Journal of Computer Science 7 (10): 1581-1589, 2011
ISSN 1549-3636
© 2011 Science Publications

A Tool for Generation and Minimization of
Test Suite by Mutant Gene Algorithm

'Selvakumar Subramanian afRamaraj Natarajan
'Department of Information Technology,
Thiagarajar College of Engineering, Madurai, TaNaldu, India
*Department of Computer Science and Engineering,
G.K.M College of Engineering,
Chennai, Tamil Nadu, India

Abstract: Problem statement: This study proposes a new idea for generationinimized test suite

in the test case generation using the mutant gegoeithm, which not only identifies the best teases

but also reduces the number of test cases genesatiedts test cases optimally there improving the
performance in testing of software. Test caseganerated by using branch coverage algorithm and a
coverage table is created for verifying branch cage.Approach: The process of minimization was
done through Mutant gene algorithm. Mutant generitftyn combined both the mutation testing
process and genetic algorithm. Initially a numb&clromosomes were generated in random order.
Mutation score was used for finding fitness functidhe fitness function was found for all the
randomly generated chromosomes by applying the mhgtzore to the function. Rank based selection
was used for selecting the chromosomes. After ¢tecton of the chromosomes one-point crossover
was performed. A population of chromosomes obtaingdch was given as the input for the next
iteration. Large iterations were performed to abthie best test case with higher fitness valueai

the end conditionResults: Between the measured iterations the value of th&mh score remained
constant. The results of the experiments showetdtligaminimization process was competitive with
other methods and even outperforms them for compdeesConclusion: The whole generation and
minimization process was fully automated; redundeqpiorations of test case were avoided, resulting
in efficient generation of test cases.

Key words. Test case generation, test suite minimization,seis reduction, genetic algorithms, test
data, mutation testing, mutants detected, Systerdetest (SUT), mutant gene
algorithm, redundant explorations

INTRODUCTION The complexity of software systems has been
increasing dramatically in the past decade andvsoét
Testing of software is the appendage used tdesting as a labor-intensive component is becoming
assess the quality of computer software. Softwarenore and more expensive. As software develops and
testing is an empirical proficient investigation evolves, new test cases are continually generaied t
conducted to provide stakeholders with informationvalidate the latest modifications. As a result, $fres
about the quality of the product or service undsst,t of test suites grow over time (L&t al., 2008). Testing
with respect to the context in which it is intendied costs often account for up to 50% of the total espe
function. The testing of software is an importarams of software development; hence any techniques headi
of assessing the software to determine its qualityo the automatic generation of test case will hgneat
(Mohammad, 2008). Software testing is any activitypotential to considerably reduce costs. Current
aimed at evaluating an attribute or capability of aapproaches to verification in the software industry
program or system and determining that it meets itgeneral are losing the battle. While systems grow
requirements (Mohammadt al., 2010). Software evermore complex, the percentage of total costs
testing includes the process of executing a progsam consumed by verification grows and grows, as defect
application with the intent of finding software lsug rates increase. Currently, over half of all errars not

Corresponding Author: S. Selvakumar, Department of Information Techno)dgyiagarajar College of Engineering, Madurai,
Tamil Nadu, India

