
Journal of Computer Science 7 (2): 206-215, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Salman Yussof, Department of Systems and Networking, College of Information Technology,
Universiti Tenaga National, Jalan IKRAM-Uniten, 43000 Kajang, Malaysia

206

An Investigation of Using Parallel Genetic

Algorithm for Solving the Shortest Path Routing Problem

1Salman Yussof, 1Rina Azlin Razali and 2Ong Hang See
1Department of Systems and Networking,

College of Information Technology,
2Department of Electronics and Communication Engineering,

College of Engineering,
 Universiti Tenaga National, Jalan IKRAM-Uniten, 43000 Kajang, Malaysia

Abstract: Problem statement: Shortest path routing is the type of routing widely used in computer
network nowadays. Even though shortest path routing algorithms are well established, other alternative
methods may have their own advantages. One such alternative is to use a GA-based routing algorithm.
According to previous researches, GA-based routing algorithm has been found to be more scalable and
insensitive to variations in network topologies. However, it is also known that GA-based routing algorithm
is not fast enough for real-time computation. Approach: To improve the computation time of GA-based
routing algorithm, this study proposes a coarse-grained parallel GA routing algorithm for solving the
shortest path routing problem. The proposed algorithm is evaluated using simulation where the proposed
algorithm is executed on networks with various topologies and sizes. The parallel computation is performed
using an MPI cluster. Three different experiments were conducted to identify the best value for the
migration rate, the accuracy and execution time with respect to the number of computing nodes and speedup
achieved as compared to the serial version of the same algorithm. Results: The result of the simulation
shows that the best result is achieved for a migration rate around 0.1 and 0.2. The experiments also show
that with larger number of computing nodes, accuracy decreases linearly, but computation time decreases
exponentially, which justifies the use parallel implementation of GA to improve the speed of GA-based
routing algorithm. Finally, the experiments also show that the proposed algorithm is able to achieve a
speedup of up to 818.11% on the MPI cluster used to run the simulation. Conclusion/Recommendations:
We have successfully shown that the performance of GA-based shortest path routing algorithm can be
improved by using a coarse-grained parallel GA implementation. Even though in this study the proposed
algorithm is executed using an MPI cluster, the algorithm is also applicable to other parallel architecture
such as multi-core CPU, multi-processor or GPGPU. A future work would be to evaluate the performance
of the proposed algorithm on these other parallel architectures.

Key words: Parallel genetic algorithm, coarse-grained, shortest-path routing, message passing

interface, parallel architecture, routing algorithm, Genetic algorithm (GA), parallel
computer, Message Passing Interface (MPI), smaller networks, computer network

INTRODUCTION

 Routing in a computer network refers to the task of
finding a path from a source node to a destination node.
Given a particular network, it is very likely that there is
more than one path that can be used. The task of a
routing algorithm is to find the shortest path. Shortest
path routing algorithms such as Dijkstra’s algorithm
and Bellman-Ford algorithm are commonly used in
computer network nowadays (Kurose and Ross, 2010).

 Even though shortest path routing algorithms are
already well established, there are researchers who are
trying to find alternative methods to find shortest paths
through a network. These alternative methods
commonly employ AI techniques such as genetic
algorithm (Munetomo et al., 1998; Ahn and
Ramakrishna, 1999), neural networks (Liu and Wang,
2009), particle swarm optimization (Mukhef et al.,
2008; Yusoff et al., 2010), ant colony optimization
(Zakzouk et al., 2010; Guo et al., 2010), simulated
annealing algorithm (Su and Li, 2009) and A* search
algorithm (Panich, 2010).

