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Abstract: Problem statement: Spam is an irrelevant or inappropriate message sent on the internet to a 
large number of newsgroups or users. A spam word is a list of well-known words that often appear in 
spam mails. Bloom Filter (BF) is used for identification of spam word. Approach: BF is a simple but 
powerful data structure that can check membership to a static set. The trade-off to use BF is a certain 
configurable risk of false positives. The odds of a false positive can be made very low if the hash 
bitmap is sufficiently large. Bin Bloom Filter (BBF) has number of BFs which assign group of words 
into bins with different false positive rates based on  weight of the spam words. Genetic Algorithm 
(GA) was employed to minimize the total membership invalidation cost of BBF. GA had premature 
convergence problem. Simulated Annealing (SA) was incorporated with GA to prevent the premature 
convergence effectively. Results: The experimental results of total membership invalidation cost are 
analyzed for various sizes of bins. The results showed that the combined GA-SA model outperforms 
SA and GA model. Conclusion: GA has premature convergence due to its genetic operators that are 
not able to generate offsprings which are superior to the parents. So more number of similar 
chromosomes presented on the population. When GA is incorporated with SA new genes were 
introduced which causes diversity in the population and prevents premature convergence. The 
combined GA-SA outperforms GA and SA. 
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INTRODUCTION 
 
 A spam filter is a program that is used to detect 
unsolicited and unwanted email and prevent those 
messages from getting into user's inbox. A spam filter 
looks for certain criteria on which it stands decisions. 
For example, it can be set to look for particular words 
in the subject line of messages and to exclude these 
from the user’s inbox. This method is not effective, 
because often it is omitting perfectly legitimate 
messages and letting actual spam through. The 
strategies used to block spam are diverse and includes 
many promising techniques. Some of the strategies 
like black list filter, white list/verification filters rule 
based ranking and naïve bayesian filtering are used to 
identify the spam. 
 A Bloom filter presents a very attractive option for 
string matching (Bloom 1970). It is a space efficient 
randomized data structure that stores a set of signatures 
efficiently by computing multiple hash functions on 

each member of the set. It queries a database of strings 
to verify for the membership of a particular string. The 
answer to this query can be a false positive but never be 
a false negative. The computation time required for 
performing the query is independent of the number of 
signatures in the database and the amount of memory 
required by a Bloom filter for each signature is 
independent of its length (Feng et al., 2002). 
 This study presents a BBF which allocates different 
false positive rates to different strings depending on the 
significance of spam words and gives a solution to 
make the total membership invalidation cost minimum. 
BBF groups strings into different bins via smoothing by 
bin means technique. The number of strings to be 
grouped and false positive rate of each bin is identified 
through GA which minimizes the total membership 
invalidation cost. This study examines different number 
of bins for given set of strings, their false positive rates 
and number of strings in every bin to minimize the total 
membership invalidation cost. 
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Fig. 1: Bloom filter 
 
 The organization of this study is as follows. 
Section 2 deals with the standard BF. Section3 presents 
the GA technique. SA is discussed in section 4. Section 
5 explains the optimized BBF using GA with SA. 
Performance evaluation of the BBF of SA, GA and GA 
with SA are discussed in section 6.  
 
Bloom filter: Bloom filters (Bloom 1970) are compact 
data structures for probabilistic representation of a set 
in order to support membership queries. This compact 
representation is the payoff for allowing a small rate of 
false positives in membership queries which might 
incorrectly recognize an element as member of the set.  
Given a string S the Bloom filter computes k hash 
functions on it producing k hash values and sets k bits 
in an m-bit long vector at the addresses corresponding 
to the k hash values. The value of k ranges from 1 to m. 
The same procedure is repeated for all the members of 
the set. This process is called programming of the filter. 
The query process is similar to programming, where a 
string whose membership is to be verified is input to the 
filter. The bits in the m-bit long vector at the locations 
corresponding to the k hash values are looked up. If at 
least one of these k bits is not found in the set then the 
string is declared to be a nonmember of the set. If all 
the bits are found to be set then the string is said to 
belong to the set with a certain probability. This 
uncertainty in the membership comes from the fact that 
those k bits in the m-bit vector can be set by any other 
n-1 members. Thus finding a bit set does not 
necessarily imply that it was set by the particular string 
being queried. However, finding a bit not set certainly 
implies that the string does not belong to the set.  
 In order to store a given element into the bit array, 
each hash function must be applied to it and based on the 
return value r of each function (r1, r2, … , rk), the bit with 
the offset r is set to 1. Since there are k hash functions, 
up to k bits in the bit array are set to 1 (it might be less 
because several hash functions might return the same 
value). Figure1 is an example where m=16, k=4 and e is 
the element to be stored in the bit array. 
 Bloom filters also have the unusual property that 
the time needed to either add items or to check whether 

