
Journal of Computer Science 7 (9): 1439-1447, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Arulanand Natarajan, Anna University of Technology, Coimbatore, TN, India
1439

Combined Heuristic Technique for

Optimization of Bloom Filter in Spam Filtering

1Arulanand Natarajan, 2S. Subramanian and 3K. Premalatha

 1Anna University of Technology, Coimbatore,
2Sri Krishna College of Engineering and Technology, Coimbatore

3Bannari Amman Institute of Technology, Erode, TN, India

Abstract: Problem statement: Spam is an irrelevant or inappropriate message sent on the internet to a
large number of newsgroups or users. A spam word is a list of well-known words that often appear in
spam mails. Bloom Filter (BF) is used for identification of spam word. Approach: BF is a simple but
powerful data structure that can check membership to a static set. The trade-off to use BF is a certain
configurable risk of false positives. The odds of a false positive can be made very low if the hash
bitmap is sufficiently large. Bin Bloom Filter (BBF) has number of BFs which assign group of words
into bins with different false positive rates based on weight of the spam words. Genetic Algorithm
(GA) was employed to minimize the total membership invalidation cost of BBF. GA had premature
convergence problem. Simulated Annealing (SA) was incorporated with GA to prevent the premature
convergence effectively. Results: The experimental results of total membership invalidation cost are
analyzed for various sizes of bins. The results showed that the combined GA-SA model outperforms
SA and GA model. Conclusion: GA has premature convergence due to its genetic operators that are
not able to generate offsprings which are superior to the parents. So more number of similar
chromosomes presented on the population. When GA is incorporated with SA new genes were
introduced which causes diversity in the population and prevents premature convergence. The
combined GA-SA outperforms GA and SA.

Key words: Spam word, hash function, genetic algorithm, simulated annealing, static set, premature

convergence, long vector, bit array

INTRODUCTION

 A spam filter is a program that is used to detect
unsolicited and unwanted email and prevent those
messages from getting into user's inbox. A spam filter
looks for certain criteria on which it stands decisions.
For example, it can be set to look for particular words
in the subject line of messages and to exclude these
from the user’s inbox. This method is not effective,
because often it is omitting perfectly legitimate
messages and letting actual spam through. The
strategies used to block spam are diverse and includes
many promising techniques. Some of the strategies
like black list filter, white list/verification filters rule
based ranking and naïve bayesian filtering are used to
identify the spam.
 A Bloom filter presents a very attractive option for
string matching (Bloom 1970). It is a space efficient
randomized data structure that stores a set of signatures
efficiently by computing multiple hash functions on

each member of the set. It queries a database of strings
to verify for the membership of a particular string. The
answer to this query can be a false positive but never be
a false negative. The computation time required for
performing the query is independent of the number of
signatures in the database and the amount of memory
required by a Bloom filter for each signature is
independent of its length (Feng et al., 2002).
 This study presents a BBF which allocates different
false positive rates to different strings depending on the
significance of spam words and gives a solution to
make the total membership invalidation cost minimum.
BBF groups strings into different bins via smoothing by
bin means technique. The number of strings to be
grouped and false positive rate of each bin is identified
through GA which minimizes the total membership
invalidation cost. This study examines different number
of bins for given set of strings, their false positive rates
and number of strings in every bin to minimize the total
membership invalidation cost.

J. Computer Sci., 7 (9): 1439-1447, 2011

1440

Fig. 1: Bloom filter

 The organization of this study is as follows.
Section 2 deals with the standard BF. Section3 presents
the GA technique. SA is discussed in section 4. Section
5 explains the optimized BBF using GA with SA.
Performance evaluation of the BBF of SA, GA and GA
with SA are discussed in section 6.

