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Abstract: Problem statement:  The goal of this study was to devise a more reliable and sensitive 
method for analysis of experimental data of the Prepulse Inhibition (PPI), the reduction in startle 
reaction towards a startle-eliciting “pulse” stimulus when it is shortly preceded by a sub-threshold 
“prepulse” stimulus. Approach: Different from the conventional simple averaging-based method, we 
proposed a probabilistic approach to modeling the PPI data. With this probabilistic description, we 
reconstructed complete response signals from the PPI data and devised a nonparametric weighted 
Kernel Density Estimation (KDE) method to tackle two important issues in PPI data related density 
estimation: instability and limited number of samples. We designed two sets of animal experiments 
using different medicines and compared the KDE based method with the conventional simple-
averaging based method. Results: Our results showed that the KDE method performed better than the 
conventional method and offered some advantages over the conventional method. Conclusion:  The 
new method provided a more reliable and sensitive approach to the post-session analysis of PPI data. 
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INTRODUCTION 

 
 Prepulse Inhibition (PPI) refers to the reduction in 
startle reaction towards a startle-eliciting “pulse” 
stimulus when it is shortly preceded by a sub-
threshold “prepulse” stimulus ((Fatemi, 2008; Xu et 
al., 2010); Fig. 1). This test provides an operational 
measure of sensory gating of subjects. Disruption of 
PPI has been related to central dopamine hyperactivity 
(Swerdlow et al., 1986; Fatemi, 2008) and is observed 
in schizophrenic patients (Bolino et al., 1994; Perry and 
Braff, 1994) and in animal models of this mental 
disorder (Bakshi et al., 1999; Pen and Moreau, 2002; 
Moy et al., 2006). In our recent studies we established a 
novel animal model of schizophrenia in C57BL/6 mice 
exposed to Cuprizone (CPZ), a copper chelator. The 
cuprizone-exposed mice show some behavioral changes 
reminiscent of certain schizophrenia symptoms. One of 
which is deficit in PPI (Xu et al., 2009; 2010). 
Furthermore, the PPI deficit can be prevented or 
attenuated by antipsychotic drugs including Clozapine 
(CLZ) and Quetiapine (QTP) (Xu et al., 2010). 
 In rodents (mouse and rat) the startle reaction in 
PPI test can be measured by recording whole body 
startle, which occurs following the presentation of an 

eliciting stimulus. The body startles are sensed by a 
piezoelectric sensor and read out as electrical currents 
changing as the function of time (Fig. 2). A typical PPI 
test includes 5 starting and 5 ending startle trials as well 
as 8-10 identical testing blocks. Each testing block 
consists of: a no-stimulus trial, a startle trial without the 
prepulse and three prepulse-startle trials each of which 
had a pre-pulse stimulus (3, 6, or 12 dB above the 
background sound levels) prior to a startle stimulus 
(100 ms after the prepulse). These trials are ordered 
randomly and separated by variable inter-trial intervals 
to minimize habituation of the subjects to the sound 
stimuli across the trials. 
 A typical startle response, as shown in Fig. 2, can 
be described by several parameters including: 
 
• Start (mV): The voltage at the start of the response 

window 
• Vmax (mV): The highest voltage during the 

response window, or the “peak” of the response 
• Tmax (ms): The time in milliseconds at which the 

Vmax appear after the start of the response window 
• Avg. (mV): The averaged voltage across the entire 

response windo 
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Fig. 1: The mechanic illustration of the prepulse inhibition test 

 

 
 
Fig. 2: A typical startle response graph. The horizontal axis is the number of record samples (ms). The vertical axis 

represents the amplitude of the startle response in millivolts 
 
• Baseline (mV): The averaged voltage of five 

samples following the start of the response 
window. It informs the user if there is any 
excessive activity prior to the stimulus 

• T-Peak 1 (ms): The time at which the first peak 
appears 

• Amp P1 (mV): The amplitude of the first peak 
 
 These parameters produce considerable 
information in different aspects of a startle response. 
Based on this information researchers can determine if 
a startle response is caused by a sound stimulus or due 
to a random movement not-related to the stimulus. Only 
those stimulus-related startle responses should be used 
to calculate the PPI of the subject. 
 In a recent study we created a program for the post-
session data analysis of the PPI test (Zhou et al., 2009). 
This program has the functions of (1) grouping data 
under different chambers and trials; (2) eliminating the 
questionable data and (3) performing batch processing 
for a number of files at one time. Therefore, it is a great 
helper in analyzing PPI data. 
 The goal of this study is to provide an alternative 
method for the analysis of PPI data. The new method is 
expected to be more reliable and sensitive than the 
existing conventional method. For the first time, we 
applied the Kernel Density Estimation (KDE) in the 
analysis of PPI data and compared this method with the 

conventional method. The results showed that the 
Kernel density estimation performed as well or better 
than the conventional method and offered a number of 
advantages. 
 
