
Journal of Computer Science 7 (10): 1581-1589, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: S. Selvakumar, Department of Information Technology, Thiagarajar College of Engineering, Madurai,
Tamil Nadu, India

1581

A Tool for Generation and Minimization of

Test Suite by Mutant Gene Algorithm

1Selvakumar Subramanian and 2Ramaraj Natarajan
1Department of Information Technology,

Thiagarajar College of Engineering, Madurai, Tamil Nadu, India
2Department of Computer Science and Engineering,

G.K.M College of Engineering,
Chennai, Tamil Nadu, India

Abstract: Problem statement: This study proposes a new idea for generation of minimized test suite
in the test case generation using the mutant gene algorithm, which not only identifies the best test cases
but also reduces the number of test cases generated, selects test cases optimally there improving the
performance in testing of software. Test cases are generated by using branch coverage algorithm and a
coverage table is created for verifying branch coverage. Approach: The process of minimization was
done through Mutant gene algorithm. Mutant gene algorithm combined both the mutation testing
process and genetic algorithm. Initially a number of chromosomes were generated in random order.
Mutation score was used for finding fitness function. The fitness function was found for all the
randomly generated chromosomes by applying the mutant score to the function. Rank based selection
was used for selecting the chromosomes. After the selection of the chromosomes one-point crossover
was performed. A population of chromosomes obtained, which was given as the input for the next
iteration. Large iterations were performed to obtain the best test case with higher fitness value, it was
the end condition. Results: Between the measured iterations the value of the mutant score remained
constant. The results of the experiments showed that the minimization process was competitive with
other methods and even outperforms them for complex cases. Conclusion: The whole generation and
minimization process was fully automated; redundant explorations of test case were avoided, resulting
in efficient generation of test cases.

Key words: Test case generation, test suite minimization, test suite reduction, genetic algorithms, test

data, mutation testing, mutants detected, System Under Test (SUT), mutant gene
algorithm, redundant explorations

INTRODUCTION

 Testing of software is the appendage used to
assess the quality of computer software. Software
testing is an empirical proficient investigation
conducted to provide stakeholders with information
about the quality of the product or service under test,
with respect to the context in which it is intended to
function. The testing of software is an important means
of assessing the software to determine its quality
(Mohammad, 2008). Software testing is any activity
aimed at evaluating an attribute or capability of a
program or system and determining that it meets its
requirements (Mohammad et al., 2010). Software
testing includes the process of executing a program or
application with the intent of finding software bugs.

The complexity of software systems has been
increasing dramatically in the past decade and software
testing as a labor-intensive component is becoming
more and more expensive. As software develops and
evolves, new test cases are continually generated to
validate the latest modifications. As a result, the sizes
of test suites grow over time (Lin et al., 2008). Testing
costs often account for up to 50% of the total expense
of software development; hence any techniques leading
to the automatic generation of test case will have great
potential to considerably reduce costs. Current
approaches to verification in the software industry in
general are losing the battle. While systems grow
evermore complex, the percentage of total costs
consumed by verification grows and grows, as defect
rates increase. Currently, over half of all errors are not

J. Computer Sci., 7 (10): 1581-1589, 2011

1582

found until ‘down-stream’ in the development process
or during post sale software use. While in practice test
cases are often generated manually, there has been a
great deal of research on techniques for automated test
case generation. These massive budgetary impacts
suggest that current approaches are failing and new
approaches must be investigated with great haste. An
aims to improve an automated test case generation
method to minimize a number of test cases while
maximizing an ability to identify critical domain
specific requirements (Kosindrdecha and Daengdej,
2010). To use the test automation tools is one of good
approaches. They are skillfully devised for convenient
use and give testers the testing environment which is
more correct than the manual testing. Helping
engineers create test cases is important, but test cases
are useful only if they can reveal faults. To reveal
faults, test cases must produce observable failures.
 Test data generation uses the branch coverage
algorithm to select a path that may reach the targeted
branch and obtains constraint information for the
selected path and to generate the test cases. After the
constraints have been collected from the program with
the assistance of a branch coverage algorithm we
generate the test data inputs and update the values in
coverage Table to ensure that the selected branch is
reached and traversed. The coverage Table, Michael’s
approach is established to record the branch
information of the program under test and keeps track
of whether a branch is tested or not. Mutation testing is
a method of software testing, which regards modifying
programs source code or byte code in small ways. Any
tests which pass after code has been mutated are
considered defective, called as mutations, are
established on well-defined mutation operators that
either mimic typical software error or force the
creation of valuable tests. The purpose is to help the
tester develop effective tests or locate weaknesses in
the test data used for the program or in parts of the
code that are seldom or never accessed during
execution. Genetic algorithm states about the ability of
simple representations of bit strings to encode
complicated structures and the power of simple
transformations to improve such structures. In order to
solve a problem, genetic algorithm, requires a
chromosomal representation of solution to the
problem, a way to create an initial population of
solutions, an evaluation function that plays the role of
the environment, quality rating for solutions in terms
of their “fitness”, Genetic operators that alter the
structure of “children” during reproduction, values for
the parameters that genetic algorithm uses (population
size, probabilities of applying genetic operators).

