
Journal of Computer Science 7 (5): 591-599, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Jovana Knežević, Lehrstuhl für Computation in Engineering, Technische Universität München,
 Arcisstraße 21, 80333 München, Germany

591

Interactive Computing Framework for Engineering Applications

Jovana Knezevic, Jerome Frisch, Ralf-Peter Mundani, Ernst Rank

Department of Computation Engineering, Technische Universität München,
Arcisstraße 21, 80333 Munich, Germany

Abstract: Problem statement: Even though the computational steering state-of-the-art environments
allow users to embed their simulation codes as a module for an interactive steering without the
necessity for their own expertise in high-performance computing and visualisation, e.g., these
environments are limited in their possible applications and mostly entail heavy code changes in order
to integrate the existing code. Approach: In this study, we introduce an integration framework for
engineering applications that supports distributed computations as well as visualization on-the-fly in
order to reduce latency and enable a high degree of interactivity with only minor code alterations
involved. Moreover, we tackle the problem of long communication delays in the case of huge data
advent, which occur due to rigid coupling of simulation back-ends with visualization front-ends and
handicap a user in exploring intuitively the relation of cause and effect. Results: The results for the
first test cases are encouraging, both showing that we obtain excellent speedup in parallel scenarios
and proving that the overhead introduced by the framework itself is negligible.
Conclusion/Recommendations: Testing the case involving massively parallel simulation, as well as
the integration of the framework into several parallel engineering applications are part of our imminent
research.

Key words: Interactive computing, Computational Steering Environment (CSE), pure multithreading,

integration framework, engineering applications, Problem Solving Environment (PSE),
Message Passing Interface (MPI)

INTRODUCTION

 Interactive computing, in general, refers to the real-
time interplay of a user with a program during the
program runtime in order to estimate its actual state or
tendency and to fetch an opportunity to react on variety
of changes. Within numerical simulation experiments,
specifically, this implies that the geometry of the
simulated scene can be modified interactively altogether
with boundary conditions or a distinct feature of the
application, thus, the user can gain “insight concerning
parameters, algorithmic behavior and optimization
potentials” (Mulder et al., 1999). The commonly agreed
central features of interactive computing in this case are:
on the front end, a sophisticated user interface and the
visualization of results on demand and, on the back-end,
a separated steerable, often time- and memory-
consuming simulation running on a high-performance
cluster (Fig. 1).
 Even though powerful tools such as Van Liere and
Van Wijk (1996); McCorquodale et al. (2000) and

Reality Grid (2003) allow users to embed their
simulation codes as a module for an interactive steering
without the necessity for their own expertise in
algorithms and data structures, high-performance
computing and visualization, these tools are limited in
their possible applications and mostly entail heavy code
changes in order to integrate the existing code.

Fig. 1: At the development front-end, the user guides

the simulation in building a solution to his
problem via graphical user interface, while on
the back-end, an often time-and memory-
consuming program is being executed