Bloom filter: Bloom filters (Bloom 1970) are compact
data structures for probabilistic representation of a set
in order to support membership queries. This compact
representation is the payoff for allowing a small rate of
false positives in membership queries which might
incorrectly recognize an element as member of the set.
Given a string S the Bloom filter computes k hash
functions on it producing k hash values and sets k bits
in an m-bit long vector at the addresses corresponding
to the k hash values. The value of k ranges from 1 to m.
The same procedure is repeated for all the members of
the set. This process is called programming of the filter.
The query process is similar to programming, where a
string whose membership is to be verified is input to the
filter. The bits in the m-bit long vector at the locations
corresponding to the k hash values are looked up. If at
least one of these k bits is not found in the set then the
string is declared to be a nonmember of the set. If all
the bits are found to be set then the string is said to
belong to the set with a certain probability. This
uncertainty in the membership comes from the fact that
those k bits in the m-bit vector can be set by any other
n-1 members. Thus finding a bit set does not
necessarily imply that it was set by the particular string
being queried. However, finding a bit not set certainly
implies that the string does not belong to the set.
 In order to store a given element into the bit array,
each hash function must be applied to it and based on the
return value r of each function (r1, r2, … , rk), the bit with
the offset r is set to 1. Since there are k hash functions,
up to k bits in the bit array are set to 1 (it might be less
because several hash functions might return the same
value). Figure1 is an example where m=16, k=4 and e is
the element to be stored in the bit array.
 Bloom filters also have the unusual property that
the time needed to either add items or to check whether

an item is in the set is a fixed constant, O(k),
completely independent of the number of items already
in the set.
 One important feature of Bloom filters is that there
is a clear tradeoff between the size of the filter and the
rate of false positives. The false positive rate of Bloom
filter is:

()kkn /mf 1 e−= − (1)

Let:

kn /mg k ln(1 e)−= −

 Minimizing the false positive probability f is
equivalent to minimizing with respect to k:

kn -kn m-
m

-kn m

dg kn e
=ln 1- e +

dk m 1- e

 
 
 

 The derivative equals 0 when kmin=(1n2)(m/n). In
this case the false positive probability f is:

min mink k m/n
min

1
f(k) = (1- p) = () = (0.6185)

2

 Of course k should be an integer,

k = ln2.(m / n)   (2)

 When the set of elements is changing over time, in
that case the insertions and deletions in the Bloom filter
become important. Inserting elements into a Bloom
filter hash the element k times and set the bits to 1.
However, deletion process is hashing the element to be
deleted k times and set the corresponding bits to 0, is
not possible. This is because setting a location to 0 that
is hashed to by some other element in the set and the
resultant Bloom filter is no longer correctly reflects all
elements in the set. To avoid this problem, Counting
Bloom Filter (CBF) has an entry in the Bloom filter is
not a single bit but instead a small counter. When an
item is inserted, the corresponding counters are
incremented; and when an item is deleted, the
corresponding counters are decremented.
 Compressed Bloom filter (Mitzenmacher, 2002)
improves the performance when the Bloom filter is
passed as a message and its transmission size is a
limiting factor. Bloom filter is suggested as a means for
sharing Web cache information. In this setting, proxies
do not share the exact contents of their caches, but
instead periodically broadcast Bloom filters

