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Abstract: Problem statement: Even though the computational steering state-of-the-art environments 
allow users to embed their simulation codes as a module for an interactive steering without the 
necessity for their own expertise in high-performance computing and visualisation, e.g., these 
environments are limited in their possible applications and mostly entail heavy code changes in order 
to integrate the existing code. Approach: In this study, we introduce an integration framework for 
engineering applications that supports distributed computations as well as visualization on-the-fly in 
order to reduce latency and enable a high degree of interactivity with only minor code alterations 
involved. Moreover, we tackle the problem of long communication delays in the case of huge data 
advent, which occur due to rigid coupling of simulation back-ends with visualization front-ends and 
handicap a user in exploring intuitively the relation of cause and effect. Results: The results for the 
first test cases are encouraging, both showing that we obtain excellent speedup in parallel scenarios 
and proving that the overhead introduced by the framework itself is negligible. 
Conclusion/Recommendations: Testing the case involving massively parallel simulation, as well as 
the integration of the framework into several parallel engineering applications are part of our imminent 
research. 
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INTRODUCTION 

 
 Interactive computing, in general, refers to the real-
time interplay of a user with a program during the 
program runtime in order to estimate its actual state or 
tendency and to fetch an opportunity to react on variety 
of changes. Within numerical simulation experiments, 
specifically, this implies that the geometry of the 
simulated scene can be modified interactively altogether 
with boundary conditions or a distinct feature of the 
application, thus, the user can gain “insight concerning 
parameters, algorithmic behavior and optimization 
potentials” (Mulder et al., 1999). The commonly agreed 
central features of interactive computing in this case are: 
on the front end, a sophisticated user interface and the 
visualization of results on demand and, on the back-end, 
a separated steerable, often time- and memory-
consuming simulation running on a high-performance 
cluster (Fig. 1).  
 Even though powerful tools such as Van Liere and 
Van Wijk (1996); McCorquodale et al. (2000) and 

Reality Grid (2003) allow users to embed their 
simulation codes as a module for an interactive steering 
without the necessity for their own expertise in 
algorithms and data structures, high-performance 
computing and visualization, these tools are limited in 
their possible applications and mostly entail heavy code 
changes in order to integrate the existing code.  
 

 
 
Fig. 1: At the development front-end, the user guides 

the simulation in building a solution to his 
problem via graphical user interface, while on 
the back-end, an often time-and memory-
consuming program is being executed 
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The state of the art: CSE is a computational steering 
environment whose kernel is designed to be very 
simple, flexible, minimalistic and all higher level 
functionality is pushed into the modular components, 
so-called satellites. It is based on the idea of the data 
manager informing all the satellites of changes made in 
the data and an interactive graphics editing tool 
allowing users to bind data variables to user interface 
elements. 
 CUMULVS is a middle layer between the 
application program and the visualization and steering 
front-end. It encompasses all the connection and data 
protocols needed to dynamically attach multiple 
visualization and steering front-ends to a running 
application. The user has to declare in the application 
which parameters are allowed to be modified or steered 
during the computation. 
 In the SCIRun Problem Solving Environment 
(PSE) for modeling, simulation and visualization of 
scientific problems, a user may, on the one hand, 
smoothly construct a network of required modules via a 
visual programming interface, while, on the other hand, 
changes with a deeper impact on the simulation require 
an automatic cancellation and restart of the simulation. 
In addition, this PSE has typically been adopted to 
support pure thread-based parallel simulations, 
consequently limiting the scale of the scientific 
computation that can be tackled to the shared memory 
environments. 
 Uintah is a component-based visual PSE that builds 
upon the best features of the SCIRun PSE, being, 
contrarily, designed to specifically address the 
problems of massively parallel computation on 
terascale computing platforms.  
 In the RealityGrid project, an application is 
structured into a client, a simulation and a visualization 
unit communicating via calls to the steering library 
functions. It involves insertion of check- and break-
points at fixed places in the code where modified 
parameters are obtained and the simulation is to be 
restarted, respectively. 
 Within the Chair for Computation in Engineering 
at Technische Universität München, in the previous 
years, several successful Computational Steering 
research projects involving long-term cooperation with 
industry partners took place. 
 Valuable experience has been gained and advanced 
state reached in efforts to reduce the work required to 
extend an existing application code for steering. 
Performance investigations of several interactive 
applications, in regard to responsiveness to steering, 
have been done, as well as identifications of factors 
limiting performance. The focus at this time has been 

