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Abstract: Problem statement: This study proposes a new idea for generation of minimized test suite 
in the test case generation using the mutant gene algorithm, which not only identifies the best test cases 
but also reduces the number of test cases generated, selects test cases optimally there improving the 
performance in testing of software. Test cases are generated by using branch coverage algorithm and a 
coverage table is created for verifying branch coverage. Approach: The process of minimization was 
done through Mutant gene algorithm. Mutant gene algorithm combined both the mutation testing 
process and genetic algorithm. Initially a number of chromosomes were generated in random order. 
Mutation score was used for finding fitness function. The fitness function was found for all the 
randomly generated chromosomes by applying the mutant score to the function. Rank based selection 
was used for selecting the chromosomes. After the selection of the chromosomes one-point crossover 
was performed. A population of chromosomes obtained, which was given as the input for the next 
iteration. Large iterations were performed to obtain the best test case with higher fitness value, it was 
the end condition. Results: Between the measured iterations the value of the mutant score remained 
constant. The results of the experiments showed that the minimization process was competitive with 
other methods and even outperforms them for complex cases. Conclusion: The whole generation and 
minimization process was fully automated; redundant explorations of test case were avoided, resulting 
in efficient generation of test cases. 
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INTRODUCTION 

 
 Testing of software is the appendage used to 
assess the quality of computer software. Software 
testing is an empirical proficient investigation 
conducted to provide stakeholders with information 
about the quality of the product or service under test, 
with respect to the context in which it is intended to 
function. The testing of software is an important means 
of assessing the software to determine its quality 
(Mohammad, 2008). Software testing is any activity 
aimed at evaluating an attribute or capability of a 
program or system and determining that it meets its 
requirements (Mohammad et al., 2010). Software 
testing includes the process of executing a program or 
application with the intent of finding software bugs. 

The complexity of software systems has been 
increasing dramatically in the past decade and software 
testing as a labor-intensive component is becoming 
more and more expensive. As software develops and 
evolves, new test cases are continually generated to 
validate the latest modifications. As a result, the sizes 
of test suites grow over time (Lin et al., 2008). Testing 
costs often account for up to 50% of the total expense 
of software development; hence any techniques leading 
to the automatic generation of test case will have great 
potential to considerably reduce costs. Current 
approaches to verification in the software industry in 
general are losing the battle. While systems grow 
evermore complex, the percentage of total costs 
consumed by verification grows and grows, as defect 
rates increase. Currently, over half of all errors are not 
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found until ‘down-stream’ in the development process 
or during post sale software use. While in practice test 
cases are often generated manually, there has been a 
great deal of research on techniques for automated test 
case generation. These massive budgetary impacts 
suggest that current approaches are failing and new 
approaches must be investigated with great haste. An 
aims to improve an automated test case generation 
method to minimize a number of test cases while 
maximizing an ability to identify critical domain 
specific requirements (Kosindrdecha and Daengdej, 
2010). To use the test automation tools is one of good 
approaches. They are skillfully devised for convenient 
use and give testers the testing environment which is 
more correct than the manual testing. Helping 
engineers create test cases is important, but test cases 
are useful only if they can reveal faults. To reveal 
faults, test cases must produce observable failures. 
 Test data generation uses the branch coverage 
algorithm to select a path that may reach the targeted 
branch and obtains constraint information for the 
selected path and to generate the test cases. After the 
constraints have been collected from the program with 
the assistance of a branch coverage algorithm we 
generate the test data inputs and update the values in 
coverage Table to ensure that the selected branch is 
reached and traversed. The coverage Table, Michael’s 
approach is established to record the branch 
information of the program under test and keeps track 
of whether a branch is tested or not. Mutation testing is 
a method of software testing, which regards modifying 
programs source code or byte code in small ways. Any 
tests which pass after code has been mutated are 
considered defective, called as mutations, are 
established on well-defined mutation operators that 
either mimic typical software error or force the 
creation of valuable tests. The purpose is to help the 
tester develop effective tests or locate weaknesses in 
the test data used for the program or in parts of the 
code that are seldom or never accessed during 
execution. Genetic algorithm states about the ability of 
simple representations of bit strings to encode 
complicated structures and the power of simple 
transformations to improve such structures. In order to 
solve a problem, genetic algorithm, requires a 
chromosomal representation of solution to the 
problem, a way to create an initial population of 
solutions, an evaluation function that plays the role of 
the environment, quality rating for solutions in terms 
of their “fitness”, Genetic operators that alter the 
structure of “children” during reproduction, values for 
the parameters that genetic algorithm uses (population 
size, probabilities of applying genetic operators). 