1581

J. Computer i, 7 (10): 1581-1589, 2011

found until ‘down-stream’ in the development praces Related work: In the literature, almost all the
or during post sale software use. While in practest approaches to test case generation will considertho
cases are often generated manually, there has deeravoid generating redundant test cases (Yanping.,
great deal of research on techniques for autontatgd 2009; Dmitryet al., 2010; Alshraideh, 2008; Razali and
case generation. These massive budgetary impac@arratt, 2010). Piles of efforts have also beenipuat
suggest that current approaches are failing and nevesearch on how to reduce the test suite size of a
approaches must be investigated with great hagste. Apreviously acquired test suite while maintaining it
aims to improve an automated test case generatiogffectiveness. (Yanjunet al., 2010) recommends
method to minimize a number of test cases whileGreedy algorithm and with the growth of test sinel a
maximizing an ability to identify critical domain suggests the usage of greedy evolution and GRE for
specific requirements (Kosindrdecha and Daengdejmore general by analyzing the influencing factand a
2010). To use the test automation tools is oneoodg performance the running time of algorithms of
approaches. They are skillfully devised for coneani distinctions of 6 classical algorithms viz greedseedy
use and give testers the testing environment wisch evolution, heuristics, GRE , ILP and GA. A method f
more correct than the manual testing. Helpingtest suite minimization that uses an additionatirigs
engineers create test cases is important, butéssls criterion to break the ties in the minimization pess,
are useful only if they can reveal faults. To rdveaunder specific conditions, their proposed approzen
faults, test cases must produce observable failures also accelerate the process of minimization. Thekwo
Test data generation uses the branch coveragwoposed by (Yanpingt al., 2009) is a model-based
algorithm to select a path that may reach the tadye regression test suite reduction method that corsiae
branch and obtains constraint information for theSDL model representing the requirements of a System
selected path and to generate the test cases. thfter Under Test (SUT) and a set of modifications on this
constraints have been collected from the prograth wi model and reduces the size of a given regressiin te
the assistance of a branch coverage algorithm wsuite by examining interaction patterns coveredhsy
generate the test data inputs and update the values test suite. (Dmitryet al., 2010) performs experimental
coverage Table to ensure that the selected bragch évaluation for the use for test suites reduction fo
reached and traversed. The coverage Table, Michaelsoftware integration testing.
approach is established to record the branch Existing approaches of automatic test data
information of the program under test and keepsktra generation have achieved some success by using
of whether a branch is tested or not. Mutationinigss ~ evolutionary computation algorithms, but they are
a method of software testing, which regards modifyi unable to deal with Boolean variables or enumerated
programs source code or byte code in small wayy. Antypes and they need to be improved in many other
tests which pass after code has been mutated af$PeCts. The major drawback in the earlier worktas
considered defective, called as mutations, ar@nly test data generation is performed and thectesis

established on well-defined mutation operators thaf'® Idefnvedf_\(/jwthout_m|n|m|§at|on of test cases. ;he
either mimic typical software error or force the '€V€! of coniidence in a software component IS ite

creation of valuable tests. The purpose is to liedp ![lnkedt;to the qlualt|t)éof |t.?htest c?stgs. This ?y@dgnfm it
tester develop effective tests or locate weaknesses cuorr: or?enfga(r%itznts\)mare Z]us?elr?lgticzrllla ysésn'er;g dyt
the test data used for the program or in partshef t h F:(h ; f y d ()j/ %k." e
code that are seldom or never accessed during . the proportion of mutants detecte ('kille 9

tion. Genetic algorithm stat bout the sk fhe test cases. But while the generation of basit t
execution. -enetic aigorithm states abou ew cases set is easy, improving its quality may requir
simple representations of bit strings to encod

i . eprohibitive effort work focuses on the issue of
complicated structures and the power of simpley,omating the test optimization. Our proposed work

transformations to improve.such stryctures. In ptde which looks at genetic algorithms to solve thisleon
solve a problem, genetic algorithm, requires agng model it as follows: a test case can be coresidas
chromosomal representation of solution to they predator while a mutant program is analogous to a
problem, a way to create an initial population ofprey. The aim of the selection process is to geadest
solutions, an evaluation function that plays thie @ cases able to kil as many mutants as possible. But
the environment, quality rating for solutions inres nejther the effectiveness of the test case norfahk

of their “fitness”, Genetic operators that altereth detection loss of reducing the generated test cages
structure of “children” during reproduction, valu®s selecting optimal test cases are not dealt. Genetic
the parameters that genetic algorithm uses (pdpulat algorithms are very efficient in the problems of
size, probabilities of applying genetic operators). exploration and seem to be able to find the single

1582

J. Computer i, 7 (10): 1581-1589, 2011

optimal solution in a huge space of possible sohsti makes other branches easier to be traversed. In the
(Yedjour et al., 2010). (Nazif and Lee, 2010) proposed approach, we try to discriminate braneimes
considered the application of a genetic algorittm t decide their possible contributions to our software

vehicle routing problem. Mao (2010) proposed formaliegiing adequacy criterion, to always work on the
semantics of ontology to improve genetic algoritim highest ‘value’ branch first

several aspects and make it more adaptive to solve
semantic-based problems. The proposed tool addressg tation testing: Mutation testing is a technique

this issue, specifically the test case generatfahthen \ hich was first designed to create effective testad
we select minimized test cases using genetic algori \ith an important fault revealing. The process of
MATERIALSAND METHODS mutation testing is, firs start with a piece of
development code that's comfortably covered by unit