set to interactive Computational Fluid Dynamics 
(CFD), based on the Lattice-Boltzmann method, 
including Heating Ventilation Air-Conditioning 
(HVAC) system simulator (Borrmann et al., 2005), 
online-CFD simulation of turbulent indoor flow in 
CAD-generated virtual rooms (Wenisch et al., 2004), 
interactive thermal comfort assessment (Van Treeck et 
al., 2007). However, the developed concepts have been 
primarily adopted to this limited number of application 
scenarios, thus, they allow for further investigations so 
as to become more generic. 
 

MATERIALS AND METHODS 
 

  In the interest of widening the scope of the 
applications of the framework, our essential aim is an 
instant response of any simulation back-end to the 
changes made by the user. So as to achieve it, the 
regular course of the simulation coupled to our 
framework is being interrupted, using software 
equivalent of hardware interrupts, i.e., signals, in small, 
application-compatible, cyclic intervals, followed 
subsequently by a check for updates. If, meanwhile, 
there has been no user interaction, the control is given 
back to the simulation, which continues from the state 
saved at the previous interrupt-point, either until the 
results of the computation are complete and should be 
sent to the user, or until the end of yet another interrupt 
interval. Otherwise, the new data is received and 
simulation state variables are manipulated in order to 
make the computation stop and then start anew 
according to the updated settings (boundary conditions, 
simulation parameters). 
 As elaborated, to guarantee the correct execution of 
a program, one should use certain type qualifiers for the 
variables which are subjects to sudden change or 
objects to interrupts. First of all, one should ensure that 
certain types of objects which are being modified both 
in the signal handler and the main computation are 
updated in an non-interruptible way. Second of all, if 
the value in the signal handler is changed, one should 
take care that, due to compiler optimizations, the old 
value in the register is not used again instead of reading 
the updated value from the memory (which might result 
in undesired behavior of the program). Moreover, it is 
the responsibility of a user himself to instruct the 
simulation program how the received data should be 
matched to the simulation-specific requisites so as to 
reflect properly the outcome of the modifications.  
 Referring to the aforementioned idea, a relevant 
remark is that, under any circumstances, when the 
control of execution is given back to the main 
computation, it is obliged to continue at the point where 
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it has previously been interrupted. However, taking the 
pseudo code of an iterative solver for a system of linear 
equations (Fig. 2) as an example, this unconditionally 
happens only until the end of the current, most-inner 
loop iteration, where the earliest opportunity is used to 
compare the values of the simulation state variables 
and, if result of the comparison indicates so, 
consequently exit all the loops (i.e., starting with most-
inner one and finishing with the most-outer one). This 
exactly means starting computation over again. Finally, 
with either one or several number of iterations being 
finished without an interrupt, new results are handed on 
to the user process for visualization. One more time it is 
user’s responsibility to prescribe to the front-end 
process how to interpret the received data so that it can 
be coherently visualized.  
 Due to the complexity requirements and amount of 
data in numerical simulations nowadays, in order to 
fully exploit the general availability and increasing 
CPU power of high-performance computers, 
sophisticated parallel programming methods are 
inclined. The design of our framework, therefore, takes 
into consideration and supports different parallel 
paradigms, which results in an extra effort to ensure 
correct program execution and avoid synchronization 
problems when using threads, as explained further in 
the text. 
 
Multithreading parallelization scenario: In the case 
of pure multithreading (with OpenMP/POSIX threads, 
e.g.,) used for the computations on the simulation side, 
the idea is that as soon as a random thread is interrupted 
at the expiration of the user-specified interval, it checks, 
via the functionality of the Message Passing Interface 
(MPI), if any information regarding the user activity is 
available. If the aforesaid probing of the user’s message 
indicates that any change has been made, the receiving 
thread instantly obtains information about it. 
Furthermore, all the other threads become aware that 
their computations should be started over again and 
proceed in the way in which clean termination of the 
parallel region is guaranteed, as described in more 
detail.  
 