Related work: In the literature, almost all the 
approaches to test case generation will consider how to 
avoid generating redundant test cases (Yanping et al., 
2009; Dmitry et al., 2010; Alshraideh, 2008; Razali and 
Garratt, 2010). Piles of efforts have also been put into 
research on how to reduce the test suite size of a 
previously acquired test suite while maintaining its 
effectiveness. (Yanjun et al., 2010) recommends 
Greedy algorithm and with the growth of test size and 
suggests the usage of greedy evolution and GRE for 
more general by analyzing the influencing factors and 
performance the running time of algorithms of 
distinctions of 6 classical algorithms viz greedy, greedy 
evolution, heuristics, GRE , ILP and GA. A method for 
test suite minimization that uses an additional testing 
criterion to break the ties in the minimization process, 
under specific conditions, their proposed approach can 
also accelerate the process of minimization. The work 
proposed by (Yanping et al., 2009) is a model-based 
regression test suite reduction method that considers an 
SDL model representing the requirements of a System 
Under Test (SUT) and a set of modifications on this 
model and reduces the size of a given regression test 
suite by examining interaction patterns covered by the 
test suite. (Dmitry et al., 2010) performs experimental 
evaluation for the use for test suites reduction for 
software integration testing. 
 Existing approaches of automatic test data 
generation have achieved some success by using 
evolutionary computation algorithms, but they are 
unable to deal with Boolean variables or enumerated 
types and they need to be improved in many other 
aspects. The major drawback in the earlier works is that 
only test data generation is performed and the test cases 
are derived without minimization of test cases. The 
level of confidence in a software component is often 
linked to the quality of its test cases. This quality can in 
turn be evaluated with mutation analysis: faulty 
components (mutants) are systematically generated to 
check the proportion of mutants detected (“killed”) by 
the test cases. But while the generation of basic test 
cases set is easy, improving its quality may require 
prohibitive effort work focuses on the issue of 
automating the test optimization. Our proposed work 
which looks at genetic algorithms to solve this problem 
and model it as follows: a test case can be considered as 
a predator while a mutant program is analogous to a 
prey. The aim of the selection process is to generate test 
cases able to kill as many mutants as possible. But 
neither the effectiveness of the test case nor the fault 
detection loss of reducing the generated test cases by 
selecting optimal test cases are not dealt. Genetic 
algorithms are very efficient in the problems of 
exploration and seem to be able to find the single 
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optimal solution in a huge space of possible solutions 
(Yedjour et al., 2010). (Nazif and Lee, 2010) 
considered the application of a genetic algorithm to 
vehicle routing problem. Mao (2010) proposed formal 
semantics of ontology to improve genetic algorithm in 
several aspects and make it more adaptive to solve 
semantic-based problems. The proposed tool addresses 
this issue, specifically the test case generation and then 
we select minimized test cases using genetic algorithm. 
 

MATERIALS AND METHODS 
 
 Our proposed work is to select the optimal test 
cases which are effective and the number of generated 
test cases is also minimum there by reducing the cost of 
generation of test cases. Overall process as follows: 
 
Step 1: Generate mutant programs by changing >,<,=,!= 

in the subject program 
Step 2: For the generated test case input apply mutant 

programs 
Step 3: Compare the results of original result and the 

mutant results 
Step 4: For each test case input i.e. Test case id find the 

number of mutant programs is identified  
Step 5: Optimal test cases are found using mutant gene 

algorithm 
 
 Initially we generated test case inputs through 
combinations which reduce the manual work, because 
instead of giving every input it’s adequate, if the values 
for n and r are given. Where n stands for test data inputs 
and r denotes subset size: 
 
C=n! / (r!*(n-r)!) 
 