an item is in the set is a fixed constant, O(k), 
completely independent of the number of items already 
in the set.  
 One important feature of Bloom filters is that there 
is a clear tradeoff between the size of the filter and the 
rate of false positives. The false positive rate of  Bloom 
filter is: 
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 Minimizing the false positive probability f is 
equivalent to minimizing with respect to k: 
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 The derivative equals 0 when kmin=(1n2)(m/n). In 
this case the false positive probability f is: 
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 Of course k should be an integer,  
 
k = ln2.(m / n)     (2) 

 
 When the set of elements is changing over time, in 
that case the insertions and deletions in the Bloom filter 
become important. Inserting elements into a Bloom 
filter hash the element k times and set the bits to 1. 
However, deletion process is hashing the element to be 
deleted k times and set the corresponding bits to 0, is 
not possible. This is because setting a location to 0 that 
is hashed to by some other element in the set and the 
resultant Bloom filter is no longer correctly reflects all 
elements in the set. To avoid this problem, Counting 
Bloom Filter (CBF) has an entry in the Bloom filter is 
not a single bit but instead a small counter. When an 
item is inserted, the corresponding counters are 
incremented; and when an item is deleted, the 
corresponding counters are decremented. 
 Compressed Bloom filter (Mitzenmacher, 2002) 
improves the performance when the Bloom filter is 
passed as a message and its transmission size is a 
limiting factor. Bloom filter is suggested as a means for 
sharing Web cache information. In this setting, proxies 
do not share the exact contents of their caches, but 
instead periodically broadcast Bloom filters 
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representing their cache. By using compressed bloom 
filters, proxies can reduce the number of bits 
broadcast, the false positive rate and/or the amount of 
computation per lookup. The cost is the processing 
time for compression and decompression. It can use 
simple arithmetic coding and more memory use at the 
proxies, which utilize the larger uncompressed form of 
the Bloom filter. 
 The Spectral Bloom filter (Cohen and Matias, 
2003) is an extension of the Bloom Filter to multi-sets, 
allowing the filtering of elements whose multiplicities 
are below a threshold given at query time. The spectral 
Bloom filter replaces the bit vector with a vector of m 
counters C. the counters in C roughly represent 
multiplicities of items. All the counters in C are initially 
set to 0. When inserting an item, it increases the 
counters Ch1(s), Ch2(s) ,…, Chk(s) by 1 and it stores the 
frequency of each item. It allows deletion by decreasing 
the same counters. 
 The one type of bloom filter is Split Bloom filter 
(Xiao et al., 2004). It increases the capacity by 
allocating a fixed s×m bit matrix instead of an m-bit 
vector as used by the Bloom Filter to represent a set. A 
certain number of s filters each with m bits, are 
employed and uniformly selected when inserting an 
item of the set. The false match probability increases as 
the set cardinality grows. The basic idea is, in element 
addition operation, before going to map element x into 
the standard bloom filter s, it first checks the bloom 
filters from 1 to s-1 whether they have response that 
element x is a member of set A. If the response is false, 
it makes sure that there is no false positive probability 
in first s-1 bloom filters, so it maps the element x into 
bloom filter s; otherwise, it just go ahead to the next 
element with no any operation on element x. 
 The Dynamic Bloom Filter (DBF) can support 
concise representation and approximate membership 
queries of dynamic set instead of static set (Guo et al., 
2006). The basic idea of DBF is to represent a dynamic 
set with a dynamic s×m bit matrix that consists of s 
bloom filters. Here s is initialized to 1, but it is not a 
constant as split bloom filter. It can increase during the 
continuous increasing process of the set size. 
 The Scalable Bloom filter (Xie et al., 2007) 
represents dynamic data sets well and provides a way 
to effectively solve the scalability problem of Bloom 
filters. It solves the scalability problem of Bloom 
filters by adding Bloom filter vectors with double 
length when necessary.  
 The data structure of Hierarchical Counting Bloom 
Filter (Yuan et al., 2008) is composed of several sub 
CBFs. The number of these sub filters is h. Each sub 
filter has different counter length and bit array length. 
Each counter length is c0, c1… ch-1 and each bit array 
length is m0, m1, …, mh-1 respectively. m0> m1> … > mh-1. 