J. Computer Sci., 7 (2): 206-215, 2011

207

Fig. 1: The general outline of GA

 Genetic Algorithm (GA) is a multi-purpose search
and optimization algorithm that is inspired by the
theory of genetics and natural selection (Goldberg,
1989). The problem to be solved using GA is encoded
as a chromosome that consists of several genes. The
solution of the problem is represented by a group of
chromosomes referred to as a population. During each
iteration of the algorithm, the chromosomes in the
population will undergo one or more genetic operations
such as crossover and mutation. The result of the
genetic operations will become the next generations of
the solution. This process continues until either the
solution is found or a certain termination condition is
met. The idea behind GA is to have the chromosomes
in the population to slowly converge to an optimal
solution. At the same time, the algorithm is supposed to
maintain enough diversity so that it can search a large
search space. It is the combination of these two
characteristics that makes GA a good search and
optimization algorithm. The general outline of GA is
shown in Fig. 1.
 One of the earliest GA-based shortest path routing
algorithms is the one proposed by Munetomo et al.
(1998; 2001). Munetomo proposed a GA-based routing
algorithm to generate alternate paths that can be quickly
used in the case of link failures. In the proposed
algorithm, the algorithm chromosome is encoded as a
list of node IDs that are on the path from the source
node to the destination node. Since different paths can
have different number of nodes, the chromosomes are
of variable length. This algorithm employs crossover,
mutation and migration genetic operators in generating
the next generation of solutions. Ahn and Ramakrishna

(1999) also proposed a GA-based routing algorithm for
solving the shortest path routing problem. Similar to
Munetomo’s algorithm, the chromosome in this
algorithm consists of a sequence of node IDs that are on
the path from source to destination. However, there are
several differences in the details of the GA
implementation such as in the crossover and mutation
operations. Some researchers implemented a hybrid GA
algorithm where GA is combined with another
algorithm to solve the shortest path routing problem.
One example of this is the algorithm proposed by
Hamdan and El-Hawary (2002) that combined GA with
the Hopfield network. Another example would be an
algorithm proposed by Riedl (2002) who combined GA
with a local heuristics search.
 Ahn and Ramakrishna (1999) has shown that using
GA for the shortest path routing problem has several
advantages. The first advantage is that GA is insensitive
to variations in network topologies with respect to route
optimality and convergence speed. The second
advantage is that GA-based routing algorithm is
scalable in the sense that the real computation size does
not increase very much as the network size gets larger.
However this literature also pointed out that GA is not
fast enough for real-time computation and in order to
achieve a really fast computation time in GA, a
hardware implementation of GA is required.
 Due to the advantages of GA-based routing
algorithms, there are researchers who have extended
these algorithms to solve the more difficult multi-
constrained path routing problem where each network
link has more than one parameter the path chosen must
fulfill a specific QoS requirement or constraints
(Yussof and Ong, 2010; Potti and Chinnasamy, 2011).
GA has also been used to solve other types of routing
problems such as vehicle routing (Nazif and Lee, 2010),
logistics distribution routing (Zaoqiang and Minde,
2009), evacuation route assignment (Li et al., 2010),
aircraft route planning (Gao and Zheng, 2010), traffic
route choice problem (Li and Zhu, 2010) and travelling
salesman problem (Al Rahedi and Atoum, 2009).
 In this study, we are proposing a parallel genetic
algorithm for the shortest path routing problem. The
motivation behind this proposal is that parallel
implementation of GA should be able to improve its
computation time. The proposed algorithm is implemented
on a Message Passing Interface (MPI) cluster.

Parallel genetic algorithm: GA is generally able to find
good solutions in reasonable amount of time but as they
are applied to harder and bigger problems, there is an
increase in the time required to find adequate solutions. As

J. Computer Sci., 7 (2): 206-215, 2011

208

a consequence, there have been multiple efforts to make
GA faster and one of the promising choices is to use
parallel implementation (Paz, 2000).
 In parallel GA, there are multiple computing nodes.
The task of each computing node depends on the type
of parallel GA used. There are four major types of
parallel GAs which are master-slave GA, coarse-
grained GA, fine-grained GA and hierarchical hybrids.
In master-slave GA, one computing node will become
the master and the other computing nodes will become
the slaves. The master node will hold the population
and perform most of the GA operations. However, the
master can assign one or more computing-intensive
tasks to the slaves. This is done by sending one or more
chromosomes to the slaves and the master would then
wait for the slaves to return their results. In coarse-
grained GA, the population is divided among the
computing nodes and each computing node executes
GA on its own sub-population. To ensure that good
solutions can be spread to other nodes, the nodes can
occasionally, with certain probability, exchange
chromosomes with each other. This exchange is called
migration and it involves a node sending a chosen
chromosome to other nodes. The other nodes would
then replace a chromosome in their population with the
one received. Which node is chosen to be migrated or
replaced would depend on the migration strategy used.
Fine-grained GA has the highest level of parallelism
among the four types of parallel GAs. In fine-grained
GA, each computing node only has a single
chromosome. The computing nodes are normally
arranged in a spatial structure where each node can only
communicate with several neighboring nodes. The
population would be the collection of all the
chromosomes in each node. To execute a genetic
operation, a computing node will have to interact with
its neighbors. Since the neighborhood overlaps,
eventually the good traits of a superior individual can
spread to the entire population. Fine-grained GA has a
large communication overhead due to the high
frequency of interactions between neighboring nodes.
The final parallel GA type is the hierarchical hybrid
which is structured in two levels. At the higher level,
the algorithm operates as a coarse-grained GA while
at the lower level the algorithm operates as a fine-
grained (or master-slave) GA.
 For each of the parallel GA type, there are multiple
variations proposed by researchers to improve its
performance or to suite a particular problem. For
example, Golub and Jakobovic (2000) proposed a
master-slave GA where the master only creates the