Related work: In the literature, almost all the
approaches to test case generation will consider how to
avoid generating redundant test cases (Yanping et al.,
2009; Dmitry et al., 2010; Alshraideh, 2008; Razali and
Garratt, 2010). Piles of efforts have also been put into
research on how to reduce the test suite size of a
previously acquired test suite while maintaining its
effectiveness. (Yanjun et al., 2010) recommends
Greedy algorithm and with the growth of test size and
suggests the usage of greedy evolution and GRE for
more general by analyzing the influencing factors and
performance the running time of algorithms of
distinctions of 6 classical algorithms viz greedy, greedy
evolution, heuristics, GRE , ILP and GA. A method for
test suite minimization that uses an additional testing
criterion to break the ties in the minimization process,
under specific conditions, their proposed approach can
also accelerate the process of minimization. The work
proposed by (Yanping et al., 2009) is a model-based
regression test suite reduction method that considers an
SDL model representing the requirements of a System
Under Test (SUT) and a set of modifications on this
model and reduces the size of a given regression test
suite by examining interaction patterns covered by the
test suite. (Dmitry et al., 2010) performs experimental
evaluation for the use for test suites reduction for
software integration testing.
 Existing approaches of automatic test data
generation have achieved some success by using
evolutionary computation algorithms, but they are
unable to deal with Boolean variables or enumerated
types and they need to be improved in many other
aspects. The major drawback in the earlier works is that
only test data generation is performed and the test cases
are derived without minimization of test cases. The
level of confidence in a software component is often
linked to the quality of its test cases. This quality can in
turn be evaluated with mutation analysis: faulty
components (mutants) are systematically generated to
check the proportion of mutants detected (“killed”) by
the test cases. But while the generation of basic test
cases set is easy, improving its quality may require
prohibitive effort work focuses on the issue of
automating the test optimization. Our proposed work
which looks at genetic algorithms to solve this problem
and model it as follows: a test case can be considered as
a predator while a mutant program is analogous to a
prey. The aim of the selection process is to generate test
cases able to kill as many mutants as possible. But
neither the effectiveness of the test case nor the fault
detection loss of reducing the generated test cases by
selecting optimal test cases are not dealt. Genetic
algorithms are very efficient in the problems of
exploration and seem to be able to find the single

J. Computer Sci., 7 (10): 1581-1589, 2011

1583

optimal solution in a huge space of possible solutions
(Yedjour et al., 2010). (Nazif and Lee, 2010)
considered the application of a genetic algorithm to
vehicle routing problem. Mao (2010) proposed formal
semantics of ontology to improve genetic algorithm in
several aspects and make it more adaptive to solve
semantic-based problems. The proposed tool addresses
this issue, specifically the test case generation and then
we select minimized test cases using genetic algorithm.

MATERIALS AND METHODS

 Our proposed work is to select the optimal test
cases which are effective and the number of generated
test cases is also minimum there by reducing the cost of
generation of test cases. Overall process as follows:

Step 1: Generate mutant programs by changing >,<,=,!=

in the subject program
Step 2: For the generated test case input apply mutant

programs
Step 3: Compare the results of original result and the

mutant results
Step 4: For each test case input i.e. Test case id find the

number of mutant programs is identified
Step 5: Optimal test cases are found using mutant gene

algorithm

 Initially we generated test case inputs through
combinations which reduce the manual work, because
instead of giving every input it’s adequate, if the values
for n and r are given. Where n stands for test data inputs
and r denotes subset size:

C=n! / (r!*(n-r)!)