 
 
Fig. 2: Simple GA 
 
Genetic algorithm: A Simple GA is a computational 
abstraction of biological GA proposed by Holland 
(1975), is a probabilistic optimal algorithm that is based 
on the evolutionary theories. This algorithm is 
population-oriented. Successive populations of feasible 
solutions are generated in a stochastic manner 
following laws similar to that of natural selection. 
 GAs is a family of computational models inspired 
by evolution. These algorithms encode a potential 
solution to a specific problem on a simple chromosome-
like data structure and apply crossover and mutation 
operators to these structures so as to preserve critical 
information. An implementation of a GA begins with a 
population of (usually random) chromosomes. One then 
evaluates these structures and allocates reproductive 
opportunities in such a way that those chromosomes 
which represent a better solution to the target problem 
are given more chances to reproduce than those 
chromosomes which are poorer solutions. The goodness 
of a solution is typically defined with respect to the 
current population. Nazif and  Lee (2010) proposed a 
GA using an optimized crossover operator designed by 
a complete undirected bipartite graph that finds an 
optimal set of delivery routes satisfying the 
requirements and giving minimal total cost for vehicle 
routing problem. Usually there are only two main 
components of GAs that are problem dependent: the 
problem encoding and the fitness function (objective 
function/evaluation function). A problem can be viewed 
as a black box with different parameters: The only 
output of the black box is a value returned by an 
evaluation function indicating how well a particular 
combination of parameter settings solves the 
optimization problem. The goal is to set the various 
parameters so as to optimize some output. In more 
traditional terms that to maximize (or minimize) some 
function F(x1,x2,..., xm). Figure 2 shows the Simple GA. 
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Fig. 3: Simulated annealing 
 
Premature convergence problem: GA suffer from the 
premature suboptimal convergence or stagnation which 
occurs when some poor individuals attract the 
population due to a local optimum or bad initialization, 
it prevents further exploration of the search space 
(Bonabeau et al., 1999). One of the causes of this 
problem is that a very fit chromosome is generally sure 
to be selected for mating and since offspring resemble 
their parents, chromosomes become too similar. Hence, 
the population will often converge before reaching the 
global optimal solution, resulting in premature 
convergence. Also in GA the population size is finite, 
which influences the sampling ability of a GA and as a 
result affects its performance.  
 Incorporating a local search method can introduce 
new genes which can help to fight the genetic drift 
problem (Asoh and Muhlenbein 1994; Thierens et al., 
1998) caused by the accumulation of stochastic errors 
due to finite populations. It can also accelerate the 
search towards the global optimum (Hart, 1994) which 
in turn can guarantee that the convergence rate is large 
enough to obstruct any genetic drift. In addition a local 
search method within a GA can improve the exploiting 
ability of the search algorithm without limiting its 
exploring ability (Hart, 1994). If the right balance 
between global exploration and local exploitation 
capabilities can be achieved, the algorithm can easily 
produce solutions with high accuracy (Lobo and 

Goldberg, 1997). The proposed work incorporates SA 
to GA to avoid premature convergence.  
 