Our proposed work is to select the optimal testests. Once it's verified that all tests pass fagizen
cases which are effective and the number of gesgtrat piece of code it's time to apply the mutation te th
test cases is also minimum there by reducing teeafo target assembly. The extent of the mutation that is

generation of test cases. Overall process as fellow ~ applied to the code can span many levels; somaeof t
more coarse mutations merely involve substituting a

Step 1: Generate mutant programs by changing 33<,=, logical operator with its inverse. For instance, can

in the subject program turn != while < can turn >=. In more complex mubats
Step 2: For the generated test case input apphamhut it may go so far as to make over the order of eti@twf
programs code or even remove some lines of code completely.

Step 3: Compare the results of original result el However, as mutations of this degree can oftenecaus
mutant results compiler errors, it's often easier to initiallycitiwith the

) . . . simpler mutations mentioned. After the code is iteaa
Step 4: For each test case input €. Test caﬁsaddhe original suite of unit tests is re-run againstfithe tests
number of mutant programs is identified

: i are well written, any test that covers the mutatedjram

Step 5: Optimal test cases are found using mutené g code should fail. However, if the tests succeespite of
algorithm the mutated program code then the tests creates fal

positives and need to be revisited. If the testsveell

Initially we generated test case inputs throughyritten, any test that covers the mutated prograec
combinations which reduce the manual work, becausghould fail. However, if the tests succeed in spft¢he

instead of giving every input it's adequate, if ttldues mutated source code then the tests are creatisg fal
for n and r are given. Where n stands for test ofgats ~ positives and need to be revisited.

and r denotes subset size: : :
Mutation score: The advantage of the mutation score

C=n!/ (r'*(n-r)) is that even if no fault is found, it still meassireow
well the software has been tested giving the user
A coverage table is established, showing thenformation about the program test quality. On thst

predicate number, program line numbers of predigate Selection process, a mutant program is said toiltesl k
predicate, true/false branch and branch coveragesst If at least one test case discovers the fault tageinto
Before starting to generate test data for the desteth® mutant. Conversely, a mutant is said to besaliv
program, a seed input, generated randomly is used fo test cases detect the injected .fault. Let dHee t
execute the program under test for the first timenumber of dead mutants after applymg the testscame

. . o the total number of mutants and equiv, the number o
Generally, running the program with the seed inpillt. g ivalent mutants. The mutation score MS for test
result in some branches being tested. The resulieof ¢ases set T is defined as follows:
execution of the tested program with the seed igput
recorded in the coverage table and the status af ea MS(T):lO({m_iquivj
branch is initialized. After the initial coveragebte has
been established, the next issue is which branduris Architectural approach: Conceptual models specify
next target. Since traversing of different branchiéls the characteristics of the existing and urfet
have different contributions to the satisfactionaafr systems. They are mainly produced thraiagh
selected criterion, we need to weight the impoaot use of a designated modeling notation (Reiki
each branch towards the branch coverage crite¥i. and Paul, 2010). The architecture that is outlined
give higher priority to those branches that theirdescribes interfaces and behavioral remerds
traversing causes additional branches to be tregtlavs for the minimization of the suite size.

1583

J. Computer Sci., 7 (10): 1581-1589, 2011

@

—
Read file

Fig. 1: This use case diagram describes the geémerat

of test cases
Generate ™
mutantscofy
Read mutan

program ¢

Generate
test case

Y Y P

Mutant
mgram)

//

Save mmamw
User T h~.__Score -~

Fig. 2: This use case describes the mutant score
generation.

interface

Read test data file |

Database

Reads file

File

Remms file

Updates coverage table

Displays coverage
table

Read table

T.

T

ead sample cod

Input for test data
generated

Genarated tast datz using

combination

enerated test case

Update
coverage table

Fead mutant
programs

[Generated

mutant score

Fig. 5: Activity diagram showing the activities tha
occur in the generation of mutant

We implemented and validated many of the ideas
that were discussed in the system. Figure 1-5 slilogvs
modeling of the tool for Generation and Minimizatio
of Test Suite with Mutant Gene Algorithm.