“Hybrid” parallelization scenario: In the case of 
hybrid parallelization of a simulation (i.e., MPI and 
OpenMP), a random thread in each active process is 
being interrupted, hence, fetches an opportunity to 
check for the updates. The difference in comparison to 
the exclusively multithreaded parallelization is that now 
all the processes have to be explicitly notified about the 
changes performed by a user, which, matched up to 

pure multithreading, also involves additional 
communication overheads. If one master process, which 
is the direct interface of the user’s process to the 
computing-nodes, i.e., slaves, is informing all of them 
about the user interaction, this may result in the master 
process becoming a bottleneck.  
 Therefore, a hierarchical non-blocking broadcast 
algorithm for transferring the signal to all computing 
nodes has been implemented (Fig. 3).  
 What is more, in efforts to interrupt one thread per 
process, an inevitable trade-off between ensuring a 
minimal number of checks per process and allowing for 
receiving the data promptly has to be faced, thus, as a 
next step, an optimal interval between the interrupts on 
different levels of the communication hierarchy is 
going to be estimated. In addition, a possibility of 
distributing the tasks among several user processes, 
each in charge of a certain group of simulation 
processes will be examined.  
 
Test case: To evaluate our concepts, we have coupled 
our framework, on one side, to a C++ 2D simulation of 
heat conduction (described by Laplace heat equation) in 
a given region over time. Solutions of the heat equation 
are characterized by a gradual smoothing of the initial 
temperature distribution by the heat flow from  warmer  
to colder areas of a domain.  
 This means that different states and starting 
conditions will tend toward the same stable equilibrium. 
After discretising using a Finite Difference scheme for 
updating the values, we come up with a five-point 
stencil. The system of linear equations is then solved 
using the Gauss-Seidel iterative method. 
 On the other side, we have coupled our framework 
to a graphical user interface using the wxWidgets 
library. The temperature is represented along the z-
axes, pointing upward, hence, showing the variations of 
the temperature in the corresponding 2D domain. The 
simulation and the visualization are implemented as 
separate MPI processes. 
 

 
 
Fig. 2: Pseudo code: An example of an iterative solver  
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Fig. 3: User process sends the data about the update to solely master process on the simulation side; master process 

checks for the updates in small fixed intervals and signal is transferred from master to all the slaves via 
communication hierarchy. All the slaves then do their own checks in their own fixed intervals 

 
Initial settings: The very first settings, which include 
grid generation, error tolerance and maximal number of 
iterations for the simulation, are specified by a user via 
graphical user interface (Fig. 4a). Immediately after 
defining these parameters, one can define the boundaries 
of the domain and set points with certain fixed values of 
the temperature, so-called pillars (Fig. 4b). 
 
User interaction: When it comes to interplay with the 
program during the simulation, there are a few 
possibilities available-one can interactively add, delete 
or move pillars, add, delete, or move boundary points, 
change maximal possible number of iterations and error 
tolerance.  
 However, every time the change is performed by a 
user and the simulation becomes aware of it, the 
computation is restarted. Thus, what is unfortunately 
not feasible on a 300×300 grid, due to the short 
intervals between two restarts in the case of “hand over 
fist” user interaction, is an instant estimation of the 
equilibrium state for points of the domain far away 
from pillars, as shown in Fig. 5b. In this case, we profit 
from the hierarchical approach, introduced already in 
the next paragraph. 
 
Hierarchical approach: Our hierarchical approach is 
based on the usage of several different grids depending 
on the frequency of the user interaction. The principle 
on the example of the test case is as follows: At the 
beginning, the initial grid is used for the computation. 
In the case that some user interaction occurs, the 
simulation process recognises it and, as soon as it 
restarts the computation with the updated settings, the 

coarser grids are used, the level of coarseness being 
determined based on the frequency of user’s activity. 
 In this particular test case, we are using three 
different grids.  Besides  the initial 300×300 grid (Fig. 
6a),  the  four times smaller, intermediate one (Fig. 6b), 
is used in the case of lower pace of interactions-
adding/deleting pillars or boundary points, e.g. Finally, 
the coarsest, 75×75 (Fig. 6c) is brought into play for the 
occasion of the very high frequency of moving 
boundary points or pillars over the domain.  
 Although at this point, one does not have 
completely accurate results, the tendency of the running 
simulation in the overall domain can be easily and 
instantly observed, independently on the number and 
rate of changes applied. At last, when the current 
settings satisfy user’s requirements, no more interaction 
is involved and the stage of calculating more accurate 
results is reached again.  
 Namely, as soon as the simulation at the back-end 
realizes that there has been no front-end intervention for 
a user-predefined time slot, it stops, switches back to 
one of the finer grids, depending on the slot and starts a 
new computation. In this case, the results of the 
previous computing on the coarser grid are discarded. 
To speed up reaching the heat equilibrium on finer 
grids, a multi-level method, where the previous 
precious results are reused, is exploited, as commented 
on in more detail further in the article. 
 