Simulated annealing: In an optimization problem, 
often the solution space has many local minima. A 
simple local search  algorithm proceeds by choosing 
random initial solution a d generating a neighbor from 
that solution. If it is a minimum fitness transition then 
the neighboring solution is accepted. Such an algorithm 
has the drawback of often converging to a local 
minimum. The SA algorithm avoids getting trapped in a 
local minimum by accepting cost increasing neighbors 
with some probability. It solves this problem by 
allowing worse moves (lesser quality) to be taken some 
of the time. That is, it allows some uphill steps so that it 
can escape from local minima. In SA, first an initial 
solution is randomly generated and a neighbor is found 
and is accepted with a probability of min (1, exp (-
∆E/T)), where ∆E is the cost difference and T is the 
control parameter corresponding to the temperature of 
the physical analogy and will be called temperature On 
slow reduction of temperature, the algorithm converges 
to the global minimum. Among its advantages are the 
relative ease of implementation and the ability to 
provide reasonably good solutions for many 
combinatorial problems. SA is inherently sequential 
and hence very slow for problems with large search 
spaces. Though a robust technique, its drawbacks 
include the need for a great deal of computer time for 
many runs and carefully chosen tunable parameters. 
The SA is used for water transfers (Khodabakhshi et 
al., 2010) that consist of reservoirs and transfer 
systems. The results of this research indicated that the 
SA is capable of solving such complex problems in 
water resources management with good precision in a 
reasonable period of time. 
 
Figure 3 shows the SA algorithm: 
 

MATERIALS AND METHODS 
 
Bloom filter optimization using GA-SA: Bin Bloom 
Filter (BBF): A BBF is a date structure considering 
weight for spam word. It groups spam words into 
different bins depending on their weight. It incorporates 
the information on the spam word weights and the 
membership likelihood of the spam words into its 
optimal design. In BBF a high cost bin lower false 
positive probability and a low cost bin has higher false 
positive probability. The false positive rate and number 
of strings to be stored is identified through optimization 
technique GA which minimize the total membership 
invalidation cost. Figure 4 shows Bin Bloom filter with 
its tuple <n,f,w> configuration. 
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Fig. 4: Bin bloom filter 
 
Problem definition: Consider a standard supervised 
learning problem with a set of training data D = {<Y1,Z1 
>,..., <Yi, Zi>, … ,< Yr ,Zr >} , where Yi is an instance 
represented as a single feature vector, Zi = C(Yi ) is the 
target value of Yi , where C is the target function. Where 
Y1, Y2, … , Yr set of text document collection C is a 
class label to classify into spam or legitimate (non-spam). 
The collection is represented into feature vector by the 
text documents are converted to normalized case and 
tokenized them, splitting on non-letters. The stop words 
are eliminated. The spam weights for words are 
calculated from the set.  This weight value indicates 
its probable belongings to spam or legitimate. The 
weight values are discretized and assigned for 
different Bins. The tuple to describe the Bin Bloom 
Filter is, {{n1, n2 ,…, nL}, {w 1, w2,…, wL}, m, {k 1, k2, 
…, kL}, {f 1, f2, …, fL}}. It is an optimization problem 
to find the value of n and f that to minimize the total 
membership invalidation cost. For membership testing 
the total cost of the set is the sum of the invalidation 
cost of each subset. The total membership invalidation 
cost (Xie et al., 2005) is given as: 
 

F= n1f1w1 + n2f2w2 +……+ nLfLwL 

 

 The total membership invalidation cost 
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 The objective function f(L) taken as standard for 
the problem of minimization is: 

max max

max

C -F(L) if F(L)<C
f(L) =

0 if F(L) ³C



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  (4) 

 
where, Cmax is a large constant. 
 