J. Computer Sci., 7 (9): 1439-1447, 2011

1441

representing their cache. By using compressed bloom
filters, proxies can reduce the number of bits
broadcast, the false positive rate and/or the amount of
computation per lookup. The cost is the processing
time for compression and decompression. It can use
simple arithmetic coding and more memory use at the
proxies, which utilize the larger uncompressed form of
the Bloom filter.
 The Spectral Bloom filter (Cohen and Matias,
2003) is an extension of the Bloom Filter to multi-sets,
allowing the filtering of elements whose multiplicities
are below a threshold given at query time. The spectral
Bloom filter replaces the bit vector with a vector of m
counters C. the counters in C roughly represent
multiplicities of items. All the counters in C are initially
set to 0. When inserting an item, it increases the
counters Ch1(s), Ch2(s) ,…, Chk(s) by 1 and it stores the
frequency of each item. It allows deletion by decreasing
the same counters.
 The one type of bloom filter is Split Bloom filter
(Xiao et al., 2004). It increases the capacity by
allocating a fixed s×m bit matrix instead of an m-bit
vector as used by the Bloom Filter to represent a set. A
certain number of s filters each with m bits, are
employed and uniformly selected when inserting an
item of the set. The false match probability increases as
the set cardinality grows. The basic idea is, in element
addition operation, before going to map element x into
the standard bloom filter s, it first checks the bloom
filters from 1 to s-1 whether they have response that
element x is a member of set A. If the response is false,
it makes sure that there is no false positive probability
in first s-1 bloom filters, so it maps the element x into
bloom filter s; otherwise, it just go ahead to the next
element with no any operation on element x.
 The Dynamic Bloom Filter (DBF) can support
concise representation and approximate membership
queries of dynamic set instead of static set (Guo et al.,
2006). The basic idea of DBF is to represent a dynamic
set with a dynamic s×m bit matrix that consists of s
bloom filters. Here s is initialized to 1, but it is not a
constant as split bloom filter. It can increase during the
continuous increasing process of the set size.
 The Scalable Bloom filter (Xie et al., 2007)
represents dynamic data sets well and provides a way
to effectively solve the scalability problem of Bloom
filters. It solves the scalability problem of Bloom
filters by adding Bloom filter vectors with double
length when necessary.
 The data structure of Hierarchical Counting Bloom
Filter (Yuan et al., 2008) is composed of several sub
CBFs. The number of these sub filters is h. Each sub
filter has different counter length and bit array length.
Each counter length is c0, c1… ch-1 and each bit array
length is m0, m1, …, mh-1 respectively. m0> m1> … > mh-1.

Fig. 2: Simple GA

Genetic algorithm: A Simple GA is a computational
abstraction of biological GA proposed by Holland
(1975), is a probabilistic optimal algorithm that is based
on the evolutionary theories. This algorithm is
population-oriented. Successive populations of feasible
solutions are generated in a stochastic manner
following laws similar to that of natural selection.
 GAs is a family of computational models inspired
by evolution. These algorithms encode a potential
solution to a specific problem on a simple chromosome-
like data structure and apply crossover and mutation
operators to these structures so as to preserve critical
information. An implementation of a GA begins with a
population of (usually random) chromosomes. One then
evaluates these structures and allocates reproductive
opportunities in such a way that those chromosomes
which represent a better solution to the target problem
are given more chances to reproduce than those
chromosomes which are poorer solutions. The goodness
of a solution is typically defined with respect to the
current population. Nazif and Lee (2010) proposed a
GA using an optimized crossover operator designed by
a complete undirected bipartite graph that finds an
optimal set of delivery routes satisfying the
requirements and giving minimal total cost for vehicle
routing problem. Usually there are only two main
components of GAs that are problem dependent: the
problem encoding and the fitness function (objective
function/evaluation function). A problem can be viewed
as a black box with different parameters: The only
output of the black box is a value returned by an
evaluation function indicating how well a particular
combination of parameter settings solves the
optimization problem. The goal is to set the various
parameters so as to optimize some output. In more
traditional terms that to maximize (or minimize) some
function F(x1,x2,..., xm). Figure 2 shows the Simple GA.