Multi-level approach: In order to avoid wasting the 
computational cycles within the runtime while the user 
is interacting, we employ a multi-level algorithm, i.e., 
the results of the computation on the coarsest grid are 
not   disposed   of   when   switching   to  the  finer  one.  
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(a) 
 

 
(b) 

 
Fig. 4: (a) Initial settings; (b) simulation running with initial border and pillar settings on a grid 300×300, with error 

tolerance e-05 and maximal number of iterations set to 10,000 
 
Namely, our concept already involves a hierarchy of 
discretisations as in multigrid algorithm and we profit 
from the analogous idea. Nevertheless, instead of 
accelerating the convergence of a basic iterative method 
by global correction from time to time, accomplished 
by solving a coarser problem, i.e. descending to the 
coarser grids and calculating an error, as in multigrid 
algorithm, our scheme starts with the solution on the 
coarsest grid and only uses the result we gain as an 
initial guess of a result on a finer one (Fig. 7). 

 As expected, the results show clearly that the speed of 
convergence is significantly higher with the new approach. 
 For the examples of the settings we tested 
including an initial 300×300 grid and several different 
pillar Pi (xi, yi) and boundary Bj (xj, yj) points with 
corresponding ordered pairs (xk, yk) of x- and y-axes 
indices respectively and the error tolerance set to e-05, 
the number of iterations needed for convergence both 
on the intermediate and the initial grid can be 
significantly improved. 
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(a) 
 

 
(b) 
 

Fig. 5: (a) An initial scenario; (b) moving pillars/boundaries rapidly leads to the continual restart of the computation 
and inability to estimate the equilibrium temperature in the region farther away from the pillars, i.e. reached 
in later iterations 

 

 
 
Fig. 6: Switching from the finest grid (grid 1: 300×300) by adding/deleting pillars/boundaries to the intermediate 

(grid 2: 150×150) and, finally, when moving pillars/boundaries, to the coarsest one (grid 3: 75×75) and 
reversely to the initial grid when there is an interval without any interaction 

 

 
 
Fig. 7: Copying the results (temperature values) from the computation on the coarser grid to the initial vectors of the 

finer one. 
 
Code modification requirements: To integrate the 
framework into any application scenario, a few 

modifications of the code have to be made by the user. Since 
these modifications are only minor, we list all of them.  
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 (a) (b) 

 

 
 (c) (d) 

 
Fig. 8a-c: Non-hierarchical approach: estimations of the overall execution time in seconds (vertical axis) for 1, 2 and 

4 threads (horizontal axis) doing the computations on grid 1000×1000, 500×500 and 300×300 
respectively; square and cross markers represent respectively the values without and with checks for 
updates on simulation side, without any user interference actually occurring and almost completely 
overlap each other; triangle markers show the values with user interaction rate of 5 milliseconds. d) 
Hierarchical approach: measurements of the overall time in seconds (vertical axis) for 1, 2 and 4 threads 
(horizontal axis) in the case of series of user interaction occurring every 5 milliseconds, with 0.5 seconds 
break in between series; triangular and square markers connected with solid line show overheads of the 
time in the case of user interaction in comparison to the pure execution time, similarly as in a), while the 
markers connected with dotted line show how these overheads are minimized using hierarchical approach, 
compromising the accuracy 