 A coverage table is established, showing the
predicate number, program line numbers of predicates,
predicate, true/false branch and branch coverage status.
Before starting to generate test data for the tested
program, a seed input, generated randomly is used to
execute the program under test for the first time.
Generally, running the program with the seed input will
result in some branches being tested. The result of the
execution of the tested program with the seed input is
recorded in the coverage table and the status of each
branch is initialized. After the initial coverage table has
been established, the next issue is which branch is our
next target. Since traversing of different branches will
have different contributions to the satisfaction of our
selected criterion, we need to weight the importance of
each branch towards the branch coverage criterion. We
give higher priority to those branches that their
traversing causes additional branches to be traversed or

makes other branches easier to be traversed. In the
proposed approach, we try to discriminate branches and
decide their possible contributions to our software
testing adequacy criterion, to always work on the
highest ‘value’ branch first.

Mutation testing: Mutation testing is a technique
which was first designed to create effective test data,
with an important fault revealing. The process of
mutation testing is, firs start with a piece of
development code that’s comfortably covered by unit
tests. Once it’s verified that all tests pass for a given
piece of code it’s time to apply the mutation to the
target assembly. The extent of the mutation that is
applied to the code can span many levels; some of the
more coarse mutations merely involve substituting a
logical operator with its inverse. For instance, == can
turn != while < can turn >=. In more complex mutations
it may go so far as to make over the order of execution of
code or even remove some lines of code completely.
However, as mutations of this degree can often cause
compiler errors, it’s often easier to initially stick with the
simpler mutations mentioned. After the code is mutated,
original suite of unit tests is re-run against it. If the tests
are well written, any test that covers the mutated program
code should fail. However, if the tests succeed in spite of
the mutated program code then the tests creates false
positives and need to be revisited. If the tests are well
written, any test that covers the mutated program code
should fail. However, if the tests succeed in spite of the
mutated source code then the tests are creating false
positives and need to be revisited.

Mutation score: The advantage of the mutation score
is that even if no fault is found, it still measures how
well the software has been tested giving the user
information about the program test quality. On the test
selection process, a mutant program is said to be killed
if at least one test case discovers the fault injected into
the mutant. Conversely, a mutant is said to be alive if
no test cases detect the injected fault. Let d be the
number of dead mutants after applying the test cases, m
the total number of mutants and equiv, the number of
equivalent mutants. The mutation score MS for test
cases set T is defined as follows:

d
MS(T) 100

m equiv

 
=  − 

Architectural approach: Conceptual models specify
the characteristics of the existing and future
systems. They are mainly produced through the
use of a designated modeling notation (Rozilawati
and Paul, 2010). The architecture that is outlined
describes interfaces and behavioral requirements
for the minimization of the suite size.

J. Computer Sci., 7 (10): 1581-1589, 2011

1584

Fig. 1: This use case diagram describes the generation

of test cases

Fig. 2: This use case describes the mutant score
generation.

Fig. 3: A sequence diagram showing the sequences for
coverage table generation

Fig. 4: A sequence diagram showing the various

sequences for the test case generation

Fig. 5: Activity diagram showing the activities that
occur in the generation of mutant

 We implemented and validated many of the ideas
that were discussed in the system. Figure 1-5 shows the
modeling of the tool for Generation and Minimization
of Test Suite with Mutant Gene Algorithm.
 The following discussion, points the mutation
operators that were used in the experimentation. This
choice has been channelized by the specific use of
mutation analysis for test cases at system level. The
discussion also describes the general test selection
process based on mutation analysis and pinpoints which
part of the process need to be automated.

Mutation analysis for testing the software: Mutation
analysis serves the tester create test data and then
interacts with the tester to ameliorate the quality of that
test data. Mutation analysis involves constructing a set
of mutants of the test source, each of which is a version
of the test program that differs from the original by one
mutation. A mutation is a single syntactic change that is
made to a program statement. In an object-oriented
context, the class is frequently considered as the unit for
testing and mutation analysis has been successfully
used to guide the generation of test cases for a class.
When applying mutation analysis for system testing,
scale problems appear. In the following, we call a
mutant program, a software system in which an error
has been injected. A system is composed of several
classes and each of them can generate many mutants
(many faults can be injected). For example, a large
number of operators is used which generate large sets

J. Computer Sci., 7 (10): 1581-1589, 2011

1585

of mutants that are necessary to have a precise
evaluation of test cases for one class. The number of
mutant programs thus increases with the size of the
SUT. Moreover, since all the test cases must be
executed against all the mutants, the execution time
increases with the number of mutants. Mutation
analysis at system level can thus become very time-
consuming. At last, if mutant equivalence is often
decidable on a class, it is not possible for a tester to
decide system equivalence.
 The solution chosen is to select two mutation
operators to avoid generating too much mutant
programs. This subset of operators is still efficient since
we expect classes to be tested at unitary level (so all
operators have been applied on the code separately).
System testing then focuses on the relationships
between the classes in the system. Since the purpose of
unit and system testing is different, mutation analysis
also has to have a different role. The functionality of
mutation operators are as described below:

EHF: Causes an exception when executed. This

operator allows forcing code coverage.
AOR: Replaces occurrences of “+” by “-” and vice-

versa.
LOR: Each occurrence of one of the logical

operators (and or, nand, nor, xor) is replaced
by each of the other operators; in addition, the
expression is replaced by TRUE and FALSE.