J. Computer Sci., 7 (9): 1439-1447, 2011

1442

Fig. 3: Simulated annealing

Premature convergence problem: GA suffer from the
premature suboptimal convergence or stagnation which
occurs when some poor individuals attract the
population due to a local optimum or bad initialization,
it prevents further exploration of the search space
(Bonabeau et al., 1999). One of the causes of this
problem is that a very fit chromosome is generally sure
to be selected for mating and since offspring resemble
their parents, chromosomes become too similar. Hence,
the population will often converge before reaching the
global optimal solution, resulting in premature
convergence. Also in GA the population size is finite,
which influences the sampling ability of a GA and as a
result affects its performance.
 Incorporating a local search method can introduce
new genes which can help to fight the genetic drift
problem (Asoh and Muhlenbein 1994; Thierens et al.,
1998) caused by the accumulation of stochastic errors
due to finite populations. It can also accelerate the
search towards the global optimum (Hart, 1994) which
in turn can guarantee that the convergence rate is large
enough to obstruct any genetic drift. In addition a local
search method within a GA can improve the exploiting
ability of the search algorithm without limiting its
exploring ability (Hart, 1994). If the right balance
between global exploration and local exploitation
capabilities can be achieved, the algorithm can easily
produce solutions with high accuracy (Lobo and

Goldberg, 1997). The proposed work incorporates SA
to GA to avoid premature convergence.

Simulated annealing: In an optimization problem,
often the solution space has many local minima. A
simple local search algorithm proceeds by choosing
random initial solution a d generating a neighbor from
that solution. If it is a minimum fitness transition then
the neighboring solution is accepted. Such an algorithm
has the drawback of often converging to a local
minimum. The SA algorithm avoids getting trapped in a
local minimum by accepting cost increasing neighbors
with some probability. It solves this problem by
allowing worse moves (lesser quality) to be taken some
of the time. That is, it allows some uphill steps so that it
can escape from local minima. In SA, first an initial
solution is randomly generated and a neighbor is found
and is accepted with a probability of min (1, exp (-
∆E/T)), where ∆E is the cost difference and T is the
control parameter corresponding to the temperature of
the physical analogy and will be called temperature On
slow reduction of temperature, the algorithm converges
to the global minimum. Among its advantages are the
relative ease of implementation and the ability to
provide reasonably good solutions for many
combinatorial problems. SA is inherently sequential
and hence very slow for problems with large search
spaces. Though a robust technique, its drawbacks
include the need for a great deal of computer time for
many runs and carefully chosen tunable parameters.
The SA is used for water transfers (Khodabakhshi et
al., 2010) that consist of reservoirs and transfer
systems. The results of this research indicated that the
SA is capable of solving such complex problems in
water resources management with good precision in a
reasonable period of time.

Figure 3 shows the SA algorithm:

MATERIALS AND METHODS

Bloom filter optimization using GA-SA: Bin Bloom
Filter (BBF): A BBF is a date structure considering
weight for spam word. It groups spam words into
different bins depending on their weight. It incorporates
the information on the spam word weights and the
membership likelihood of the spam words into its
optimal design. In BBF a high cost bin lower false
positive probability and a low cost bin has higher false
positive probability. The false positive rate and number
of strings to be stored is identified through optimization
technique GA which minimize the total membership
invalidation cost. Figure 4 shows Bin Bloom filter with
its tuple <n,f,w> configuration.

J. Computer Sci., 7 (9): 1439-1447, 2011

1443

Fig. 4: Bin bloom filter

Problem definition: Consider a standard supervised
learning problem with a set of training data D = {<Y1,Z1
>,..., <Yi, Zi>, … ,< Yr ,Zr >} , where Yi is an instance
represented as a single feature vector, Zi = C(Yi) is the
target value of Yi , where C is the target function. Where
Y1, Y2, … , Yr set of text document collection C is a
class label to classify into spam or legitimate (non-spam).
The collection is represented into feature vector by the
text documents are converted to normalized case and
tokenized them, splitting on non-letters. The stop words
are eliminated. The spam weights for words are
calculated from the set. This weight value indicates
its probable belongings to spam or legitimate. The
weight values are discretized and assigned for
different Bins. The tuple to describe the Bin Bloom
Filter is, {{n1, n2 ,…, nL}, {w 1, w2,…, wL}, m, {k 1, k2,
…, kL}, {f 1, f2, …, fL}}. It is an optimization problem
to find the value of n and f that to minimize the total
membership invalidation cost. For membership testing
the total cost of the set is the sum of the invalidation
cost of each subset. The total membership invalidation
cost (Xie et al., 2005) is given as:

F= n1f1w1 + n2f2w2 +……+ nLfLwL

 The total membership invalidation cost

() L

1 i ii 1
F L n w f

=
=∑ (3)

 To be minimized:

Where:

L

i
i 1

n N
=

=∑

 N- Total number of Strings in a spam set:

()

i

i j j
j=1

ln2× r m n r

i

i i

1
f =

2

r = ln f (1 i L)

 
 
 
 

∑ 
 
 

≤ ≤

 The objective function f(L) taken as standard for
the problem of minimization is:

max max

max

C -F(L) if F(L)<C
f(L) =

0 if F(L) ³C





 (4)

where, Cmax is a large constant.

Weight assignment: The first step for assigning weight
to spam words is estimating the word probability that
depends on word frequency. Word frequency is
measured by the number of occurrences of a specific
word in the document. Estimating probabilities is
achieved using Bayes conditional probability theorem
according to which the probability of a word given that
the message is spam can be estimated as follows:

s

s
s

ns s

ns ns

f
N

P
f f
N N

=
+

 (5)

ns

ns
ns

ns s

ns ns

f
N

P
f f
N N

=
+

 (6)

Ps = The probability of a word given the mail is spam
Pns = The probability of a word given the mail is

legitimate
fs = The frequency of word in the spam documents
fns = Frequency of words in the legitimate documents
Ns = The total spam documents
Nns = The total legitimate documents

 The next step is calculating word weights.
Estimating a weight for each word is based on its
frequency and its probability in spam mail documents
and non-spam mail documents. The weight of every
word is estimated using the formula:

s
word

ns

P
weight

P
= (7)

 This weight value is based on text collection
containing spam messages and non-spam messages.
The word weights are estimated for spam list during the
training process and stored in a separate text document.

Chromosome representation: In the context of Bin
bloom filter, a chromosome represents number of
bloom filters with its number of words to be stored,
false positive rate and its weight. That is, each
chromosome X i, is constructed is shown in Figure 5.

J. Computer Sci., 7 (9): 1439-1447, 2011

1444

where, nij, f ij and wij refer respectively the number of
words, false positive rate of and the weight of the jth
bin of ith chromosome. A set of 3 genes <n,f,w>
encodes a protein-a trait, that is a single bin. The false
positive rate fij can be obtained from Eq. 1 where nij is
drawn from the gene of the chromosome, m is known in
advance and k is calculated from Eq. 2.

Initial population: One chromosome in the population
represents one possible solution for assigning the triples
<n, f, w> for L Bloom filters. Therefore, a population
represents a number of candidate solutions for the
Bloom filters. At the initial stage, each chromosome
randomly chooses different <n, f, w> for L Bins. The
fitness function for each individual can be calculated
based on the Eq. 4.

Selection: In selection the offspring producing
individuals are chosen. Each individual in the selection
pool receives a reproduction probability depending on
the own fitness value and the fitness value of all other
individuals in the selection pool. This fitness is used for
the actual selection in the step afterwards. This simplest
selection scheme is roulette-wheel selection, also called
stochastic sampling with replacement. The proposed
system employs roulette-wheel selection method.

Crossover: The interesting behaviour happens from
GAs because of the ability of the solutions to learn
from each other. Solutions can combine to form
offspring for the next generation. Occasionally they
will pass on their worst information, but doing
crossover in combination with a powerful selection
technique perceives better solutions result. Crossover
occurs with a user specified probability called, the
crossover probability Pc. Many crossover techniques
exist for individual. In single point crossover, a
position is randomly selected at which the parents are
divided into two parts. The parts of the two parents are
then swapped to generate two new offspring.