Kernel density estimation: Kernel density estimation is 
a non-parametric method of estimating the probability 
density function of a random variable. Given some data 
about a sample of a population, KDE can extrapolate the 
data to the entire population (Everitt, 2006; Alfred et al., 
2010). This method is widely used in inferring 
population statistics based on limited, noisy samples of 
continuous random variables. In previous studies, KDE 
was used to improve the histogram of laboratory data 
(Willard and Connelly, 1992) and was applied for the 
analysis of polymorphic variation in drug metabolism 
(Herman and Laverty, 1994). 
 Given a set of independent samples  n

i i 1{S } =  for the 
random variable, KDE can construct the probability 
density function f(r) by the following procedures: 
 
Step 1: Choose a kernel function k(si) for each sample si 
Step 2: Construct f (r) by adding all kernel functions 

together and thus have the formula (1): 
 

n

i
n 1

1f (r) k(s )
n =

= ∑   (1) 
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Fig. 3: A typical KDE with optimal smoothness. We 

had four samples at 20, 25, 30 and 50 
respectively (the blue points). For each of them 
we created a Gaussian kernel function (the blue 
curves) with a variance of 5. Then, f(r) (the red 
curve) was constructed by linearly combining all 
kernel functions together 

 
 An example of KDE using the above procedures 
was shown in Fig. 3. 
 
Kernel density estimation may be used in post 
session analysis of PPI test: In PPI test, the variation 
for each animal and across a group of animals is usually 
in a wide range. Also, the system may produce noises, 
incomplete and unstable data, even errors. Therefore, 
post-session analysis of PPI data is a challenging issue. 
In this study, we modeled the PPI data probabilistically 
and used the KDE method to deal with the noises and 
outliers. 
 According to its definition, the PPI of each animal 
is calculated by the formula (2): 
 

max max(V without prepulse V with a prepulse)PPI 100
V max without prepulse

−
= ×  

 
 We denote the Vmax without prepulse as AV(P) and 
those with a prepulse as AV(PP1), AV(PP2), or 
AV(PP3), respectively. Then, the following formulas 
will be used: 
 

1
1

2
2

3
3

AV(P) AV(PP )PPI 100%
AV(P)

AV(P) AV(PP )PPI 100%
AV(P)

AV(P) AV(PP )PPI 100%
AV(P)

⎧ −
= ×⎪

⎪
⎪ −⎪ = ×⎨
⎪
⎪ −⎪ = ×
⎪⎩

  (2) 

 
The reconstruction of startle response using 
Gaussian kernel windows: Different from the simple 
averaging method, we proposed a probabilistic 
approach to modeling the PPI data. Specifically, we 

regard the startle response Vmax as a random variable SR 
and estimate the PPI based on “the most probable” 
values of the startle response for each group. The startle 
responses from an experiment are taken as independent 
samples from a true underlying distribution that emits 
the random variable SR. We denote these sampled 
examples as {SR1,.., SRi,…, SRn}, where I = 1,2,…, n 
and n is the total number of sampled examples. 
 To determine the “most probable” value for SR 
based on these limited samples, we used the KDE (also 
known as the Parzen window) method to estimate the 
probability density function f(SR), which is defined as: 
 

n i
i 1

i i

1 1 SR SRf (SR) K
n h h=

⎛ ⎞−
= − ⎜ ⎟

⎝ ⎠
∑   (3) 

 
where, k is a kernel function and hi, i = 1,…, n are 
bandwidths. Some popular choices for the kernel 
function K include Gaussian, Epanechnikov, 
exponential, cosine kernels. 
 An important practical issue in using the above 
equation is how to determine a reasonable bandwidth hi 
for the corresponding data point xi. If the bandwidth is 
too small, the resulted estimation would be under-
smoothed or irregular; on the other hand, large hi would 
produce an over-smoothed probability distribution. We 
chose hi to be the range of the meaningful startle 
responses in this study. 
 By using the proposed method, we actually 
reconstructed the effective responses over the whole 
time durations. Although this reconstruction only used 
the Vmax, we can obtain estimates at a point prior to the 
starting time. Hence, the missing information before the 
starting time of the records will be recovered. An 
illustration of this reconstruction is given in Fig. 4.  
 