 A coverage table is established, showing the 
predicate number, program line numbers of predicates, 
predicate, true/false branch and branch coverage status. 
Before starting to generate test data for the tested 
program, a seed input, generated randomly is used to 
execute the program under test for the first time. 
Generally, running the program with the seed input will 
result in some branches being tested. The result of the 
execution of the tested program with the seed input is 
recorded in the coverage table and the status of each 
branch is initialized. After the initial coverage table has 
been established, the next issue is which branch is our 
next target. Since traversing of different branches will 
have different contributions to the satisfaction of our 
selected criterion, we need to weight the importance of 
each branch towards the branch coverage criterion. We 
give higher priority to those branches that their 
traversing causes additional branches to be traversed or 

makes other branches easier to be traversed. In the 
proposed approach, we try to discriminate branches and 
decide their possible contributions to our software 
testing adequacy criterion, to always work on the 
highest ‘value’ branch first.  
 
Mutation testing: Mutation testing is a technique 
which was first designed to create effective test data, 
with an important fault revealing. The process of 
mutation testing is, firs start with a piece of 
development code that’s comfortably covered by unit 
tests. Once it’s verified that all tests pass for a given 
piece of code it’s time to apply the mutation to the 
target assembly. The extent of the mutation that is 
applied to the code can span many levels; some of the 
more coarse mutations merely involve substituting a 
logical operator with its inverse. For instance, == can 
turn != while < can turn >=. In more complex mutations 
it may go so far as to make over the order of execution of 
code or even remove some lines of code completely. 
However, as mutations of this degree can often cause 
compiler errors, it’s often easier to initially stick with the 
simpler mutations mentioned. After the code is mutated, 
original suite of unit tests is re-run against it. If the tests 
are well written, any test that covers the mutated program 
code should fail. However, if the tests succeed in spite of 
the mutated program code then the tests creates false 
positives and need to be revisited. If the tests are well 
written, any test that covers the mutated program code 
should fail. However, if the tests succeed in spite of the 
mutated source code then the tests are creating false 
positives and need to be revisited. 
 
Mutation score: The advantage of the mutation score 
is that even if no fault is found, it still measures how 
well the software has been tested giving the user 
information about the program test quality. On the test 
selection process, a mutant program is said to be killed 
if at least one test case discovers the fault injected into 
the mutant. Conversely, a mutant is said to be alive if 
no test cases detect the injected fault. Let d be the 
number of dead mutants after applying the test cases, m 
the total number of mutants and equiv, the number of 
equivalent mutants. The mutation score MS for test 
cases set T is defined as follows: 
 

d
MS(T) 100

m equiv

 
=  − 

 

 
Architectural approach: Conceptual models specify 
the    characteristics of the existing   and    future 
systems. They    are     mainly    produced through the 
use of a designated    modeling     notation (Rozilawati 
and Paul, 2010). The architecture that is outlined 
describes interfaces   and    behavioral    requirements 
for   the    minimization    of    the suite size.  
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Fig. 1: This use case diagram describes the generation 

of test cases 
 

 
 

Fig. 2: This use case describes the mutant score 
generation. 

 

 
 

Fig. 3: A sequence diagram showing the sequences for 
coverage table generation 

 

 
 
Fig. 4: A sequence diagram showing the various 

sequences for the test case generation 

 
 

Fig. 5: Activity diagram showing the activities that 
occur in the generation of mutant 

 
 We implemented and validated many of the ideas 
that were discussed in the system. Figure 1-5 shows the 
modeling of the tool for Generation and Minimization 
of Test Suite with Mutant Gene Algorithm. 
 The following discussion, points the mutation 
operators that were used in the experimentation. This 
choice has been channelized by the specific use of 
mutation analysis for test cases at system level. The 
discussion also describes the general test selection 
process based on mutation analysis and pinpoints which 
part of the process need to be automated.  
 