 
 First of all, all the variables which will be affected 
by the interrupt handler in order to force the restart of 
the computation have to be declared both global (Fig. 8) 
and atomicity of their updates and prevention of the 
compiler optimizations which would lead to incorrect 
value references insured. Second of all, the integrity of 
each user-defined ‘atomic’ sequence of instructions in 
the simulation code has to be ensured. Furthermore, the 
calls to the provided send and receive functions which 
would be interface to our framework have to be 

included in the appropriate places in the code. 
Nevertheless, the user himself should instruct the 
interpretation of the data (in the receive buffers on both 
simulation and visualisation side, e.g.). Finally, he has 
to enable the regular checks for updates by including 
appropriate functions which will examine and change 
the default signal (interrupt) action, specifying in the 
same time the time interval in which the checks of 
the simulation process(es) should be made, as shown 
in the pseudo code example. 
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RESULTS 
 
 So as to evaluate potential overheads caused by 
integration of our framework, we have done 
measurements, the average of several being graphically 
represented in Fig. 9.  
 First of all, concerning the non-hierarchical 
approach, what has been estimated for the cases of 
single-, two-and four-threaded simulation and the 
different initial problem sizes: 1000×1000 (Fig. 8a), 
500×500 (Fig. 8b) and 300×300 (Fig. 8c), was the 
overhead caused only by cyclic interruption of the 
simulation every millisecond, realising that there is no 
update available, since on the front-end the user is 
absolutely not interfering. What is easily observable 
concerning the total execution time of the simulation for 
all the three aforementioned scenarios is that this kind of 
overhead, caused, as a matter of fact, only by raising 
interrupts which do a message probing, can be neglected. 
 In the same three graphs of Fig. 9, the runtime 
estimations which have been illustrated make it easy to 
compare the total execution time of the simulation with 
or without updates sent from the front-end. The 
measurements have been made for the case of user 
interaction occurring repeatedly, every 5 milliseconds. 
The conclusion is that in the case of two or four 
threads for the specified problem sizes one may only 
observe very small overheads, while in the case of a 
single thread being interrupted and restarting its 
computation with aforementioned high and one must 
point out very unlikely, frequency of user interaction, 
more    significant   overheads   may   be    introduced. 
 

 
 
Fig. 9: Pseudo code which exemplifies for an iterative 

solver the code modifications necessary to 
integrate the framework into any application 

These results are as expected, concerning the fact that 
our tests show that the number of interrupts where 
interaction is recognized in the case of a single thread is 
almost three times bigger (ca. 2500) than in the case of 
two and almost 5 times than in the case of 4 threads. 
Thus, the amount of computational cycles we discard in 
this scenario is larger.  
 At the point at which we have introduced the 
hierarchical approach based on switching between three 
different grids, so as to compare the two approaches, 
we have decided to measure the execution time in the 
case of non-periodical user interaction, being performed 
as a series of 5 millisecond frequent changes, with half 
of a second long intervals in between. The overhead 
caused in non-hierarchical scenario for 1000×1000 grid 
and one thread, which is most challenging case, for this 
new predefined occurrence of user interference is 
proven to be similar as in Fig. 8a. Nevertheless, the 
hierarchical approach outcome show that the 
aforementioned overhead in the example with one 
thread is drastically reduced in comparison to the non-
hierarchical. In other words, the time of executing the 
same number of iterations, but now making use of three 
different grids is very close to the execution time 
without any interrupts, although in some number of 
iterations, while the interaction is very frequent, the 
user would have to agree with lower accuracy 
consequences. For two or four threads, this overhead 
turns out to be even smaller (Fig. 8d). 
 

DISCUSSION 
 
 Referring to what has already been said, it is 
important to point out that the hierarchical approach we 
have in mind for the future test cases is not limited to 
recursive coarsening the grid. On the contrary, one can 
analogously utilize other simulation-specific hierarchies 
(different polynomial degrees of basis functions in 
Finite Element scheme approximation, e.g.,) and any 
user of the framework can, if needed, easily adopt it to 
his individual requirements. One of our most imminent 
intentions is the existing p-FEM code used for 
computational orthopedics. 
 

CONCLUSION 
 
 In this study, we have presented a generic platform 
which couples simulation codes and visualization tools 
in the way which allows a user to trigger a simulation 
during the runtime, based on a ‘minimal invasion’ 
principle, i.e. minor code changes necessary and receive 
prompt feedback. Although the results for the first test 
cases look very promising the question of the signal 
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transfer from a user to all the computing nodes in the 
case of massively parallel simulation is a part of the 
current research, as well as the integration and testing 
of the framework incorporated into several parallel 
engineering simulation scenarios.  
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