The following discussion, points the mutation
operators that were used in the experimentatiofs Th
choice has been channelized by the specific use of
mutation analysis for test cases at system leveé T
discussion also describes the general test sabectio
process based on mutation analysis and pinpoinishwh
part of the process need to be automated.

Mutation analysis for testing the software: Mutation

Fig. 3: A sequence diagram showing the sequenges f@nalysis serves the tester create test data amd the

coverage table generation

[User interface File

|

User

1

Enter test case input

Generates test case
data save in file

Returns file j|

Test case input
generated

T |

interacts with the tester to ameliorate the qualityhat

test data. Mutation analysis involves constructinget

of mutants of the test source, each of which isr@ion

of the test program that differs from the origibglone
mutation. A mutation is a single syntactic chartgs ts
made to a program statement. In an object-oriented
context, the class is frequently considered asittitefor
testing and mutation analysis has been successfully
used to guide the generation of test cases foasscl
When applying mutation analysis for system testing,
scale problems appear. In the following, we call a
mutant program, a software system in which an error
has been injected. A system is composed of several
classes and each of them can generate many mutants

Fig. 4:A sequence diagram showing the variougmany faults can be injected). For example, a large

sequences for the test case generation

number of operators is used which generate larte se

1584

J. Computer i, 7 (10): 1581-1589, 2011

of mutants that are necessary to have a precidanguage. Each file contains several constructs fitee
evaluation of test cases for one class. The nurober language (nodes from the syntactic tree). If thaeex
mutant programs thus increases with the size of thgodes in the file a gene can be represented asvill
SUT. Moreover, since all the test cases must be

executed against all the mutants, the executior timG = [Nu.-...N,J.

increases with the number of mutants. Mutation

: . Another aspect of the algorithm is that, has to be
analysis at system level can thus become very tlmedec'ded for the particular problem of test minintiaa:
consuming. At last, if mutant equivalence is often ! particutar p nl

decidable on a class, it is not possible for aetest the f|t_nes_s.funct|on. We_ have chos_en the mutattmmes
decide system equivalence. of an individual as the fitness function

The solution chosen is to select two mutation

operators to avoid generating too much mutan{:imess function: The fitness values for an individual
programs. This subset of operators is still efficigince ist its associated mutation scores. An individgad set

we expect classes to be tested at unitary levelfso ©f genes. Let I=[@ ..., G| be an individual composed
operators have been applied on the code separatelyf n genes. Le§ be the set of mutants detected@®y
System testing then focuses on the relationshiptet nbMutants be the total number of mutants generated
between the classes in the system. Since the pigfos for the component under test. Tfitness function of

unit and system testir_lg is different, mutatio_n yﬂigl individual | is computed (Yanjuet al., 2010) as:
also has to have a different role. The functiogatit

mutation operators are as described below: m
F(I)=(car > US | /nbMutantsy 10
EHF: Causes an exception when executed. This =

_ operator allows forcing code coverage. The union set of al§ corresponds to the set of
AOR: Replaces occurrences of “+” by *” and vice- n yants killed by the individual. The cardinal dfist
versa. -)
LOR: Each occurrence of one of the logical union is thus the number of mutants killed by the
' individual (Yanjunet al., 2010). Then the mutation

operators (and or, nand, nor, xor) is replaced A .
by each of the other operators: in addition, theSCOre of the individual is the percentage of thebgl

expression is replaced by TRUE and FALSE. Set of mutants it can kilNow, let us define the genetic
ROR: Each occurrence of one of the relationaloperators for the particular problem of test suite
operators (<, >, <=, >=, =, /=) is replaced by minimization.
each one of the other operators. _ o)
NOR: Replaces each statement by the Null statemenf&Production: the slot for each individual in the
VCP: Constants and variables values are slightlyoulette wheel is proportional to its mutation scor
modified to emulate domain perturbation (Yanjunetal., 2010).

testing. Each constant or variable of arithmetic _ .)
type is both incremented by one and Crossover: Crossover is a genetic operator used to vary

decremented by one. Each boolean is replace€ pProgramming of a chromosome or chromosomes

by its complement. from one generation to the next. It is analogous to
MCP: Methods calls are replaced by a call to amothereproduction and biological crossover, upon which
method with the same signature. genetic algorithms are based (Yangtml., 2010).
RFI: Stuck-at void the reference of an object after

its creation. Suppress a clone or copyMutation: Based on the gene modeling, the mutation
instruction. Insert a clone instruction for each operator consists in replacing a syntactic nodeain

reference affectation. . o source file (an individual) by another licit node
Mutant gene algorithm is applied to identify the (Yanjunet al., 2010).