Mutation analysis for testing the software: Mutation 
analysis serves the tester create test data and then 
interacts with the tester to ameliorate the quality of that 
test data. Mutation analysis involves constructing a set 
of mutants of the test source, each of which is a version 
of the test program that differs from the original by one 
mutation. A mutation is a single syntactic change that is 
made to a program statement. In an object-oriented 
context, the class is frequently considered as the unit for 
testing and mutation analysis has been successfully 
used to guide the generation of test cases for a class. 
When applying mutation analysis for system testing, 
scale problems appear. In the following, we call a 
mutant program, a software system in which an error 
has been injected. A system is composed of several 
classes and each of them can generate many mutants 
(many faults can be injected). For example, a large 
number of operators is used which generate large sets 
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of mutants that are necessary to have a precise 
evaluation of test cases for one class. The number of 
mutant programs thus increases with the size of the 
SUT. Moreover, since all the test cases must be 
executed against all the mutants, the execution time 
increases with the number of mutants. Mutation 
analysis at system level can thus become very time-
consuming. At last, if mutant equivalence is often 
decidable on a class, it is not possible for a tester to 
decide system equivalence.  
 The solution chosen is to select two mutation 
operators to avoid generating too much mutant 
programs. This subset of operators is still efficient since 
we expect classes to be tested at unitary level (so all 
operators have been applied on the code separately). 
System testing then focuses on the relationships 
between the classes in the system. Since the purpose of 
unit and system testing is different, mutation analysis 
also has to have a different role. The functionality of 
mutation operators are as described below: 
 
EHF: Causes an exception when executed. This 

operator allows forcing code coverage. 
AOR: Replaces occurrences of “+” by “-” and vice-

versa. 
LOR: Each occurrence of one of the logical 

operators (and  or, nand,  nor, xor) is replaced 
by each of the other operators; in addition, the 
expression is replaced by TRUE and FALSE. 

ROR: Each occurrence of one of the relational 
operators (<, >, <=, >=, =, /=) is replaced by 
each one of the other operators. 

NOR: Replaces each statement by the Null statement. 
VCP: Constants and variables values are slightly 

modified to emulate domain perturbation 
testing. Each constant or variable of arithmetic 
type is both incremented by one and 
decremented by one. Each boolean is replaced 
by its complement. 

MCP: Methods calls are replaced by a call to another 
method with the same signature. 

RFI: Stuck-at void the reference of an object after 
its creation. Suppress a clone or copy 
instruction. Insert a clone instruction for each 
reference affectation. 

 Mutant gene algorithm is applied to identify the 
test cases which are optimal based on the mutation 
score of each test case. 
  
Gene modeling for test minimization: For the 
problem of test minimization, a gene is modeled as a 
test case (Yanjun et al., 2010). In the particular case of 
a parser a gene is a source file for the particular 

language. Each file contains several constructs from the 
language (nodes from the syntactic tree). If there are x 
nodes in the file a gene can be represented as follows: 
 
G = [N1,…,Nx]. 
 
 Another aspect of the algorithm is that, has to be 
decided for the particular problem of test minimization: 
the fitness function. We have chosen the mutation score 
of an individual as the fitness function 
 
Fitness function: The fitness values for an individual 
list its associated mutation scores. An individual is a set 
of genes. Let I=[G1, …, Gn] be an individual composed 
of n genes. Let Si be the set of mutants detected by Gi. 
Let nbMutants be the total number of mutants generated 
for the component under test. The fitness function of 
individual I is computed (Yanjun et al., 2010) as: 
 

m

i
i 1

F(I) (car US / nbMu tan ts) 100
=

 = × 
 
∑  

 
 The union set of all Si  corresponds to the  set of 
mutants killed by the individual. The cardinal of this 
union is thus the number of mutants killed by the 
individual (Yanjun et al., 2010). Then the mutation 
score of the individual is the percentage of the global 
set of mutants it can kill. Now, let us define the genetic 
operators for the particular problem of test suite 
minimization. 
 
Reproduction: the slot for each individual in the 
roulette wheel is proportional to its mutation score 
(Yanjun et al., 2010). 
 
Crossover: Crossover is a genetic operator used to vary 
the programming of a chromosome or chromosomes 
from one generation to the next. It is analogous to 
reproduction and biological crossover, upon which 
genetic algorithms are based (Yanjun et al., 2010).  
 
Mutation: Based on the gene modeling, the mutation 
operator consists in replacing a syntactic node in a 
source file (an individual) by another licit node 
(Yanjun et al., 2010).  
 The mutation operator thus chooses a gene at 
random in an individual and replaces a node in that 
gene by another one as illustrated. 
  