Stabilizing the kernel density estimation: Having 
chosen the kernel function and its bandwidth, we are in 
a position to estimate the density distribution of the 
population based on finite samples of ܴܵ. For PPI data 
analysis, two important issues remain to be addressed. 
(1) The instability as mentioned before. Due to the 
instability, the variance of the population may become 
large and it will directly affect the range of the 
population response and thus the bandwidth for 
Gaussian kernel functions. This will lead to deteriorated 
results of the KDE. (2) The limited number of samples. 
If the number of the samples is small, it will require 
other restrictions in interpreting the data and thus lead 
to a less valid estimation. Ideally, increasing the 
population size should overcome the above two 
difficulties.   However,  this  is  often in conflict with 
the  limited  uses of animals in laboratory   experiments.  
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Fig. 4: Illustration of the reconstruction of startle 
response using Gaussian kernel windows. (a) 
shows two simulated startle response curves: the 
red one with a Vmax of 120 attained at 11th mili-
second; and the blue one with a Vmax of 160 
attained at 71st mili-second. (b) shows the 
reconstructed startle response using a Gaussian 
kernel with a bandwidth of 60 mv. The X-
coordinate of (b) is the Vmax (mv) and Y-
coordinate is the probability density. 

 
Toward computationally addressing these two issues, 
we assumed that the meaningful startle response of a 
mouse varies around the population mean. And we 
introduced a weight W(SRi) for each SRi to stabilize the 
estimation: 

 
i i

*
i

1(1 SR {SR } )

p max ({SR })
iW(SR ) e

− −

=  (4) 
 

where, {SRi} is the set of all sampled examples within a 
group and {SRi} is the population mean, max༌({SRi}) 
is the maximum of all SRi. Here p is a scaling factor. In 
this study, we set p = 0.1 in all experiments. With this 
weighting scheme, the kernel functions near the 
population mean can get a large weight compared to 
those far away from the population mean. 
 Therefore, we now have a weighted KDE f(SR)w as 
follows: 

 
n i

i w ii 1
i i

1 1 SR SRf (SR ) W(SR ) * K
n h h=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑   (5) 

 
MATERIALS AND METHODS 

 
Implementation of PPI test: As described in previous 
studies (Xu et al., 2009; 2010), each mouse was placed 

into a small Plexiglas cylinder within a large sound-
attenuating chamber (San Diego Instruments, CA, 
USA). The cylinder was seated upon a piezoelectric 
transducer, which allows vibrations to be quantified and 
displayed on a computer. The background sound levels 
(74-75 dB) and calibration of the acoustic stimuli were 
confirmed with a digital sound level meter. After a 5-
min habituation period, PPI test sessions were 
conducted. Each session started and ended with five 
startle trials (40 ms; 120 dB), respectively. Between the 
starting and ending startle trials, there were eight 
identical blocks consisting of the following five trials: a 
no-stimulus trial, a startle trial and three prepulse-startle 
trials, each of which had a pre-pulse stimulus (3, 6, or 
12 dB above the background sound levels) prior to a 
startle stimulus (100 ms after the prepulse). The 
average inter-trial interval was 15 s. Measures were 
taken of the startle amplitude for each trial, defined as 
the peak response during a 65-ms sampling window 
starting from the onset of a startle stimulus. 
 
Experimental animal groups: Two independent 
experiments were performed using male C57BL/6 mice 
(6-weeks old, 20 to 22 g) purchased from Charles River 
Laboratories (Wilmington, MA, USA). After an 
acclimatization period of 10 days, the C57BL/6 mice 
were randomly assigned to any one of the following 
four groups (8-12 mice/group) for the first experiment: 
The CNT group, in which mice ate the standard diet 
without CPZ; the CPZ group, in which mice ate the diet 
mixed with CPZ (0.2% by weight); the CLZ group, in 
which mice received CLZ (10 mg kg−1 day−1) via 
intraperitoneal injection (i.p.); and the CPZ+CLZ 
group, in which mice received CPZ and CLZ. The 
treatment continued for 21 days. On the 22nd day, all 
mice were subjected to PPI test as described above. The 
second experiment was designed in the same way as the 
first one and consisted of the four groups of CNT, CPZ, 
QTP and CPZ+QTP. QTP was also administered via 
i.p. at the dose of 10 mg kg−1 day−1. The treatments 
continued for 21 days. On the 22nd day, all mice were 
subjected to PPI test as described above. 
 All animal procedures in this study were in 
accordance with the National Institute of Health Guide 
for the Care and Use of Laboratory Animals and were 
approved by the Animal Care and Use Committee of 
Southern Illinois University Carbondale. 
 