population and let the slaves perform the whole
evolution process. Tan et al. (2002) proposed a coarse-
grained GA which has a special computing node
assigned to collect the best chromosomes from all the
nodes and distribute one or more of the fittest ones to
the other nodes. This is done to reduce the delays in
propagating the globally fittest chromosome to all the
computing nodes. De Toro et al. (2002) also proposed a
modification to the coarse-grained GA where a master
node is assigned to gather the whole population from all
the computing nodes once in several generations. The
master node would then sort the chromosomes
according to some objective function and then
distribute them again to the computing nodes.
 Parallel GA has been successfully used in various
problems such as design optimization (Atiqullah,
2002), transport route planning (Meghanathan and
Skelton, 2007), time series forecasting (Eklund, 2003;
Ourdighi and Benyettou, 2010), network design
(Huang et al., 1997) and sorting (Han, 1999).

Proposed parallel genetic algorithm for shortest
path routing:
Overview: The proposed algorithm will use coarse-
grained parallel GA. The main reason for this choice is
due to the use of MPI cluster. In an MPI environment,
communication between computers has a large
overhead. Therefore, coarse-grained GA would be the
most suitable type of parallel GA to be used since it has
the lowest communication overhead compared to the
other parallel GA types.
 In our parallel GA implementation, all the computing
nodes will randomly create their own sub-population and
each of them will execute GA on its own sub-population.
However, one of the computing nodes will be assigned the
task to gather results from all the other nodes and then
choose the best result (the one that gives the shortest path)
to be the output of the coarse-grained parallel GA. This
node is called the collector node.
 The operations done by the computing nodes are
outlined below:

• Randomly initialize the initial sub-population
• Evaluate fitness of each chromosome in the

population
• Create the mating pool which consists of all the

chromosomes in the current population
• Apply crossover operator several times to create n

new children for the new sub-population (where n is
the size of the sub-population). The parents are
selected using the selection operator. Crossover is
only performed if one or both of the parents have
not yet mated

J. Computer Sci., 7 (2): 206-215, 2011

209

• Apply mutation operator on the chromosomes in the
mating pool. Each chromosome has a certain
probability to be mutated

• If migration rate is higher than 0, decide whether
migration is to be performed in this iteration. If yes,
choose the best chromosome and send it to the other
computing nodes. At the same time, check whether
there is any chromosome migrated from the other
computing nodes. For each chromosome received,
replace the worst chromosome in the population
with the migrated chromosome if the migrated
chromosome has better fitness.

• Repeat step 2 until the sub-population converges or
the maximum number of iterations has been
achieved. The value for maximum iteration used in
all the experiments is 100

• Send the best chromosome to the collector node

 The operations done by the collector node are
outlined below:

• Receive the best chromosomes from each of the

computing nodes
• Choose the best chromosome from the ones

received. This is presented as the shortest path
found by the algorithm

Genetic encoding: A communication network can be
modeled as a directed graph G (N, E), where N is the
set of nodes representing routers and E is the set of
edges connecting the links that connect between the
routers (Kurose and Ross, 2010). Each edge (i,j) is
associated with an integer representing the cost of
sending data from node i to node j and vice versa.
 In the proposed algorithm, each chromosome is
encoded as a series of node IDs that are in the path from
source to destination. The first gene in the chromosome
is always the source and the last gene in the
chromosome is always the destination. Since different
paths may have different number of intermediate nodes,
the chromosomes will be of variable length. However,
the maximum length of a chromosome cannot exceed
the total number of nodes in the network. Any repeated
nodes in the chromosome signify that the path
represented by the chromosome contains a loop and in
network routing, any loop should be eliminated.