G = [N1, Ni,… Nx]  

 
Gmut = [N1, Nimut , … Nx]. 
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Table 1: Test Case mutant score 
Test case Id              No. of mutants detected 
1 20 
2 30 
3 45 
4 35 
5 40 
6 45 
7 30 
8 25 
9 45 
10 40 
11 18 
12 30 
13 45 
14 50 
15 20 
16 45 
17 25 
18 30 
19 15 
20 40 

 
Table 2: Coverage table, before applying the branch coverage algorithm for the 

triangle program 
id Coverage predicate branch Status 
1 if((i<=0)||(j<=0)||(k<=0)) true u 
2 if (i == j) true u 
3 if (i == k) true u 
4 if(j==k) true u 
5 if(tri==0) true u 
6 if((i+j<=k)||(j+k<=i)||(i+k<=j)) true u 
7 if(tri>3) true u 
8 if((tri==1)&&(i+j>k)) true u 
9 if((tri==2)&&(i+k>j)) true u 
10 if((tri==3)&&(j+k>i)) true u 
11 if((i<=0)||(j<=0)||(k<=0)) false u 
21 if (i == j) false u 
31 if (i == k) false u 
41 if(j==k) false u 
51 if(tri==0) false u 
61 if((i+j<=k)||(j+k<=i)||(i+k<=j)) false u 
71 if(tri>3) false u 
81 if((tri==1)&&(i+j>k)) false u 
91 if((tri==2)&&(i+k>j)) false u 
101 if((tri==3)&&(j+k>i)) false u 

 
Table 3: Coverage table after applying the branch coverage algorithm  

id Coverage predicate branch Status 
1 if((i<=0)||(j<=0)||(k<=0)) true u 
2 if (i == j) true u 
3 if (i == k) true c 
4 if(j==k) true c 
5 if(tri==0) true u 
6 if((i+j<=k)||(j+k<=i)||(i+k<=j)) true u 
7 if(tri>3) true c 
8 if((tri==1)&&(i+j>k)) true u 
9 if((tri==2)&&(i+k>j)) true c 
10 if((tri==3)&&(j+k>i)) true c 
11 if((i<=0)||(j<=0)||(k<=0)) false u 
21 if (i == j) false c 
31 if (i == k) false u 
41 if(j==k) false c 
51 if(tri==0) false c 
61 if((i+j<=k)||(j+k<=i)||(i+k<=j)) false u 
71 if(tri>3) false u 
81 if((tri==1)&&(i+j>k)) false c 
91 if((tri==2)&&(i+k>j)) false c 
101 if((tri==3)&&(j+k>i)) false c 

 A novel method for stopping the iteration is 
proposed, where the optimal test cases generated is 
limited between half the number of test cases which 
was initially selected (for maximum limit) and Square 
root of number of test cases which was initially selected 
(for minimum limit). 

 
 An illustrative example: The following example is for 
triangle program, which is one the subject program 
utilized in the experimentation. Table 1 shows the 
values of test case mutant scores, test case ids and the 
corresponding number of mutants detected. The Table 2 
shows the coverage table, before applying the branch 
coverage algorithm for the triangle program. The status 
for all the constraints is set to untested. The Table 3 
depicts coverage table after applying the branch 
coverage algorithm. The branches (constraints) which 
are tested are updated as checked. 

 
RESULTS 

 
 All the implemented techniques were executed on a 
PC with an Intel Pentium Dual CPU T3400 @ 2.16 
GHz 2.17 GHz CPU and 2 GB memory running the 
Windows 2000 Professional operating system. The 
studied test suite minimization techniques were 
implemented by the students of Information 
Technology using Microsoft visual studio 2005. The 
platform chosen for implementing is Visual C# and is 
chosen for some of its advantages like, better 
performance of some functions, such as those that run 
mathematical operations such as combinations and 
permutations might perform better when they are 
compiled assemblies that are built from a Visual C# 
project. Visual C# provides capabilities such as arrays, 
sophisticated exception handling and reusability of 
code. Figure 6 shows the interface which describes the 
overall functionality for automatic test case generation. 
The Fig. 7 shows the source code, which is the code 
which is the SUT for which the test case is to be 
generated. Figure 8 shows     the generation of test data. 
For better   understanding the illustrative example 
described in the earlier is taken as the source. Figure 9 
shows the result of    test data    generation where the 
test data are generated using combinations    and all the 
test data are saved in     a File. Figure 10 shows    the 
Coverage Table, in the interface the ‘Generate test 
cases’ button is to generate   test   cases   after    reading 
the test data which     was    previously stored. 
 Then the coverage table is created. The test data 
are generated when all the status of the branch in the 
coverage table values are ‘c’ checked. Figure 11 shows 
the mutant score generation is this process the mutant 
programs are taken and the test cases are generated for 
the same test data, the results are stored in text file. 
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Fig. 6: Interface for automatic test case generation 
 