ROR: Each occurrence of one of the relational
operators (<, >, <=, >=, =, /=) is replaced by
each one of the other operators.

NOR: Replaces each statement by the Null statement.
VCP: Constants and variables values are slightly

modified to emulate domain perturbation
testing. Each constant or variable of arithmetic
type is both incremented by one and
decremented by one. Each boolean is replaced
by its complement.

MCP: Methods calls are replaced by a call to another
method with the same signature.

RFI: Stuck-at void the reference of an object after
its creation. Suppress a clone or copy
instruction. Insert a clone instruction for each
reference affectation.

 Mutant gene algorithm is applied to identify the
test cases which are optimal based on the mutation
score of each test case.

Gene modeling for test minimization: For the
problem of test minimization, a gene is modeled as a
test case (Yanjun et al., 2010). In the particular case of
a parser a gene is a source file for the particular

language. Each file contains several constructs from the
language (nodes from the syntactic tree). If there are x
nodes in the file a gene can be represented as follows:

G = [N1,…,Nx].

 Another aspect of the algorithm is that, has to be
decided for the particular problem of test minimization:
the fitness function. We have chosen the mutation score
of an individual as the fitness function

Fitness function: The fitness values for an individual
list its associated mutation scores. An individual is a set
of genes. Let I=[G1, …, Gn] be an individual composed
of n genes. Let Si be the set of mutants detected by Gi.
Let nbMutants be the total number of mutants generated
for the component under test. The fitness function of
individual I is computed (Yanjun et al., 2010) as:

m

i
i 1

F(I) (car US / nbMu tan ts) 100
=

 = × 
 
∑

 The union set of all Si corresponds to the set of
mutants killed by the individual. The cardinal of this
union is thus the number of mutants killed by the
individual (Yanjun et al., 2010). Then the mutation
score of the individual is the percentage of the global
set of mutants it can kill. Now, let us define the genetic
operators for the particular problem of test suite
minimization.

Reproduction: the slot for each individual in the
roulette wheel is proportional to its mutation score
(Yanjun et al., 2010).

Crossover: Crossover is a genetic operator used to vary
the programming of a chromosome or chromosomes
from one generation to the next. It is analogous to
reproduction and biological crossover, upon which
genetic algorithms are based (Yanjun et al., 2010).

Mutation: Based on the gene modeling, the mutation
operator consists in replacing a syntactic node in a
source file (an individual) by another licit node
(Yanjun et al., 2010).
 The mutation operator thus chooses a gene at
random in an individual and replaces a node in that
gene by another one as illustrated.

G = [N1, Ni,… Nx]

Gmut = [N1, Nimut , … Nx].

J. Computer Sci., 7 (10): 1581-1589, 2011

1586

Table 1: Test Case mutant score
Test case Id No. of mutants detected
1 20
2 30
3 45
4 35
5 40
6 45
7 30
8 25
9 45
10 40
11 18
12 30
13 45
14 50
15 20
16 45
17 25
18 30
19 15
20 40

Table 2: Coverage table, before applying the branch coverage algorithm for the

triangle program
id Coverage predicate branch Status
1 if((i<=0)||(j<=0)||(k<=0)) true u
2 if (i == j) true u
3 if (i == k) true u
4 if(j==k) true u
5 if(tri==0) true u
6 if((i+j<=k)||(j+k<=i)||(i+k<=j)) true u
7 if(tri>3) true u
8 if((tri==1)&&(i+j>k)) true u
9 if((tri==2)&&(i+k>j)) true u
10 if((tri==3)&&(j+k>i)) true u
11 if((i<=0)||(j<=0)||(k<=0)) false u
21 if (i == j) false u
31 if (i == k) false u
41 if(j==k) false u
51 if(tri==0) false u
61 if((i+j<=k)||(j+k<=i)||(i+k<=j)) false u
71 if(tri>3) false u
81 if((tri==1)&&(i+j>k)) false u
91 if((tri==2)&&(i+k>j)) false u
101 if((tri==3)&&(j+k>i)) false u