Initial sub-population: In the beginning, the sub-
population is filled with chromosomes that represent
random paths. Even though the paths are random, they
are supposed to be valid paths, where the chromosomes
consist of a sequence of nodes that are in the path from
sender to receiver. The number of chromosomes

generated for each sub-population, Sn, depends on the
total population size and the number of computing
nodes, as depicted in Eq. 1:

n
PS
N

= (1)

where, Sn represents the sub-population size of the nth
node, P represents the total population size and N
represents the total number of computing nodes.
 The algorithm used to generate the random paths is
as follows:

• Start from the source node
• Randomly choose, with equal probability, one of

the nodes that are connected to the current node
• If the chosen node has not been visited before, mark

that node as the next node in the path. Otherwise,
find another node

• If all the neighboring nodes have been visited, go
back to step 1

• Otherwise, repeat step 2 by using the next node as
the current node

• Do this until the destination node is found

Fitness function: Each chromosome in the population
is associated with a fitness value that is calculated using
a fitness function. This value indicates how good the
solution is for a particular chromosome. This
information is then used to pick the chromosomes that
will contribute to the formation of the next generation
of solution. The fitness function used in the proposed
algorithm is defined as follows:

i
i

1f
c

= (2)

where, fi represents the fitness value of the ith
chromosome and ci represents the total cost of the path
represented by the ith chromosome. This would give a
higher fitness value for shorter paths.

Selection: Selection is used to choose the parent
chromosomes for the crossover operation. The selection
scheme used in the algorithm is the pairwise
tournament selection with tournament size, s = 2. In this
selection scheme, a parent for the crossover operation is
selected by randomly choosing two chromosomes from
the population. The one with the higher chromosome
between the two will be selected as a parent. To select
two parents, this operation is performed twice.

J. Computer Sci., 7 (2): 206-215, 2011

210

Crossover: Crossover is performed on the two parent
chromosomes selected using the selection scheme
described above. To ensure that the paths generated by
the crossover operation are still valid paths, the two
chromosomes selected must have at least one common
node other than the source and destination nodes. If
more than one common node exists, one of them will be
randomly chosen with equal probability. The chosen
node is called the crossover point. For example, assume
that we have the following parent chromosomes:

Parent chromosome 1 = [A B C G H I X Y Z]
Parent chromosome 2 = [A K L M I T U Z]

where, A and Z are the source node and destination
node respectively. In this example, the common node is
node I. Therefore, crossover operation will exchange
the first portion of chromosome 1 with the second
portion of chromosome 2 and vice versa. As a result,
the following child chromosomes will be generated:

Child chromosome 1: [A B C G H I T U Z]
Child chromosome 2: [A K L M I X Y Z]

 These two chromosomes would then become new
members of the population.

Mutation: Each chromosome produced by the
crossover operation has a small chance to be mutated
based on the mutation probability, pm. For all the
experiments, the value for pm is set to 0.05. For each
chromosome that is chosen to be mutated, a mutation
point will be chosen randomly, with equal probability;
among the intermediate nodes in the path from sender
to receiver (i.e., the sending and receiving node cannot
be chosen as the mutation point). Once the mutation
point is chosen, the chromosome will be changed
starting from the node after the mutation point and
onwards. For example, assume that the following
chromosome has been chosen to be mutated:

Original chromosome: [A C E F G H I Y Z]

where, A and Z are the sending node and the receiving
node respectively. Assume also that the node G has
been chosen as the mutation point. The mutated
chromosome would become like this:

Mutated chromosome: [A C E F G x1 x2 x3 … Z]

 The mutated chromosome now contains a new path
from G to Z where xi is the ith new node in the path. The

new path is generated randomly; the same way as the
paths in the initial population is generated.

Migration: Migration is a genetic operation commonly
used in coarse-grained parallel GA implementation
(Goldberg, 1989). In coarse-grained parallel GA, each
computing node has its own sub-population that
evolves independently and in isolation. As compared to
the serial GA, this would result in low diversity of the
population because different sub-populations do not
interact with each other. Migration is an operation that
can be used to increase the sub-population diversity by
having the computing nodes to share their results with
each other. Migration involves having each computing
node sending one of its chromosomes to the other
nodes. At the same time, each computing node will
receive migrated chromosomes from the other nodes.
The received chromosome can replace one of the
chromosomes currently in the sub-population. The
migration rate is controlled by the migration
probability, pmg.
 There are several different migration strategies, as
discussed by Goldberg (1989). Each computing node
can either send its best chromosome or a random
chromosome from its sub-population. The receiving
node, on the other hand, can either choose to replace its
worst chromosome or just any random chromosome in
its sub-population. For the proposed algorithm, the
migration strategy used is to send the best chromosome
and replace the worst chromosome.

