009.1701.1707

Hashim, M. and M. Marghany, 2009. Robust of doppler
centroid for mapping sea surface current by using
radar satellite data. Am. J. Eng. Applied Sci.,
2:781-788. DOI: 10.3844/ajeassp.2009.781.788

Jahanshah, F., K. Sopian, S.H. Zaidi, M.Y. Othman
and N. Amin et al., 2009. Modeling the effect of
P-N junction depth on the output of planer
and rectangular textured solar cells. Am. J.
Applied Sci., 6: 667-671. DOI:
10.3844/ajassp.2009.667.671

 Kumar, V.V., A. Srikrishna and G.H. Kumar, 2009.
Error free iterative morphological decomposition
algorithm for shape representation. J. Comput. Sci.,
5: 71-78. DOI: 10.3844/jcssp.2009.71.78

Marghany, M., S. Mansor and M. Hashim, 2009.
Geologic mapping of united Arab emirates using
multispectral remotely sensed data. Am. J. Eng.
Applied Sci., 2: 476-480. DOI:
10.3844/ajeassp.2009.476.480

Qicai, L., Z. Kai, Z. Zehao, F. Lengxi, O. Qishui and L.
Xiu, 2009. The use of artificial neural networks in
analysis cationic trypsinogen gene and hepatitis b
surface antigen. Am. J. Immunol., 5: 50-55. DOI:
10.3844/ajisp.2009.50.55

Saaid, M.F.M., Z. Ibrahim, M. Khalid and N.H. Sarmin,
2009. DNA code word design for computing with
real-time polymerase chain reaction. J. Comput.
Sci., 5: 1-10. DOI: 10.3844/jcssp.2009.1.10

J. Computer Sci., 7 (5): 736-743, 2011

743

 Sarabian, M., and L.V. Lee, 2010. A modified partially
mapped multicrossover genetic algorithm for two-
dimensional bin packing problem. J. Math. Stat., 6:
157-162. DOI: 10.3844/jmssp.2010.157.162

Selvan, S., M. Kavitha, S. Shenbagadevi and S. Suresh,
2010. Feature extraction for characterization of
breast lesions in ultrasound echography and
elastography. J. Comput. Sci., 6: 67-74. DOI:
10.3844/jcssp.2010.67.74

Sikong, L., B. Kongreong, D. Kantachote and W.
Sutthisripok, 2010. Photocatalytic activity and
antibacterial behavior of Fe3+-Doped TiO2/SnO2
nanoparticles. Energy Res. J., 1: 120-125. DOI:
10.3844/erjsp.2010.120.125

Yang, B. and M. Mareboyana, 2009. Progressive
content-sensitive data retrieval in sensor
networks. J. Comput. Sci., 5: 529-535. DOI:
10.3844/jcssp.2009.529.535