Weight assignment: The first step for assigning weight 
to spam words is estimating the word probability that 
depends on word frequency. Word frequency is 
measured by the number of occurrences of a specific 
word in the document. Estimating probabilities is 
achieved using Bayes conditional probability theorem 
according to which the probability of a word given that 
the message is spam can be estimated as follows: 
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Ps = The probability of a word given the mail is spam 
Pns = The probability of a word given the mail is 

legitimate 
fs = The frequency of word in the spam documents 
fns = Frequency of words in the legitimate documents 
Ns = The total spam documents 
Nns = The total legitimate documents 
 
 The next step is calculating word weights. 
Estimating a weight for each word is based on its 
frequency and its probability in spam mail documents 
and non-spam mail documents. The weight of every 
word is estimated using the formula: 
 

s
word

ns

P
weight  

P
=   (7) 

 
 This weight value is based on text collection 
containing spam messages and non-spam messages. 
The word weights are estimated for spam list during the 
training process and stored in a separate text document.  
 
Chromosome representation: In the context of Bin 
bloom filter, a chromosome represents number of 
bloom filters with its number of words to be stored, 
false positive rate and its weight. That is, each 
chromosome X i, is constructed is shown in Figure 5. 
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where, nij, f ij and wij refer respectively the number of 
words, false positive rate of and the weight of the jth 
bin of ith chromosome. A set of 3 genes <n,f,w> 
encodes a protein-a trait, that is a single bin. The false 
positive rate fij can be obtained from Eq. 1 where nij is 
drawn from the gene of the chromosome, m is known in 
advance and k is calculated from Eq. 2.  
 
Initial population: One chromosome in the population 
represents one possible solution for assigning the triples 
<n, f, w> for L Bloom filters. Therefore, a population 
represents a number of candidate solutions for the 
Bloom filters. At the initial stage, each chromosome 
randomly chooses different <n, f, w> for L Bins. The 
fitness function for each individual can be calculated 
based on the Eq. 4.  
 
Selection: In selection the offspring producing 
individuals are chosen. Each individual in the selection 
pool receives a reproduction probability depending on 
the own fitness value and the fitness value of all other 
individuals in the selection pool. This fitness is used for 
the actual selection in the step afterwards. This simplest 
selection scheme is roulette-wheel selection, also called 
stochastic sampling with replacement. The proposed 
system employs roulette-wheel selection method.  
 
Crossover: The interesting behaviour happens from 
GAs because of the ability of the solutions to learn 
from each other. Solutions can combine to form 
offspring for the next generation. Occasionally they 
will pass on their worst information, but doing 
crossover in combination with a powerful selection 
technique perceives better solutions result. Crossover 
occurs with a user specified probability called, the 
crossover probability Pc. Many crossover techniques 
exist for individual. In single point crossover, a 
position is randomly selected at which the parents are 
divided into two parts. The parts of the two parents are 
then swapped to generate two new offspring. 
 
Mutation: Mutation is a genetic operator that alters one 
or more gene values in a chromosome from its initial 
state. This can result in entirely new gene values being 
added to the gene pool. With these new gene values, the 
GA may be able to arrive at better solution than was 
previously possible. Mutation applied usually with a 
low probability to introduce random changes into the 
population. It replaces gene values lost from the 
population. It helps to prevent the population from 
stagnating at any local optima and it avoids premature 
convergence. Mutation evaluates more regions of the 
search space that is it makes the entire search space 
reachable. It occurs during evolution according to a 
user-definable mutation probability. This probability 

should usually be set fairly low. If it is set to high, the 
search will turn into a primitive random search. 
 
Evaluation: After producing offspring they must be 
inserted into the population. By a reinsertion scheme 
individuals should be inserted into the new population 
and it determines which individuals of the population 
will be replaced by offspring. The used selection 
algorithm determines the reinsertion scheme. The elitist 
combined with fitness-based reinsertion prevents this 
losing of information and is the recommended method. 
At each generation, a given number of the least fit parent 
is replaced by the same number of the fit offspring. 