test cases which are optimal based on the mutation

The mutation operator thus chooses a gene at
score of each test case.

random in an individual and replaces a node in that

Gene modeling for test minimization: For the gene by another one as illustrated.

problem of test minimization, a gene is modelecaas G = [Ny, Ni,... Ny

test case (Yanjuet al., 2010). In the particular case of AR

a parser a gene is a source file for the particulaGmut =[Ny, Nimut, ... NJ.
1585

J. Computer Sci., 7 (10): 1581-1589, 2011

Table 1: Test Case mutant score A novel method for stopping the iteration is
Test case |d No. of mutants detected ropnosed, where the optimal test cases generated is
: §g limited between half the number of test cases which
3 45 was initially selected (for maximum limit) and Sqea

g 4313 root of number of test cases which was initialliested

6 a5 (for minimum limit).

7 30

8 25 Anillustrative example: The following example is for

% P triangle program, which is one the subject program
11 18 utilized in the experimentation. Table 1 shows the
12 30 values of test case mutant scores, test case tshan

ii gg corresponding number of mutants detected. The Table
15 20 shows the coverage table, before applying the hranc
ig ‘2"2 coverage algorithm for the triangle program. Tleust

18 30 for all the constraints is set to untested. Thelddh

19 15 depicts coverage table after applying the branch
20 40 coverage algorithm. The branches (constraints) kvhic

are tested are updated as checked.
Table 2: Coverage table, before applying the brasterage algorithm for the

triangle program RESULTS

id Coverage predicate branch Status

1 if((i<=0)I1(j<=0)lI(k<=0)) true u All the implemented techniques were executed on a

2 00 true v PC with an Intel Pentium Dual CPU T3400 @ 2.16

4 if==k) true u GHz 2.17 GHz CPU and 2 GB memory running the

5 iftri==0) true u Windows 2000 Professional operating system. The

e MG +<=Dll k<) rue " studied test suite minimization techniques were

7 if(tri>3) true u

8 if((tri==1)&&(+j>k)) true u implemented by the students of Information

% ';Eg:‘;zggiigjt:’ﬁ e u Technology using Microsoft visual studio 2005. The

11 if((i<=0)[|(j<=0)||(k<=0)) false u platform chosen for implementing is Visual C# and i

2 f E: == JZ) fawe u chosen for some of its advantages like, better

n it(==K) false u performance of some functions, such as those that r

51 fri==0) false u mathematical operations such as combinations and

6731 :;E?rg;):k)”mkc')lKchm {;‘l':: 0 permutations might perform better when they are

81 if((tri==1)8&(+j>k)) false u compiled assemblies that are built from a Visual C#

91 if((tri==2)&&(i+k>})) false u project. Visual C# provides capabilities such asys,

101 (tr==3)a&(D) false “ sophisticated exception handling and reusability of
code. Figure 6 shows the interface which describes

Table 3: Coverage table after applying the brarsieage algorithm overall functionality for automatic test case geien.

id Coverage predicate branch __ Status The Fig. 7 shows the source code, which is the code

% };(é'iio,-))”ﬁco)"(k<=°” Jrue N which is the SUT for which the test case is to be

3 if (i == K) true c generated. Figure 8 shows_ the generation btitda.

4 if(j==k) true c For better understanding the illustrative example

5 if(tri==0) true u described in the earlier is taken as the sourqirgi9

6 if((i+j<=k)I|(+k<=)[|(i+k<=])) true u shows the result of test data generation evliee

; :;&{':i)l) 88 (i+>k) JL“ee UC test data are generated using combinations lattiea

9 if((tri==2)&& (i +k>])) true c test data are saved in a File. Figure 10 showise

10 if((tri==3)&&(+k>i)) true c Coverage Table, in the interface the ‘Generate test

11 if((i<=0)]1(<=0)||(k<=0)) false u cases’ button is to generate test cases afeading

o :;E: i% fleéz ¢ the test data which was previously stored.