J. Computer Sci., 7 (5): 591-599, 2011

592

The state of the art: CSE is a computational steering
environment whose kernel is designed to be very
simple, flexible, minimalistic and all higher level
functionality is pushed into the modular components,
so-called satellites. It is based on the idea of the data
manager informing all the satellites of changes made in
the data and an interactive graphics editing tool
allowing users to bind data variables to user interface
elements.
 CUMULVS is a middle layer between the
application program and the visualization and steering
front-end. It encompasses all the connection and data
protocols needed to dynamically attach multiple
visualization and steering front-ends to a running
application. The user has to declare in the application
which parameters are allowed to be modified or steered
during the computation.
 In the SCIRun Problem Solving Environment
(PSE) for modeling, simulation and visualization of
scientific problems, a user may, on the one hand,
smoothly construct a network of required modules via a
visual programming interface, while, on the other hand,
changes with a deeper impact on the simulation require
an automatic cancellation and restart of the simulation.
In addition, this PSE has typically been adopted to
support pure thread-based parallel simulations,
consequently limiting the scale of the scientific
computation that can be tackled to the shared memory
environments.
 Uintah is a component-based visual PSE that builds
upon the best features of the SCIRun PSE, being,
contrarily, designed to specifically address the
problems of massively parallel computation on
terascale computing platforms.
 In the RealityGrid project, an application is
structured into a client, a simulation and a visualization
unit communicating via calls to the steering library
functions. It involves insertion of check- and break-
points at fixed places in the code where modified
parameters are obtained and the simulation is to be
restarted, respectively.
 Within the Chair for Computation in Engineering
at Technische Universität München, in the previous
years, several successful Computational Steering
research projects involving long-term cooperation with
industry partners took place.
 Valuable experience has been gained and advanced
state reached in efforts to reduce the work required to
extend an existing application code for steering.
Performance investigations of several interactive
applications, in regard to responsiveness to steering,
have been done, as well as identifications of factors
limiting performance. The focus at this time has been

set to interactive Computational Fluid Dynamics
(CFD), based on the Lattice-Boltzmann method,
including Heating Ventilation Air-Conditioning
(HVAC) system simulator (Borrmann et al., 2005),
online-CFD simulation of turbulent indoor flow in
CAD-generated virtual rooms (Wenisch et al., 2004),
interactive thermal comfort assessment (Van Treeck et
al., 2007). However, the developed concepts have been
primarily adopted to this limited number of application
scenarios, thus, they allow for further investigations so
as to become more generic.

MATERIALS AND METHODS

 In the interest of widening the scope of the
applications of the framework, our essential aim is an
instant response of any simulation back-end to the
changes made by the user. So as to achieve it, the
regular course of the simulation coupled to our
framework is being interrupted, using software
equivalent of hardware interrupts, i.e., signals, in small,
application-compatible, cyclic intervals, followed
subsequently by a check for updates. If, meanwhile,
there has been no user interaction, the control is given
back to the simulation, which continues from the state
saved at the previous interrupt-point, either until the
results of the computation are complete and should be
sent to the user, or until the end of yet another interrupt
interval. Otherwise, the new data is received and
simulation state variables are manipulated in order to
make the computation stop and then start anew
according to the updated settings (boundary conditions,
simulation parameters).
 As elaborated, to guarantee the correct execution of
a program, one should use certain type qualifiers for the
variables which are subjects to sudden change or
objects to interrupts. First of all, one should ensure that
certain types of objects which are being modified both
in the signal handler and the main computation are
updated in an non-interruptible way. Second of all, if
the value in the signal handler is changed, one should
take care that, due to compiler optimizations, the old
value in the register is not used again instead of reading
the updated value from the memory (which might result
in undesired behavior of the program). Moreover, it is
the responsibility of a user himself to instruct the
simulation program how the received data should be
matched to the simulation-specific requisites so as to
reflect properly the outcome of the modifications.
 Referring to the aforementioned idea, a relevant
remark is that, under any circumstances, when the
control of execution is given back to the main
computation, it is obliged to continue at the point where

J. Computer Sci., 7 (5): 591-599, 2011

593

it has previously been interrupted. However, taking the
pseudo code of an iterative solver for a system of linear
equations (Fig. 2) as an example, this unconditionally
happens only until the end of the current, most-inner
loop iteration, where the earliest opportunity is used to
compare the values of the simulation state variables
and, if result of the comparison indicates so,
consequently exit all the loops (i.e., starting with most-
inner one and finishing with the most-outer one). This
exactly means starting computation over again. Finally,
with either one or several number of iterations being
finished without an interrupt, new results are handed on
to the user process for visualization. One more time it is
user’s responsibility to prescribe to the front-end
process how to interpret the received data so that it can
be coherently visualized.
 Due to the complexity requirements and amount of
data in numerical simulations nowadays, in order to
fully exploit the general availability and increasing
CPU power of high-performance computers,
sophisticated parallel programming methods are
inclined. The design of our framework, therefore, takes
into consideration and supports different parallel
paradigms, which results in an extra effort to ensure
correct program execution and avoid synchronization
problems when using threads, as explained further in
the text.