Table 3: Coverage table after applying the branch coverage algorithm

id Coverage predicate branch Status
1 if((i<=0)||(j<=0)||(k<=0)) true u
2 if (i == j) true u
3 if (i == k) true c
4 if(j==k) true c
5 if(tri==0) true u
6 if((i+j<=k)||(j+k<=i)||(i+k<=j)) true u
7 if(tri>3) true c
8 if((tri==1)&&(i+j>k)) true u
9 if((tri==2)&&(i+k>j)) true c
10 if((tri==3)&&(j+k>i)) true c
11 if((i<=0)||(j<=0)||(k<=0)) false u
21 if (i == j) false c
31 if (i == k) false u
41 if(j==k) false c
51 if(tri==0) false c
61 if((i+j<=k)||(j+k<=i)||(i+k<=j)) false u
71 if(tri>3) false u
81 if((tri==1)&&(i+j>k)) false c
91 if((tri==2)&&(i+k>j)) false c
101 if((tri==3)&&(j+k>i)) false c

 A novel method for stopping the iteration is
proposed, where the optimal test cases generated is
limited between half the number of test cases which
was initially selected (for maximum limit) and Square
root of number of test cases which was initially selected
(for minimum limit).

 An illustrative example: The following example is for
triangle program, which is one the subject program
utilized in the experimentation. Table 1 shows the
values of test case mutant scores, test case ids and the
corresponding number of mutants detected. The Table 2
shows the coverage table, before applying the branch
coverage algorithm for the triangle program. The status
for all the constraints is set to untested. The Table 3
depicts coverage table after applying the branch
coverage algorithm. The branches (constraints) which
are tested are updated as checked.

RESULTS

 All the implemented techniques were executed on a
PC with an Intel Pentium Dual CPU T3400 @ 2.16
GHz 2.17 GHz CPU and 2 GB memory running the
Windows 2000 Professional operating system. The
studied test suite minimization techniques were
implemented by the students of Information
Technology using Microsoft visual studio 2005. The
platform chosen for implementing is Visual C# and is
chosen for some of its advantages like, better
performance of some functions, such as those that run
mathematical operations such as combinations and
permutations might perform better when they are
compiled assemblies that are built from a Visual C#
project. Visual C# provides capabilities such as arrays,
sophisticated exception handling and reusability of
code. Figure 6 shows the interface which describes the
overall functionality for automatic test case generation.
The Fig. 7 shows the source code, which is the code
which is the SUT for which the test case is to be
generated. Figure 8 shows the generation of test data.
For better understanding the illustrative example
described in the earlier is taken as the source. Figure 9
shows the result of test data generation where the
test data are generated using combinations and all the
test data are saved in a File. Figure 10 shows the
Coverage Table, in the interface the ‘Generate test
cases’ button is to generate test cases after reading
the test data which was previously stored.
 Then the coverage table is created. The test data
are generated when all the status of the branch in the
coverage table values are ‘c’ checked. Figure 11 shows
the mutant score generation is this process the mutant
programs are taken and the test cases are generated for
the same test data, the results are stored in text file.

J. Computer Sci., 7 (10): 1581-1589, 2011

1587

Fig. 6: Interface for automatic test case generation

Fig. 7: Read sample code

Fig. 8: Test data generation

Fig. 9: Result of test data generation

Fig. 10: Coverage table

Fig. 11: Mutant score generation

Table 4: Experimentation 1: Academic subject programs
Name Lines of code No. of Classes
Triangle 123 2
Sample 66 1
Average 131 1
Greatest number 186 1
Gcd 142 2

J. Computer Sci., 7 (10): 1581-1589, 2011

1588

Fig. 12: Calculate Mutant score

Fig. 13: Final optimized result

Fig. 14: mutants detected for the corresponding subject
programs

Fig. 15: Results of experimentation on academic subject
programs

Fig. 16: Results of experimentation of SIR objects

Figure 12: depicts the interface to calculate the mutant
score where the Mutant score is generated for the
generated test cases. Figure 13 shows the final
optimized result.