a1 if(j==K) false c Then the coverage table is created. The test data

51 if(tri==0) false c are generated when all the status of the brandhdn

gi !;g'r;l;):k)'|(J+k<:')”('+k<:1)) IZES u coverage table values are ‘c’ checked. Figure bivsh

81 :f((tlri:l)&&(HPK» false cu the mutant score generation is this process themhut

91 if((tri==2)&&(i+k>))) false c programs are taken and the test cases are genéwated

101 if((tri==3)&&(j+k>i)) false ¢ the same test data, the results are stored irfilext

1586

J. Computer Sci., 7 (10): 1581-1589, 2011

i
AUTOMATIC TEST CASE GENERATION “

ﬂ:m— Ve b s W i s 1 ol b s bl
: N&'ﬁ:“ i it i e g —
W_-:*M;“T." | T g W vty bxbde i bl
i_ AT | Viam moprem proprems

g | Gaeren o waisbes st
| o |

Fig. 6: Interface for automatic test case genenatio

— e+ Wi b e Py v b e
! ";‘-s“:m-:‘ i Hotl ot greerann g1y pmbe———
Mm.':n‘n-' | Tin gesarmt 1o Covarmge inkie disl laal Raee
| smmmon | [p—
E . _‘L“,_',‘,Ll Timnmt i o bt
ame |

Fig. 7: Read sample code

TEST CASE DATA GENERATION ?!
it bt E i Tkl tesewy i
i mputs: n
Eritew st
Humbsr o4
s

Eorrato Combnations | O
| |

Fig. 8: Test data generation

TEST CASE DATA GENERATION Q‘.H
Ender tas!] ' Total jbema (o)
e pput 3
Erter wutriat
Wbt ol
e

Fig. 9: Result of test data generation

TEST CASE GENERATION

— AND
B COVERAGE TABLE
== [
wan| R
= Bh) -
AT A [TE -
TARE " P -
: - =
aost » :n In.-
==
=

Fig. 10:Coverage table

APUTRTION TESTING

FUR MUTANT PROGRANS T0GERERATE TESICASE S

e

i
o
v L
[| [rm—
I |
Pe—— [
| o e s i |
| 1 s

Fig. 11: Mutant score generation

Table 4: Experimentation 1: Academic subject progra

Name Lines of code No. of Classes
Triangle 123 2

Sample 66 1

Average 131 1

Greatest number 186 1

Ged 142 2

1587

J. Computer Sci., 7 (10): 1581-1589, 2011

Experiment 1 of the tool

e :
= I— i [#]u] 30
o TEsTcrse ceve ey 25
TIE 20
15
—4#—No. of test cases
10
— i 5
— ~@—No. of Muants
et cae v 0 m e 2 _ detected
E 2 g 3
[——— : g =) g = —&—No. of mimized test
pirciin = 7
i = < cases
e W - Experiment program
W -

Fig. 15:Results of experimentation on academigestib
LU TN A R R TR AR AR R T L LTI T I]) programs

Expetimentation 2 ofthetool

—&—No.of test cases

No. of Muants detected

& & 5 X e & & & =—No.of mimized test cases
& F P R EFFF LTS
& XSGRO TS
FF & P VA T & & &
A P ¥ ¥ SO
(7?4 ’§ N %\Q Lo & ‘,L %’B
& @ & &
& & > &
B < ©

Experiment program

Fig. 16: Results of experimentation®fR objects

Figure 12: depicts the interface to calculate theamt
score where the Mutant score is generated for the
generated test cases. Figure 13 shows the final
optimized result.

Subject programs, faulty versions and test case
' pools: The programs described in Table 4-5 were used
as the subject programs. These objects that arevest

. ' —_—] from the Software Infrastructure Repository (SIRL@D
- o and the programs developed as an academic project b
Fig. 13: Final optimized result students described in Table 4 were also experirdente
Figure 14 shows the detected mutants for the
_ 120 Mutant score corresponding subject programs, depicts the inereas
:% 100 the mutant score as the number of iterations in GA
5 increase. Between the measured iterations the \lue
E 80 the mutant score remains constant. The resulthef t
5 60 experiments show that the minimization process is
T a0 competitive with other methods and even outperforms
g 20 them for complex cases. Even though the other
methodology yields a covering test case faster thisn
¢ mutant gene tool in some cases, the latter is rfaster
10 20 30 40 30 60 70 8O 90 100 than the other methodology in the majority of th

G t . S
sersnon cases. Figure 15 shows the results of expermtioent

Fig. 14:mutants detected for the correspondingesub On academic subject programs and Fig. 16 shows the
programs results of experimentation of SIR objects.