Multithreading parallelization scenario: In the case
of pure multithreading (with OpenMP/POSIX threads,
e.g.,) used for the computations on the simulation side,
the idea is that as soon as a random thread is interrupted
at the expiration of the user-specified interval, it checks,
via the functionality of the Message Passing Interface
(MPI), if any information regarding the user activity is
available. If the aforesaid probing of the user’s message
indicates that any change has been made, the receiving
thread instantly obtains information about it.
Furthermore, all the other threads become aware that
their computations should be started over again and
proceed in the way in which clean termination of the
parallel region is guaranteed, as described in more
detail.

“Hybrid” parallelization scenario: In the case of
hybrid parallelization of a simulation (i.e., MPI and
OpenMP), a random thread in each active process is
being interrupted, hence, fetches an opportunity to
check for the updates. The difference in comparison to
the exclusively multithreaded parallelization is that now
all the processes have to be explicitly notified about the
changes performed by a user, which, matched up to

pure multithreading, also involves additional
communication overheads. If one master process, which
is the direct interface of the user’s process to the
computing-nodes, i.e., slaves, is informing all of them
about the user interaction, this may result in the master
process becoming a bottleneck.
 Therefore, a hierarchical non-blocking broadcast
algorithm for transferring the signal to all computing
nodes has been implemented (Fig. 3).
 What is more, in efforts to interrupt one thread per
process, an inevitable trade-off between ensuring a
minimal number of checks per process and allowing for
receiving the data promptly has to be faced, thus, as a
next step, an optimal interval between the interrupts on
different levels of the communication hierarchy is
going to be estimated. In addition, a possibility of
distributing the tasks among several user processes,
each in charge of a certain group of simulation
processes will be examined.

Test case: To evaluate our concepts, we have coupled
our framework, on one side, to a C++ 2D simulation of
heat conduction (described by Laplace heat equation) in
a given region over time. Solutions of the heat equation
are characterized by a gradual smoothing of the initial
temperature distribution by the heat flow from warmer
to colder areas of a domain.
 This means that different states and starting
conditions will tend toward the same stable equilibrium.
After discretising using a Finite Difference scheme for
updating the values, we come up with a five-point
stencil. The system of linear equations is then solved
using the Gauss-Seidel iterative method.
 On the other side, we have coupled our framework
to a graphical user interface using the wxWidgets
library. The temperature is represented along the z-
axes, pointing upward, hence, showing the variations of
the temperature in the corresponding 2D domain. The
simulation and the visualization are implemented as
separate MPI processes.

Fig. 2: Pseudo code: An example of an iterative solver

J. Computer Sci., 7 (5): 591-599, 2011

594

Fig. 3: User process sends the data about the update to solely master process on the simulation side; master process

checks for the updates in small fixed intervals and signal is transferred from master to all the slaves via
communication hierarchy. All the slaves then do their own checks in their own fixed intervals

Initial settings: The very first settings, which include
grid generation, error tolerance and maximal number of
iterations for the simulation, are specified by a user via
graphical user interface (Fig. 4a). Immediately after
defining these parameters, one can define the boundaries
of the domain and set points with certain fixed values of
the temperature, so-called pillars (Fig. 4b).

User interaction: When it comes to interplay with the
program during the simulation, there are a few
possibilities available-one can interactively add, delete
or move pillars, add, delete, or move boundary points,
change maximal possible number of iterations and error
tolerance.
 However, every time the change is performed by a
user and the simulation becomes aware of it, the
computation is restarted. Thus, what is unfortunately
not feasible on a 300×300 grid, due to the short
intervals between two restarts in the case of “hand over
fist” user interaction, is an instant estimation of the
equilibrium state for points of the domain far away
from pillars, as shown in Fig. 5b. In this case, we profit
from the hierarchical approach, introduced already in
the next paragraph.