Subject programs, faulty versions and test case
pools: The programs described in Table 4-5 were used
as the subject programs. These objects that are retrieved
from the Software Infrastructure Repository (SIR 2010)
and the programs developed as an academic project by
students described in Table 4 were also experimented.
 Figure 14 shows the detected mutants for the
corresponding subject programs, depicts the increase in
the mutant score as the number of iterations in GA
increase. Between the measured iterations the value of
the mutant score remains constant. The results of the
experiments show that the minimization process is
competitive with other methods and even outperforms
them for complex cases. Even though the other
methodology yields a covering test case faster than this
mutant gene tool in some cases, the latter is much faster
than the other methodology in the majority of the
cases. Figure 15 shows the results of experimentation
on academic subject programs and Fig. 16 shows the
results of experimentation of SIR objects.

J. Computer Sci., 7 (10): 1581-1589, 2011

1589

Table 5: Experimentation 2: Objects from Software Infrastructure
Repository (SIR, 2010)

Name Lines of code No. of classes
Binary-search-tree 130 3
Array-partition 13 1
Doubly-linked-list 277 1
Sorting 130 1
Vector 254 1
Binary-heap 72 2
Disjoint-set 35 1
Stack 114 5
Elevator 934 12
OrdSet 229 2
deadlock 24 4
accountsubtype 89 6
Account 66 3
Producer-consumer 99 8
Alarm-clock 125 6
linkedlist 121 5

DISCUSSION

 This result indicates that the tool is an attractive
alternative since it is just as good as or even better than
some of the existing tool in terms of effectiveness and
efficiency and is a much simpler process with
significantly fewer parameters that need to be adjusted
by the tester. However, more experiments with further
test objects taken from various application domains
must be carried out in order to be able to make more
general statements about the relative performance of the
proposed tool for test case generation and minimization.

CONCLUSION

 In this study a new test suite generation and
minimization tool based on mutant gene algorithm is
proposed. The proposed method manifested that this
test suite minimization results in more optimal than
other test suite minimization techniques and also the
coverage is improved. All other algorithms concentrate
only on best test case selection, but the proposed
method selects test cases optimally there improving the
performance in testing of software. The proposed
approach has the several advantages, the whole
generation and minimization process is fully automated;
redundant explorations of test case are avoided,
resulting in efficient generation of test cases, But then
test data generation and minimization still possesses
limited capabilities when compared to the requirements
of an industrial strength automatic test generation
engine. The proposed method could be extended
towards the handling of the large software application.
Also can be extended for test management and product
line approaches and it can also be extended as metrics
to assess test case design quality. Although only

branch-type coverage measures are chosen as the test
adequacy criteria, the new approach can also be
extended to other test criteria, such as path coverage.

ACKNOWLEDGMENT

 We thank Dr. Gregg Rothermel, Department of
Computer Science, University of Nebraska for
providing the Siemens Suite of programs and SIR
objects.

REFERENCES

Kichigin, D., 2010. A method for test suite reduction

for regression testing of interactions between
software modules. Lecture Notes Comput. Sci.,.
5947: 177-184, DOI: 10.1007/978-3-642-11486-
1_15

Kosindrdecha, N. and J. Daengdej, 2010. A test case
generation process and technique. J. Software Eng.,
4: 265-287. DOI: 10.3923/jse.2010.265.287

Lin, J.W. and C. Y. Huang, 2009. Analysis of test suite
reduction with enhanced tie-breaking techniques.
Inf. Software Technol., 51: 679-690. DOI:
10.1016/j.infsof.2008.11.004

Mohammad F.J. Klaib, Sangeetha Muthuraman,
Noraziah Ahmad and Roslina Sidek, 2010. Tree
based test case generation and cost calculation
strategy for uniform parametric pairwise testing. J.
Comput. Sci., 6: 542-547.

Mao, Y., 2010. A semantic-based genetic algorithm for
sub-ontology evolution. Inform. Technol. J., 9:
609-620.

Alshraideh, M., 2008. A complete automation of unit
testing for javascript programs. J. Comput. Sci., 4:
1012-1019.

Nazif, H. and L.S. Lee, 2010. Optimized crossover
genetic algorithm for vehicle routing problem with
time windows. Asian. J. Applied Sci., 7: 95-101.
DOI: 10.3844/ajassp.2010.95.101.

Razali, R. and P. Garratt, 2010. Usability requirements
of formal verification tools: A survey. J. Comput.
Sci. 6: 1189-1198. DOI:
10.3844/jcssp.2010.1189.1198

Yedjour, D., H. Yedjour and A. Benyettou, 2011.
Combining quine mc-cluskey and genetic
algorithms for extracting rules from trained neural
networks. Asian J. Applied Sci., 4: 72-80. DOI:
10.3923/ajaps.2011.72.80