1588

J. Computer i, 7 (10): 1581-1589, 2011

Table 5: Experimentation 20bjects from Software Infrastructure branch-type coverage measures are chosen as the tes
Repository (SIR, 2010) L
adequacy criteria, the new approach can also be

Name Lines of code No. of classes o
Binary-search-tree 130 3 extended to other test criteria, such as path emeer
Array-pa_rtition ' 13 1
ggﬁﬁ{é‘“”"ed"'“ al : ACKNOWLEDGMENT
Vector 254 1
Binary-heap 72 2 We thank Dr. Gregg Rothermel, Department of
Disjoint-set 35 1 Computer Science, University of Nebraska for
Ef:\f';tor séi 1‘2 providing the Siemens Suite of programs and SIR
OrdSet 229 2 objects.
deadlock 24 4
accountsublype oo 2 REFERENCES
Producer-consumer 99 8
ﬁr!akgg“csltmk gf g Kichigin, D., 2010. A method for test suite redocti
for regression testing of interactions between
DISCUSSION software modules. Lecture Notes Comput. Sci.,.
. o)) 5947: 177-184, DOI: 10.1007/978-3-642-11486-
This result indicates that the tool is an attreti 1 15

alternative since it is just as good as or evetebétan

some of the existing tool in terms of effectivenassl Kosindrdecha, N. and J. Daengdej, 2010. A test case

efficiency and is a much simpler process with generation process and teghnique. J. Software Eng.,

significantly fewer parameters that need to be sidfl . 4: 265-287. DO 10'3923/156'2010'255'287 .

by the tester. However, more experiments with frth Lin. J-W. and C. Y. Huang, 2009. Analysis of tasites

test objects taken from various application domains reduction with enhanced tie-breaking techniques.

must be carried out in order to be able to makeemor Inf. Software Technol., 51: 679-690. DOI:

general statements about the relative performahtteeo 10.1016/).infsof.2008.11.004

proposed tool for test case generation and miniiniza Mohammad F.J. Klaib, Sangeetha Muthuraman,

Noraziah Ahmad and Roslina Sidek, 2010. Tree

CONCLUSION based test case generation and cost calculation

In this study a new test suite generation and strategy for uniform parametric pairwise testing. J

minimization tool based on mutant gene algorithm is ~ COMPUt. SCi., 6:542-547. _ _
proposed. The proposed method manifested that thf$a0. Y., 2010. A semantic-based genetic algoritom f
test suite minimization results in more optimal rtha sub-ontology evolution. Inform. Technol. J., 9:
other test suite minimization techniques and als® t 60_9'620' _)
coverage is improved. All other algorithms concater Alshra|d_eh, M.,. 2008.. A complete automation of _unlt
only on best test case selection, but the proposed t€sting for javascript programs. J. Comput. Sci., 4
method selects test cases optimally there improtfieg 1012-1019.
performance in testing of software. The proposeo|\lazif, H. and L.S. Lee, 2010. Optimized crossover
approach has the several advantages, the whole genetic algorithm for vehicle routing problem with
generation and minimization process is fully auteda time windows. Asian. J. Applied Sci., 7: 95-101.
redundant explorations of test case are avoided, DOI:10.3844/ajassp.2010.95.101.
resulting in efficient generation of test casest Bien ~ Razali, R. and P. Garratt, 2010. Usability requizats
test data generation and minimization still possess of formal verification tools: A survey. J. Comput.
limited capabilities when compared to the requiretae Sci. 6: 1189-1198. DOl
of an industrial strength automatic test generation 10.3844/jcssp.2010.1189.1198
engine. The proposed method could be extendededjour, D., H. Yedjour and A. Benyettou, 2011.
towards the handling of the large software appboat Combining quine mc-cluskey and genetic
Also can be extended for test management and produc algorithms for extracting rules from trained neural
line approaches and it can also be extended ascmetr networks. Asian J. Applied Sci., 4: 72-80. DOI:
to assess test case design quality. Although only 10.3923/ajaps.2011.72.80

1589