Hierarchical approach: Our hierarchical approach is
based on the usage of several different grids depending
on the frequency of the user interaction. The principle
on the example of the test case is as follows: At the
beginning, the initial grid is used for the computation.
In the case that some user interaction occurs, the
simulation process recognises it and, as soon as it
restarts the computation with the updated settings, the

coarser grids are used, the level of coarseness being
determined based on the frequency of user’s activity.
 In this particular test case, we are using three
different grids. Besides the initial 300×300 grid (Fig.
6a), the four times smaller, intermediate one (Fig. 6b),
is used in the case of lower pace of interactions-
adding/deleting pillars or boundary points, e.g. Finally,
the coarsest, 75×75 (Fig. 6c) is brought into play for the
occasion of the very high frequency of moving
boundary points or pillars over the domain.
 Although at this point, one does not have
completely accurate results, the tendency of the running
simulation in the overall domain can be easily and
instantly observed, independently on the number and
rate of changes applied. At last, when the current
settings satisfy user’s requirements, no more interaction
is involved and the stage of calculating more accurate
results is reached again.
 Namely, as soon as the simulation at the back-end
realizes that there has been no front-end intervention for
a user-predefined time slot, it stops, switches back to
one of the finer grids, depending on the slot and starts a
new computation. In this case, the results of the
previous computing on the coarser grid are discarded.
To speed up reaching the heat equilibrium on finer
grids, a multi-level method, where the previous
precious results are reused, is exploited, as commented
on in more detail further in the article.

Multi-level approach: In order to avoid wasting the
computational cycles within the runtime while the user
is interacting, we employ a multi-level algorithm, i.e.,
the results of the computation on the coarsest grid are
not disposed of when switching to the finer one.

J. Computer Sci., 7 (5): 591-599, 2011

595

(a)

(b)

Fig. 4: (a) Initial settings; (b) simulation running with initial border and pillar settings on a grid 300×300, with error

tolerance e-05 and maximal number of iterations set to 10,000

Namely, our concept already involves a hierarchy of
discretisations as in multigrid algorithm and we profit
from the analogous idea. Nevertheless, instead of
accelerating the convergence of a basic iterative method
by global correction from time to time, accomplished
by solving a coarser problem, i.e. descending to the
coarser grids and calculating an error, as in multigrid
algorithm, our scheme starts with the solution on the
coarsest grid and only uses the result we gain as an
initial guess of a result on a finer one (Fig. 7).

 As expected, the results show clearly that the speed of
convergence is significantly higher with the new approach.
 For the examples of the settings we tested
including an initial 300×300 grid and several different
pillar Pi (xi, yi) and boundary Bj (xj, yj) points with
corresponding ordered pairs (xk, yk) of x- and y-axes
indices respectively and the error tolerance set to e-05,
the number of iterations needed for convergence both
on the intermediate and the initial grid can be
significantly improved.

J. Computer Sci., 7 (5): 591-599, 2011

596

(a)

(b)

Fig. 5: (a) An initial scenario; (b) moving pillars/boundaries rapidly leads to the continual restart of the computation
and inability to estimate the equilibrium temperature in the region farther away from the pillars, i.e. reached
in later iterations

Fig. 6: Switching from the finest grid (grid 1: 300×300) by adding/deleting pillars/boundaries to the intermediate

(grid 2: 150×150) and, finally, when moving pillars/boundaries, to the coarsest one (grid 3: 75×75) and
reversely to the initial grid when there is an interval without any interaction

Fig. 7: Copying the results (temperature values) from the computation on the coarser grid to the initial vectors of the

finer one.

Code modification requirements: To integrate the
framework into any application scenario, a few

modifications of the code have to be made by the user. Since
these modifications are only minor, we list all of them.