MATERIALS AND METHOD

 The proposed algorithm is implemented as a C++
program. The program is run on an MPI cluster which
has six machines. Each machine has a dual-core
processor. A computing node is associated with a single
processing core. Therefore, up to 12 computing nodes
can be run on this parallel computer.
 The objective of this experiment is to measure the
performance of the proposed algorithms with respect to
accuracy and computation time. Accuracy measures the
percentage of the shortest paths returned by the algorithm
that are actually shortest paths (as obtained from
Dijkstra’s algorithm). Computation time measures the
execution time taken by the algorithm to obtain all the
results from the beginning to the end of the simulation.
The performance of the algorithm is compared with the
non-parallel version of the same algorithm.
 There are two types of network used in the
simulation, the n x n mesh network and the Waxman
network (Waxman, 1988). The Waxman network is

J. Computer Sci., 7 (2): 206-215, 2011

211

actually a random graph where the existence of link
between two nodes, i and j, is defined by the following
probability:

i, j
ij

d
p = αexp(()),0 < α,β < 1

βL
− (3)

where, di,j is the distance between the two nodes and L
is the maximum inter-nodal distance in the topology. A
larger value of α would generate a graph with higher
density and a smaller value of β increases the density of
short edges relative to longer ones. In all the
experiments, the values for both α and β are set to 0.2
and 0.1 respectively. However, to avoid having
disconnected nodes, each node must be connected to at
least one other node. The network topologies used are
10×10 mesh network 15×15 mesh network, 100-node
Waxman network and 225-node Waxman network. Each
link in the network is given a randomly generated cost
value, ck(i,j) ~ uniform[1,20].
 The result reported in the next section is averaged
over 50 runs. For each run, a new network with a new
set of link metrics is randomly generated using
different seeds. For the Waxman network, this also
means that a different network topology is generated
on each run. In each run, a total of 1000 source-
destination pairs are randomly chosen and the shortest
path for each of them is computed.

RESULTS

 Three different experiments are conducted to
evaluate the proposed algorithm. The first experiment
aims to find the most suitable migration rate, pmg, to be
used. The second experiment evaluates the accuracy
and execution of the algorithm with respect to the
number of computing nodes. The third experiment
evaluates the speedup achieved by the parallel GA
routing algorithm as compared to a serial version of the
same algorithm.

Fig. 2: Accuracy for 10×10 mesh network

 The result of the first experiment is presented in
Fig. 2 until Fig. 5. These figures present the accuracy
result with respect to the migration rate for the four
network topologies used, where Fig. 2 and Fig. 3 show
the result for t hen x n mesh networks while Fig 4
and Fig. 5 show the results for the Waxman networks.
For the mesh networks, it seems that having migration
does not necessarily result in better accuracy. Having
no migration (pmg = 0) seems to be better than having a
migration rate that is too high.

Fig. 3: Accuracy for 15×15 mesh network

Fig. 4: Accuracy for 100-node Waxman network

Fig. 5: Accuracy for 225-node Waxman network

J. Computer Sci., 7 (2): 206-215, 2011

212

 However, the best result is achieved by using a low
migration rate of 0.1 or 0.2. For the Waxman network,
having a non-zero migration rate is definitely better
than having no migration at all. Again, the best result is
achieved with a low migration rate of 0.1 or 0.2. Based
on the result of this experiment, subsequent
experiments are performed using pmg = 0.1.
 The result of the second experiment is depicted in
Fig. 6 until Fig. 9. Fig. 6 and Fig. 7 show the accuracy of
the proposed algorithm for the n x n mesh network and the
Waxman network respectively. It is obvious that as the
number of computing node increases, the accuracy
decreases linearly. This is because as the number of
computing node increases, each computing node would
have smaller sub-population size. In GA, smaller
population size would result in lower performance.
However, the benefit of PGA is apparent when
comparing the computation time as depicted in Fig. 8
and Fig. 9. For both types of network, as the number
of computing node increases, the computation time
decreases exponentially. However, it is also observed
that for small sub-population size, having too many
computing nodes may eventually increase the
computation time again. This is because with small sub-
population size, the parallelism is not fully exploited due
to the computing nodes are not doing enough work and
the communication overhead would then cause the
computation time to increase. This experiment also
shows that having a higher total population size would
increase the accuracy. This effect is consistent regardless
of the network topology, network size or the number of
computing nodes. Having a higher population size would
also increase the computation time. However, with larger
number of computing nodes, the increase in computation
time becomes less apparent.