 
Combined GA and SA: A combination of a GA and a 
SA can speed up the search to locate the exact global 
optimum. In this hybrid, applying a SA to the 
solutions that are guided by a GA to the most 
promising region can accelerate convergence to the 
global optimum. The time needed to reach the global 
optimum can be further reduced if local search 
methods and local knowledge are used to accelerate 
locating the most promising search. 
 For any hybrid algorithm, a local search can be 
applied to either every individual in the population or 
only few individuals. Applying a local search to every 
individual in the population on expensive function 
evaluations can waste resources without providing any 
more useful information. Applying a local search to a 
large fraction of the population can limit exploration of 
the search space by allowing the GA to evolve for a 
small number of generations. Deciding upon the optimal 
fraction of the population which should perform local 
search and the basis on which these individuals are 
chosen, has a great impact on the performance of a 
hybrid. The proposed system incorporates SA in GA for 
every 10 iteration of 10% population. 

 
RESULTS 

 
 In the proposed system the roulette wheel selection, 
objective function value as fitness, single point crossover, 
uniform mutation and maximum iteration numbers as 
stopping criterion are used in the experimental analysis.. 
The single point crossover is applied with a probability 
of Pc. For every bit of the string, mutation occurs with 
probability Pm. The levels of operator probabilities are 
drawn from the literature.  Suggested that crossover rates 
between 0.65 and 1 and mutation rates between 0.001 
and 0.01 are useful in GA applications. Population size 
and maximum generation number have also positive 
effects on finding the best fitness value.  
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Fig. 5: Chromosome representation for bin bloom filter 
 

 
 
Fig. 6: Total membership invalidation cost for bin size 10 
 

 

 
Fig. 7: Total membership invalidation cost for bin size 11 

 

 
 
Fig. 8: Total membership invalidation cost for bin size 12 

 
 
Fig. 9: Performance evaluation chart for SA, GA and 

hybrid GA-SA 
 
Increasing the population size or number of generations 
enlarges the search space. At the end of the analysis, the 
crossover probability level Pc as 0.65, mutation level Pm 
as 0.01, population size as 100 and maximum number 
of iteration is set as 100. The total number of strings 
taken for testing is 3000 and their weights are ranging 
from 0.0005-5. The size of the BF is 1024. The highest 
temperature T is assigned as 1024, the BF size. These 
experimental values are tested for bin sizes from 10-12. 
 Since BF allows false positive, the membership 
invalidation cost is unavoidable. For BBF, the total 
membership invalidation cost is expressed in (3). In 
standard BF, different weights in different bins into 
consideration, the total membership invalidation cost is 
then as follows: 
  

( )standard 1 1 2 2 L L

L

standard i i
i 1

F  n w  n w  n w f

F (L) f n w
=

= + +……+

= ∑
 

 
 Figure 6-8 show the total membership 
invalidation cost attained from SA, GA, combined GA 
and SA (GA-SA). They illustrate that there is a 
noticeable variation between SA and variants of GA 
such as GA and GA-SA. And also they show that GA-
SA outperforms SA and GA.  
 Table 1-3 show the values obtained from SA, 
GA, GA-SA respectively. The first column represents 
the bin size; the second column, number of strings in 
each bin; the third column, average weight of the 
strings present in a bin; the fourth column, false 
positive rate of each bin. The fifth column shows the 
total membership invalidation cost of BBF.  Figure 9 
shows the evaluation chart for the cost obtained from 
SA, GA and GA-SA. 
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Table 1: Values obtained from SA 
Bin size Number of strings Average String weight False positive rate Cost of BBF 
10 96, 129. 174, 212 4.906, 4.663, 4.424, 4.101 0.0059, 0.0221, 0.0592, 0.0982 6119.99 
  319, 321, 383, 385, 490, 491 3.694, 3.190, 2.607, 1.966 0.2139, 0.2159, 0.2767, 0.2786 
   1.250, 0.385 0.3664, 0.3671 
11 45, 45,124, 169 4.956, 4.757, 4.677, 4.445 1.79E-05, 1.79E-05, 0.0189, 0.0544 6122.02 
 258, 259, 356, 357 4.095, 3.691, 3.211, 2.619 0.1485, 0.1496, 0.2511, 0.2521 
 437, 438, 512 1.961, 1.242, 0.402 0.3244, 0.3252, 0.3825 
12 91, 91, 91, 146 4.910, 4.688, 4.535, 4.364 0.0045, 0.0045, 0.0045, 0.0344 6085.45 
 179, 220, 276, 276 4.090, 3.789, 3.404, 2.952 0.0640, 0.1069, 0.1682, 0.1682 
 370, 371, 444, 445 2.417, 1.810, 1.127, 0.345 0.2646, 0.2655, 0.3302, 0.3310 
 