 
 

Fig. 7: Read sample code 
 

 
 

Fig. 8: Test data generation 

 
 

Fig. 9: Result of test data generation 
 

 
 

Fig. 10: Coverage table 
 

 
 

Fig. 11: Mutant score generation 
 

Table 4: Experimentation 1: Academic subject programs 
Name  Lines of code No. of  Classes 
Triangle 123 2 
Sample 66 1 
Average 131 1 
Greatest number 186 1 
Gcd 142 2 
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Fig. 12: Calculate Mutant score 
 

 
 

Fig. 13: Final optimized result 
 

 
 

Fig. 14: mutants detected for the corresponding subject 
programs 

 
 

Fig. 15: Results of experimentation on academic subject 
programs 

 

 
 
Fig. 16: Results of experimentation of SIR objects 
 
Figure 12: depicts the interface to calculate the mutant 
score where the Mutant score is generated for the 
generated test cases. Figure 13 shows the final 
optimized result. 

 
Subject programs, faulty versions and test case 
pools: The  programs described in Table 4-5 were used 
as the subject programs. These objects that are retrieved 
from the Software Infrastructure Repository (SIR 2010) 
and the programs developed as an academic project by 
students described in Table 4 were also experimented. 
 Figure 14 shows the detected mutants for the 
corresponding subject programs, depicts the increase in 
the mutant score as the number of iterations in GA 
increase. Between the measured iterations the value of 
the mutant score remains constant. The results of the 
experiments show that the minimization process is 
competitive with other methods and even outperforms 
them for complex cases. Even though the other 
methodology yields a covering test case faster than this 
mutant gene tool in some cases, the latter is much faster 
than the other    methodology in the majority of the 
cases. Figure 15 shows the    results of experimentation 
on academic subject programs and Fig. 16 shows the 
results of   experimentation   of SIR objects.  
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Table 5: Experimentation 2: Objects from Software Infrastructure 
Repository (SIR, 2010) 

Name  Lines of code No. of classes 
Binary-search-tree 130  3 
Array-partition 13  1 
Doubly-linked-list 277  1 
Sorting 130  1 
Vector 254  1 
Binary-heap 72  2 
Disjoint-set 35  1 
Stack 114  5 
Elevator 934  12 
OrdSet 229  2 
deadlock 24  4 
accountsubtype 89  6 
Account 66  3 
Producer-consumer 99  8 
Alarm-clock 125  6 
linkedlist 121  5 

 
DISCUSSION 

 
 This result indicates that the tool is an attractive 
alternative since it is just as good as or even better than 
some of the existing tool in terms of effectiveness and 
efficiency and is a much simpler process with 
significantly fewer parameters that need to be adjusted 
by the tester. However, more experiments with further 
test objects taken from various application domains 
must be carried out in order to be able to make more 
general statements about the relative performance of the 
proposed tool for test case generation and minimization. 
 

CONCLUSION 
 

 In this study a new test suite generation and 
minimization tool based on mutant gene algorithm is 
proposed. The proposed method manifested that this 
test suite minimization results in more optimal than 
other test suite minimization techniques and also the 
coverage is improved. All other algorithms concentrate 
only on best test case selection, but the proposed 
method selects test cases optimally there improving the 
performance in testing of software. The proposed 
approach has the several advantages, the whole 
generation and minimization process is fully automated; 
redundant explorations of test case are avoided, 
resulting in efficient generation of test cases, But then 
test data generation and minimization still possesses 
limited capabilities when compared to the requirements 
of an industrial strength automatic test generation 
engine. The proposed method could be extended 
towards the handling of the large software application. 
Also can be extended for test management and product 
line approaches and it can also be extended as metrics 
to assess test case design quality. Although only 

branch-type coverage measures are chosen as the test 
adequacy criteria, the new approach can also be 
extended to other test criteria, such as path coverage.  
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