Fig. 6: Accuracy for n×n mesh networks

 The result of the third experiment is depicted in
Table 1. This table shows the percentage of
computation time required by the proposed PGA (TPGA)
and the computation time of its serial counterpart (TGA)
to get relatively similar accuracy. Based on the result,
the coarse-grained parallel GA algorithm is able to
achieve a speedup from 546.05% – 818.11% relative to
the serial GA implementation of the same algorithm.

Fig. 7: Accuracy for waxman networks

Fig. 8: Computation time for n×n mesh networks

Fig. 9: Computation time for waxman networks

J. Computer Sci., 7 (2): 206-215, 2011

213

Table 1: Speed up achieved by the proposed algorithm

Network TPGA TGA TGA/TPGA
topology (sec) (sec) * 100 (%)
10×10 mesh 2872.73 19440.7 676.73
15×15 mesh 5666.97 30945.0 546.05
100-node Waxman 2765.28 22623.1 818.11
225-node Waxman 6201.05 35739.6 576.34

DISCUSSION

 Based on the results obtained from these
experiments, it can be concluded that the parallel GA
implementation of the GA-based routing algorithm can
help to increase the speed of the algorithm while at the
same time maintaining a high quality result. This
conclusion is justified based on the observation where
with larger number of computing nodes, accuracy
decreases linearly, but computation time decreases
exponentially. However, similar to other parallel
algorithm implementations, the parallelism will only
provide a significant advantage when the problem is big
enough. Otherwise, the communication overhead
between computing nodes will bring down the
performance.
 With respect to the shortest path routing problem,
the problem will be big enough when the number of
nodes and the number of paths to be evaluated is large.
For the GA-based shortest path routing algorithm, the
parallel implementation will also provide a significant
advantage when then population size is large. In GA,
large population size leads to better results but at the
same time increases the computation time. Parallel
implementation of GA can really help to reduce
computation time while maintaining the quality of the
results.

CONCLUSION

 This study proposed a coarse-grained parallel
genetic algorithm for solving the shortest path routing
problem. A series of experiments were conducted to
evaluate various aspects of the algorithm. Based on the
experiments conducted, it was determined that the best
result is achieved with a low migration rate, pmg, of
around 0.1 and 0.2. The experiments also show that
with larger number of computing nodes, accuracy
decreases linearly, but computation time decreases
exponentially. This exponential decrease in
computation time as compared to linear decrease in
accuracy justifies the use parallel implementation of
GA to improve the performance of GA-based routing
algorithm. Finally, the experiments also show that the
proposed algorithm is able to achieve a speedup of up
to 818.11% on the 12-node MPI cluster. Even though in
this study the proposed algorithm is executed using an

MPI cluster, the algorithm is also applicable to other
parallel architecture such as multi-core CPU, multi-
processor or GPGPU. A future work would be to
evaluate the performance of the proposed algorithm on
these other parallel architectures.

REFERENCES

Ahn, C.W. and R.S. Ramakrishna, 1999. A genetic

algorithm for shortest path routing problem and the
sizing of populations. IEEE Trans. Evolutionary
Comput., 6: 566-579. DOI:
10.1109/TEVC.2002.804323

Al Rahedi, N.T. and J. Atoum, 2009. Solving the
traveling salesman problem using new operators in
genetic algorithms. Am. J. Applied Sci., 6: 1586-1590.
DOI: 10.3844/ajassp.2009.1586.1590

Atiqullah, M.M., 2002. Problem independent parallel
genetic algorithm for design optimization.
Proceeding of the International Symposium on
Parallel and Distributed Processing, (ISPDP’02),
Fort Lauderdale, Florida, pp: 204-211. DOI:
10.1109/IPDPS.2002.1016614