RESULTS 
 
Post-session analysis of PPI data by the kernel 
density estimation: First, we used the no-stimulus 
trials to calibrate the KDE method. The no-stimulus 
trials reflect the rest state of mouse restricted in the 
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cylinder under the background sound level. All mice 
are expected to have same levels of rest state 
according to the neural mechanism of PPI. In 
accordance with the expectation, we found that all 
four animal groups in the first experiment have an 
identical density estimation of Vmax as shown in Fig. 
5. The second experiment showed the same results 
(not shown). These results suggest that the system was 
stable and the KDE method may be used as an 
alternative method for post-session analysis of PPI 
data. In addition, the choice for the bandwidth of the 
kernel function here was justified well as it resulted in 
a complete overlap of all four density estimation 
curves into one curve. 
 Then, we proceeded to perform the density 
estimation for each type of trials. For the startle trials, 
our results (Fig. 6) showed that only the CPZ group 
(see blue line) had a smaller startle response in response 
to the same pulse (P) whereas the other three groups 
had overlapped density estimations. This is in 
accordance with the mathematical expectation based on 
the computing formula of PPI as PPI is in direct 
proportion to the Vmax of the startle trials. “The most 
probable” Vmax of all four groups were also shown in 
this Fig. 6. For the second experiment, we got similar 
results (not shown). 
 For the first experiment, Fig. 7-9 showed the 
density estimation for the other three groups PP1, PP2, 
PP3 respectively. For the second experiment, we used 
similar estimations for each group (not shown). 
 

  
Fig. 5: Kernel density estimation of no-stimulus trials in 

the first experiment. The green, blue, red and 
yellow curves represent groups CNT, CPZ, CLZ 
and CPZ+CLZ, respectively. The dots around y 
= 3 ×10−4 are the real distributions of the 
samples. All four groups overlap completely and 
attain a maximum of probability around Vmax = 
24 mv 

  
Fig. 6: Kernel density estimation for the startle trials (P) 

of the first experiment. The green, blue, red and 
yellow curves represent groups CNT, CPZ, CLZ 
and CPZ+CLZ, respectively. The dots around y 
= 3×10−4 are the real distributions of the 
samples. All four groups had their 
corresponding maximum of probability as 
shown by the four color lines. The maximum of 
probability for each group CLZ, CPZ+CLZ, 
CPZ and CNT is attained when Vmax is 431, 
290, 278 and 379 mv, respectively. 

 

  
Fig. 7: Kernel density estimation for the PP1 trials of 

the first experiment. The green, blue, red and 
yellow curves represent groups CNT, CPZ, CLZ 
and CPZ+CLZ, respectively. The dots around y 
= 3×10−4 are the real distributions of the 
samples. All four groups had their 
corresponding maximum of probability as 
shown by the four color lines. The maximum of 
probability for each group CLZ, CPZ+CLZ, 
CPZ and CNT is attained when Vmax is 260, 205, 
204 and 259 mv, respectively 
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Fig. 8: Kernel density estimation for the PP2 trials of 

the first experiment. The green, blue, red and 
yellow curves represent groups CNT, CPZ, CLZ 
and CPZ+CLZ, respectively. The dots around y 
= 3×10−4 are the real distributions of the 
samples. All four groups had their 
corresponding maximum of probability as 
shown by the four color lines. The maximum of 
probability for each group CLZ, CPZ+CLZ, 
CPZ and CNT is attained when Vmax is 247, 128, 
168 and 198 mv, respectively 

 

 
 
Fig. 9: Kernel density estimation for the PP3 trials of 

the first experiment. The green, blue, red and 
yellow curves represent groups CNT, CPZ, CLZ 
and CPZ+CLZ, respectively. The dots around y 
= 3×10−4 are the real distributions of the 
samples. All four groups had their 
corresponding maximum of probability as 
shown by the four color lines. The maximum of 
probability for each group CLZ, CPZ+CLZ, 
CPZ and CNT is attained when Vmax is 196, 133, 
136 and 157 mv, respectively 

 
 
Fig. 10: PPIs of different animal groups in the first 

experiment computed by the traditional 
method. Abbreviations: CNT, controls; CPZ, 
cuprizone; CLZ, clozapine 

 

 
 
Fig. 11: PPIs of different animal groups in the first 

experiment computed by the KDE method. 
Abbreviations: CNT, controls; CPZ, cuprizone; 
CLZ, clozapine. 