Table 2: Values obtained from GA 
Bin size Number of strings Average string weight False positive rate Cost of BBF 
10 101, 113, 133, 156 4.901, 4.662, 4.465, 4.230 0.0077, 0.0129, 0.0247, 0.0427 6078.495 
 210, 290, 466, 508 3.938, 3.558, 2.954, 2.135 0.0961, 0.1833, 0.3479, 0.3797 
 511, 512 1.306, 0.402 0.3818, 0.3825 
11 91, 110, 113, 130 4.910, 4.681, 4.496, 4.306 0.0045, 0.0114, 0.0129, 0.0227 6049.081 
 149, 180, 246,445 4.068, 3.821, 3.498, 2.944 0.0368, 0.0650, 0.1353, 0.3310 
 512, 512,512 2.140, 1.307, 0.402 0.3825, 0.3825, 0.3825 
12 91, 93, 96, 108 4.910, 4.688, 4.530, 4.374 0.0045, 0.0050, 0.0059, 0.0105 6026.399 
 130, 139, 168, 211 4.174, 3.962, 3.732, 3.440 0.0227, 0.0290, 0.0535, 0.0971 
 438, 502, 512, 512 2.922, 2.132, 1.307, 0.402 0.3252, 0.3753, 0.3825, 0.3825 

 
Table 3: Values obtained from GA-SA 
Bin size Number of strings Average string weight False positive rate Cost of BBF 
10 105, 120, 132, 139 4.898, 4.652, 4.448, 4.224 0.0092, 0.0166, 0.0241, 0.0290 6078.068 
 207, 299, 462, 512 3.951, 3.567, 2.959, 2.140 0.0929, 0.1929, 0.3448, 0.3825 
 512, 512 1.307, 0.402 0.3825, 0.3825 
11 93, 103, 114, 123 4.908, 4.681, 4.503, 4.317 0.0050, 0.0084, 0.0134, 0.0183 6047.868 
 152, 161, 237, 482 4.084, 3.845, 3.544, 2.975 0.0393, 0.0471, 0.1254, 0.3603 
 511, 512, 512 2.139, 1.307, 0.402 0.3818, 0.3825, 0.3825 
12 87, 88, 90, 111 4.913, 4.696, 4.547, 4.396 0.0035, 0.0037, 0.0042, 0.0119 6025.74 
 114, 149, 158, 202 4.206, 3.997, 3.766, 3.489 0.0134, 0.0368, 0.0444, 0.0875 
 480, 499, 511,511 2.950, 2.126, 1.304, 0.401 0.3588, 0.3731, 0.3818, 0.3818 

 
DISCUSSION 

 
 Bloom filters are simple randomized data 
structures that are useful in practice. The BBF is an 
extension of BF and inherits the best feature of BF such 
as time and space saving. The BBF treats strings in a set 
in a different way depending on their significance, 
groups the strings into bins and allocates different false 
positive rate to different bins. Important spam words 
have lower false positive rate than false positive rate of 
less significant words. GA has been used many types of 
optimization problem. Premature convergence was the 
main problem for GA. It is caused by lower diversity of 
the population. Apparently maintaining higher diversity 
is important to obtained better result. To increase the 
diversity as well as preventing premature convergence 
SA is incorporated with GA for every 10 iterations of 
10% of population. The experiment results show that 
the results obtained from GA-SA have lesser total 
membership invalidation cost than values obtained 
from SA and GA.  
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