De Toro, F., J. Ortega, J. Fernandez and A. Diaz, 2002.
PSFGA: a parallel genetic algorithm for
multiobjective optimization. Proceeding of the 10th
Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Jan. 09-11, Canary
Islands, Spain, pp: 384-391. DOI:
10.1109/EMPDP.2002.994315

Eklund, S.E., 2003. Time series forecasting using
massively parallel genetic programming.
Proceeding of the International Symposium on
Parallel and Distributed Processing, Apr. 22-26,
Dalarna University, Sweden, pp: 5-5. DOI:
10.1109/IPDPS.2003.1213272

Gao, Y. and T. Zheng, 2010. Chaos genetic algorithm
for aircraft route planning problem. Proceeding of
the Second Global Congress on Intelligent
Systems, Dec. 16-17, Wuhan, Hubei, China, pp:
280-284. DOI: 10.1109/GCIS.2010.206

Goldberg, D.E., 1989. Genetic Algorithm in Search,
Optimization and Machine Learning, 1st Edn.,
Addison Wesley, United States, ISBN:
0201157675, pp: 412.

Golub, M. and D. Jakobovic, 2000. A new model of
global parallel genetic algorithm. Proceeding of the
22nd International Conference on Information
Technology Interfaces, June 13-16, Zagreb Univ.,
Croatia, pp: 363-368. DOI:
10.1109/ITI.2000.915963

J. Computer Sci., 7 (2): 206-215, 2011

214

Guo, Y., Z. Qin and Y. Chang, 2010. A novel hybrid
algorithm for the dynamic shortest path problem.
Proceeding of the 6th International Conference on
Natural Computation, Aug. 10-12, Yantai,
Shandong, pp: 2545-2550. DOI:
10.1109/ICNC.2010.5583241

Hamdan, M. and M.E. El-Hawary, 2002. Hopfield-
genetic approach for solving the routing problem in
computer networks. Proceeding of the Canadian
Conference on Electrical and Computer
Engineering, (CCECE’02), Dalhousie Univ.,
Halifax, NS., pp: 823-827. DOI:
10.1109/CCECE.2002.1013048

Han, M.M., 1999. Applying parallel genetic algorithm
to sorting problem. Proceeding of the IEEE
International Conference on Fuzzy Systems, Aug.
22-25, Seoul , South Korea, pp: 1796-1801. DOI:
10.1109/FUZZY.1999.790180

Huang, R., J. Ma, T.L. Kunii and E. Tsuboi, 1997.
Parallel genetic algorithms for communication
network design. Proceeding of the 2nd Aizu
International Symposium on Parallel
Algorithms/Architecture Synthesis, Mar. 17-21,
Aizu-Wakamatsu , Japan, pp: 370-377. DOI:
10.1109/AISPAS.1997.581701

Kurose, J.F. and K.W. Ross, 2010. Computer
Networking: A Top-down Approach. 5th Edn.,
Pearson Education, CA., ISBN0131365487, pp: 888.

Li, J. and M. Zhu, 2010. An implementation of genetic
algorithm in Matlab: solution to the route choice
problem in the urban traffic network. Proceeding of
International Conference on Computational and
Information Sciences, Dec. 17-19, Chengdu,
China, pp: 638-641. DOI: 10.1109/ICCIS.2010.160

Li, Q., Z. Fang, Q. Li and X. Zong, 2010.
Multiobjective evacuation route assignment model
based on genetic algorithm. Proceeding of the 18th
International Conference on Geomatics, June 18-
20, Beijing, pp: 1-5. DOI:
10.1109/GEOINFORMATICS.2010.5567485

Liu, W. and L. Wang, 2009. Solving the shortest path
routing problem using noisy hopfield neural
networks. Proceeding of the International
Conference on Communications and Mobile
Computing, Jan. 6-8, Nanyang Technol. Univ.,
Singapore, pp: 299-302. DOI:
10.1109/CMC.2009.366

Meghanathan, N. and G.W. Skelton, 2007. Intelligent
transport route planning using parallel genetic
algorithms and MPI in high performance
computing cluster. Proceeding of the International
Conference on Advanced Computing and
Communications, Dec. 18-21, Guwahati, Assam,
pp: 578-583. DOI: 10.1109/ADCOM.2007.76