 
Table 1: Comparing the PPIs of different animal groups in the first 

experiment. Graphical illustration of the results for each 
method is shown in Fig. 10 and 11, respectively 

 Groups PPI1 (%) PPI2 (%) PPI3 (%) 
Conventional CNT 29.16 48.81 61.06 
method CPZ 29.57 37.79 53.28 
 CLZ 36.43 47.10 61.22 
 CPZ+CLZ 31.38 48.92 57.63 
Score: 142.358    
KDE CNT 31.52 47.82 58.51 
 CPZ 33.63 30.85 44.13 
 CLZ 39.59 53.17 64.29 
 CPZ+CLZ 36.23 49.13 64.87 
Score: 1044.129    
Abbreviations: CNT, controls; CPZ, cuprizone; CLZ, clozapine 

 
 Finally, the PPIs of each animal group were 
computed by the conventional method and KDE using 
the same formulas (3). All computed results were 
summarized in Table 1 (for the first experiment) and 
Table 2 (for the second experiment), in which The score 
was defined as the sum of distances between the CPZ 
group and all other three groups as only the CPZ group 
was a distinct group with the smallest PPIs. 



J. Computer Sci., 7 (5): 611-618, 2011 
 

617 

 
 
Fig. 12: PPIs of different animal groups in the second 

experiment computed by the traditional 
method. Abbreviations: CNT, controls; CPZ, 
cuprizone; QTP, quetiapine. 

 

 
 
Fig. 13: PPIs of different animal groups in the second 

experiment computed by the KDE method. 
Abbreviations: CNT, controls; CPZ, cuprizone; 
QTP, quetiapine. 

 
Table 2: Comparing the PPIs of different animal groups in the 

second experiment. Graphical illustration of the results for 
each method is shown in Fig. 12 and 13, respectively 

 Groups PPI1 (%) PPI2 (%) PPI3 (%) 
Conventional CNT 30.12 60.44 74.88 
method CPZ 4.46 20.53 43.58 
 QTP 18.03 42.79 54.73 
 CPZ+QTP 9.25 45.66 57.33 
Score: 1292.747    
KDE CNT 26.06 55.65 84.23 
 CPZ 3.36 16.94 40.96 
 QTP 19.98 42.57 63.08 
 CPZ+QTP 17.36 48.09 46.19 
Score: 2388.982    
Abbreviations: CNT, controls; CPZ, cuprizone; QTP, quetiapine. 

 
 Although the results from the two methods suggest 
the same conclusion that mice in the CPZ group had 
lower PPI than the other three groups, the KDE method 
showed some advantages over the conventional 
method. These advantages and their significance will be 
discussed in the discussion part. 

DISCUSSION 
 
 Compared to the conventional method, the 
proposed weighted KDE method has the following 
advantages in the analysis of PPI data. 
 First, the weighted KDE performed better than the 
conventional method. This better performance was 
objectively evaluated by the values of score resulted 
from the PPI of all groups computed using the two 
methods. According to the definition above, the value 
of a score is larger the performance of the method is 
better from which the score is computed. It is clear that 
the weighted KDE method produced larger scores in 
both the first and second experiments as shown in Table 
1 and 2. 
 In Table 1, the weighted KDE method enlarged the 
differences between the CPZ group and the other three 
groups in PPI2 and PPI3; therefore it produced a larger 
score compared to the conventional method. In other 
words, the weighted KDE method increases the 
sensitivity of the PPI test thus can diminish the demand 
of animals required for an experiment. Obviously, this 
is an animal-friendly advantage. Also, it can decrease 
the workload for lab researchers. 
 Second, the weighted KDE method appears more 
robust to noise and subject variability. The weighted 
KDE method reconstructs the startle responses from a 
sample of examples. The reconstructed responses are 
relatively insensitive to the noise and subject 
variability. As seen from Fig. 6-9, the weighted KDE 
can give the most probable values of the estimation, 
which correspond to the modes of the probability 
density functions. The estimated density functions are 
symmetric around the mode. We have used the mode 
values in calculating the PPIs. The results appear more 
stable than conventional method. The stabilizing 
technique with weighting has further enhanced the 
stability. The choice of bandwidth used in the weighted 
KDE appears natural and has a meaningful 
interpretation. 
 

CONCLUSION 
 

 As a conclusion, we shall recommend the 
probabilistic approaches on similar studies. As shown 
in this work, the probabilistic modeling is quite 
effective in considering incomplete and unstable 
response signals, which are vital to the analysis of 
signals generated from animal behavioral experiments. 
Also, the weighting processing in this study is quite 
important since the number of samples are limited and 
there might be outliers in the measured signals.  
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 The next line of research will include investigating 
whether other factors than Vmax can be also significant 
in determining the effect of PPI and a possible further 
enhancement of the sensitivity of the PPI test. 
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