J. Computer Sci., 7 (5): 591-599, 2011

597

 (a) (b)

 (c) (d)

Fig. 8a-c: Non-hierarchical approach: estimations of the overall execution time in seconds (vertical axis) for 1, 2 and

4 threads (horizontal axis) doing the computations on grid 1000×1000, 500×500 and 300×300
respectively; square and cross markers represent respectively the values without and with checks for
updates on simulation side, without any user interference actually occurring and almost completely
overlap each other; triangle markers show the values with user interaction rate of 5 milliseconds. d)
Hierarchical approach: measurements of the overall time in seconds (vertical axis) for 1, 2 and 4 threads
(horizontal axis) in the case of series of user interaction occurring every 5 milliseconds, with 0.5 seconds
break in between series; triangular and square markers connected with solid line show overheads of the
time in the case of user interaction in comparison to the pure execution time, similarly as in a), while the
markers connected with dotted line show how these overheads are minimized using hierarchical approach,
compromising the accuracy

 First of all, all the variables which will be affected
by the interrupt handler in order to force the restart of
the computation have to be declared both global (Fig. 8)
and atomicity of their updates and prevention of the
compiler optimizations which would lead to incorrect
value references insured. Second of all, the integrity of
each user-defined ‘atomic’ sequence of instructions in
the simulation code has to be ensured. Furthermore, the
calls to the provided send and receive functions which
would be interface to our framework have to be

included in the appropriate places in the code.
Nevertheless, the user himself should instruct the
interpretation of the data (in the receive buffers on both
simulation and visualisation side, e.g.). Finally, he has
to enable the regular checks for updates by including
appropriate functions which will examine and change
the default signal (interrupt) action, specifying in the
same time the time interval in which the checks of
the simulation process(es) should be made, as shown
in the pseudo code example.

J. Computer Sci., 7 (5): 591-599, 2011

598

RESULTS

 So as to evaluate potential overheads caused by
integration of our framework, we have done
measurements, the average of several being graphically
represented in Fig. 9.
 First of all, concerning the non-hierarchical
approach, what has been estimated for the cases of
single-, two-and four-threaded simulation and the
different initial problem sizes: 1000×1000 (Fig. 8a),
500×500 (Fig. 8b) and 300×300 (Fig. 8c), was the
overhead caused only by cyclic interruption of the
simulation every millisecond, realising that there is no
update available, since on the front-end the user is
absolutely not interfering. What is easily observable
concerning the total execution time of the simulation for
all the three aforementioned scenarios is that this kind of
overhead, caused, as a matter of fact, only by raising
interrupts which do a message probing, can be neglected.
 In the same three graphs of Fig. 9, the runtime
estimations which have been illustrated make it easy to
compare the total execution time of the simulation with
or without updates sent from the front-end. The
measurements have been made for the case of user
interaction occurring repeatedly, every 5 milliseconds.
The conclusion is that in the case of two or four
threads for the specified problem sizes one may only
observe very small overheads, while in the case of a
single thread being interrupted and restarting its
computation with aforementioned high and one must
point out very unlikely, frequency of user interaction,
more significant overheads may be introduced.

Fig. 9: Pseudo code which exemplifies for an iterative

solver the code modifications necessary to
integrate the framework into any application

These results are as expected, concerning the fact that
our tests show that the number of interrupts where
interaction is recognized in the case of a single thread is
almost three times bigger (ca. 2500) than in the case of
two and almost 5 times than in the case of 4 threads.
Thus, the amount of computational cycles we discard in
this scenario is larger.
 At the point at which we have introduced the
hierarchical approach based on switching between three
different grids, so as to compare the two approaches,
we have decided to measure the execution time in the
case of non-periodical user interaction, being performed
as a series of 5 millisecond frequent changes, with half
of a second long intervals in between. The overhead
caused in non-hierarchical scenario for 1000×1000 grid
and one thread, which is most challenging case, for this
new predefined occurrence of user interference is
proven to be similar as in Fig. 8a. Nevertheless, the
hierarchical approach outcome show that the
aforementioned overhead in the example with one
thread is drastically reduced in comparison to the non-
hierarchical. In other words, the time of executing the
same number of iterations, but now making use of three
different grids is very close to the execution time
without any interrupts, although in some number of
iterations, while the interaction is very frequent, the
user would have to agree with lower accuracy
consequences. For two or four threads, this overhead
turns out to be even smaller (Fig. 8d).