Mukhef, H.A., E.M. Farhan and M.R. Jassim, 2008.
Generalized shortest path problem in uncertain
environment based on PSO. J. Comput. Sci., 4:
349-352. DOI: 10.3844/jcssp.2008.349.352

Munetomo, M., N. Yamaguchi, K. Akama and Y. Sato,
2001. Empirical investigations on the genetic
adaptive routing algorithm in the Internet.
Proceeding of the 2001 Congress on Evolutionary
Computation, May 27-30, Seoul , South Korea, pp:
1236-1243. DOI: 10.1109/CEC.2001.934332

Munetomo, M., Y. Takai and Y. Sato, 1998. A
migration scheme for the genetic adaptive routing
algorithm. Proceeding of the IEEE International
Conference on Systems, Man and Cybernetics, Oct.
11-14, San Diego, CA , USA., pp: 2774-2779.
DOI: 10.1109/ICSMC.1998.725081

Nazif, H. and L.S. Lee, 2010. Optimized crossover
genetic algorithm for vehicle routing problem with
time windows. Am. J. Applied Sci., 7: 95-101.
DOI: 10.3844/ajassp.2010.95.101

Ourdighi, A. and A. Benyettou, 2010. An adaptive
time-delay neural network training using parallel
genetic algorithms in time-series prediction and
classification. J. Applied Sci., 10: 2115-2120. DOI:
10.3923/jas.2010.2115.2120

Panich, S., 2010. The shortest path with intelligent
algorithm. J. Math. Stat., 6: 276-278. DOI:
10.3844/jmssp.2010.276.278

Paz, E.C., 2000. Efficient and Accurate Parallel Genetic
Algorithms. 1st Edn., Springer, India, ISBN-10:
0792372212, pp: 162.

Potti, S. and C. Chinnasamy, 2011. Strength pareto
evolutionary algorithm based multi-objective
optimization for shortest path routing problem in
computer networks. J. Comput. Sci., 7: 17-26.
DOI: 10.3844/jcssp.2011.17.26

Riedl, A., 2002. A hybrid genetic algorithm for routing
optimization in IP networks utilizing bandwidth
and delay metrics. Proceeding of the IEEE
Workshop on IP Operations and Management,
(WIPOM’02), Munich Univ. of Technol.,
Germany, pp: 166-170. DOI:
10.1109/IPOM.2002.1045774

Su, J. and A. Li, 2009. Approach to the shortest path
with fuzzy constraints by simulated annealing
algorithm. Proceeding of the WRI Global Congress
on Intelligent Systems, May 19-21, Xiamen, pp:
516-520. DOI: 10.1109/GCIS.2009.20

Tan, L., D. Taniar and K.A. Smith, 2002. A new
parallel genetic algorithm. Proceeding of the
International Symposium on Parallel Architectures,
Algorithms and Networks, May 22-24, Makati
City, Metro Manila , Philippines, pp: 284-89. DOI:
10.1109/ISPAN.2002.1004301

J. Computer Sci., 7 (2): 206-215, 2011

215

Waxman, B.M., 1988. Routing of multipoint
connections. IEEE J. Selected Areas Communi., 6:
1617-1622. DOI: 10.1109/49.12889

Yusoff, M., J. Ariffin and A. Mohamed, 2010. A
discrete particle swarm optimization with random
selection solution for the shortest path problem.
Proceeding of the International Conference of Soft
Computing and Pattern Recognition, Dec. 7-10,
Paris, pp: 133-138. DOI:
10.1109/SOCPAR.2010.5685867

Yussof, S. and H.S. Ong, 2010. A robust GA-based
QoS routing algorithm for solving multi-
constrained path problem. J. Comput., 5: 1322-
1334. DOI: 10.4304/jcp.5.9.1322-1334

Zakzouk, A.A.A., H.M. Zaher and R.A.Z. El-Deen,
2010. An ant colony optimization approach for
solving shortest path problem with fuzzy
constraints. Proceeding of the 7th International
Conference on Informatics and Systems, Mar. 28-
30, Cairo, pp: 1-8. ISBN: 978-1-4244-5828-8

Zaoqiang, C. and S. Minde, 2009. The research of the
logistics distribution routing optimization based on
immune genetic algorithm. Proceeding of the
International Conference on Artificial Intelligence
and Computational Intelligence, Nov. 7-8,
Shanghai, pp: 449-452. DOI:
10.1109/AICI.2009.423