DISCUSSION

 Referring to what has already been said, it is
important to point out that the hierarchical approach we
have in mind for the future test cases is not limited to
recursive coarsening the grid. On the contrary, one can
analogously utilize other simulation-specific hierarchies
(different polynomial degrees of basis functions in
Finite Element scheme approximation, e.g.,) and any
user of the framework can, if needed, easily adopt it to
his individual requirements. One of our most imminent
intentions is the existing p-FEM code used for
computational orthopedics.

CONCLUSION

 In this study, we have presented a generic platform
which couples simulation codes and visualization tools
in the way which allows a user to trigger a simulation
during the runtime, based on a ‘minimal invasion’
principle, i.e. minor code changes necessary and receive
prompt feedback. Although the results for the first test
cases look very promising the question of the signal

J. Computer Sci., 7 (5): 591-599, 2011

599

transfer from a user to all the computing nodes in the
case of massively parallel simulation is a part of the
current research, as well as the integration and testing
of the framework incorporated into several parallel
engineering simulation scenarios.

ACKNOWLEDGMENT

 This study has been financially supported by
Munich Centre of Advanced Computing (MAC) and
the International Graduate School of Science and
Engineering (IGSSE) at Technische Universität
München.

REFERENCES

Borrmann, A., P. Wenisch, C. Van Treeck and E. Rank,

2005. Collaborative HVAC design using
interactive fluid simulations: A geometry-focused
platform. Technische Universität München.
http://www.inf.bv.tum.de/papers/uploads/paper_47
9.pdf

Davison de St. Germain, J., J. McCorquodale, S.G.
Parker and C.R. Johnson, 2000. Uintah: A
massivelly parallel problem solving environment.
Proceedings of the Ninth International Symposium
on High-Performance Distributed Computing,
IEEE Computer Society Washington, DC., USA.,
pp: 33-41.
http://portal.acm.org/citation.cfm?id=822085.823309

McCorquodale, J., S.G. Parker, C.R. Johnson,
2000. Davison de St. Germain, J., Uintah: A
massivelly parallel problem solving environment.
The Ninth International Symposium on High-
Performance Distributed Computing, 2000,
Proceedings, pp: 33-41.

Mulder, J.D., J.J. Van Wijk and R. Van Liere, 1999. A
survey of computational steering environments.
Future Generat. Comput. Syst., 15: 119-129. DOI:
10.1016/S0167-739X(98)00047-8

Reality Grid, 2003. RealityGrid: moving the bottleneck
out of the hardware and back into the human mind.
UCL. http://www.realitygrid.org/index.shtml
(Online)

Van Liere, R. and J.J. Van Wijk, 1996. CSE: A
Modular Architecture for Computational Steering,
Virtual Environments and Scientific Visualization.
Springer Verlag, Vienna, pp: 257-266.

Van Liere, R. and J.J. Van Wijk, 1996. CSE: A
Modular Architecture for Computational Steering.
Proceedings of the 7th Eurographics Workshop on
Visualization in Scientific Computing,
(EWVSC’96), Springer Verlag, New York, pp:
257-266.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.7.5698

Van Treeck, C., P. Wenisch, A. Borrmann, M.
Pfaffinger and M. Egger et al., 2007. Utilizing high
performance supercomputing facilities for
interactive thermal comfort assessment.
Proceedings of the 10th International IBPSA
Conference Building Simulation, Bejing, China.