Mutation: Mutation is a genetic operator that alters one
or more gene values in a chromosome from its initial
state. This can result in entirely new gene values being
added to the gene pool. With these new gene values, the
GA may be able to arrive at better solution than was
previously possible. Mutation applied usually with a
low probability to introduce random changes into the
population. It replaces gene values lost from the
population. It helps to prevent the population from
stagnating at any local optima and it avoids premature
convergence. Mutation evaluates more regions of the
search space that is it makes the entire search space
reachable. It occurs during evolution according to a
user-definable mutation probability. This probability

should usually be set fairly low. If it is set to high, the
search will turn into a primitive random search.

Evaluation: After producing offspring they must be
inserted into the population. By a reinsertion scheme
individuals should be inserted into the new population
and it determines which individuals of the population
will be replaced by offspring. The used selection
algorithm determines the reinsertion scheme. The elitist
combined with fitness-based reinsertion prevents this
losing of information and is the recommended method.
At each generation, a given number of the least fit parent
is replaced by the same number of the fit offspring.

Combined GA and SA: A combination of a GA and a
SA can speed up the search to locate the exact global
optimum. In this hybrid, applying a SA to the
solutions that are guided by a GA to the most
promising region can accelerate convergence to the
global optimum. The time needed to reach the global
optimum can be further reduced if local search
methods and local knowledge are used to accelerate
locating the most promising search.
 For any hybrid algorithm, a local search can be
applied to either every individual in the population or
only few individuals. Applying a local search to every
individual in the population on expensive function
evaluations can waste resources without providing any
more useful information. Applying a local search to a
large fraction of the population can limit exploration of
the search space by allowing the GA to evolve for a
small number of generations. Deciding upon the optimal
fraction of the population which should perform local
search and the basis on which these individuals are
chosen, has a great impact on the performance of a
hybrid. The proposed system incorporates SA in GA for
every 10 iteration of 10% population.

RESULTS

 In the proposed system the roulette wheel selection,
objective function value as fitness, single point crossover,
uniform mutation and maximum iteration numbers as
stopping criterion are used in the experimental analysis..
The single point crossover is applied with a probability
of Pc. For every bit of the string, mutation occurs with
probability Pm. The levels of operator probabilities are
drawn from the literature. Suggested that crossover rates
between 0.65 and 1 and mutation rates between 0.001
and 0.01 are useful in GA applications. Population size
and maximum generation number have also positive
effects on finding the best fitness value.

J. Computer Sci., 7 (9): 1439-1447, 2011

1445

Fig. 5: Chromosome representation for bin bloom filter

Fig. 6: Total membership invalidation cost for bin size 10

Fig. 7: Total membership invalidation cost for bin size 11

Fig. 8: Total membership invalidation cost for bin size 12

Fig. 9: Performance evaluation chart for SA, GA and

hybrid GA-SA

Increasing the population size or number of generations
enlarges the search space. At the end of the analysis, the
crossover probability level Pc as 0.65, mutation level Pm
as 0.01, population size as 100 and maximum number
of iteration is set as 100. The total number of strings
taken for testing is 3000 and their weights are ranging
from 0.0005-5. The size of the BF is 1024. The highest
temperature T is assigned as 1024, the BF size. These
experimental values are tested for bin sizes from 10-12.
 Since BF allows false positive, the membership
invalidation cost is unavoidable. For BBF, the total
membership invalidation cost is expressed in (3). In
standard BF, different weights in different bins into
consideration, the total membership invalidation cost is
then as follows:

()standard 1 1 2 2 L L

L

standard i i
i 1

F n w n w n w f

F (L) f n w
=

= + +……+

= ∑

 Figure 6-8 show the total membership
invalidation cost attained from SA, GA, combined GA
and SA (GA-SA). They illustrate that there is a
noticeable variation between SA and variants of GA
such as GA and GA-SA. And also they show that GA-
SA outperforms SA and GA.
 Table 1-3 show the values obtained from SA,
GA, GA-SA respectively. The first column represents
the bin size; the second column, number of strings in
each bin; the third column, average weight of the
strings present in a bin; the fourth column, false
positive rate of each bin. The fifth column shows the
total membership invalidation cost of BBF. Figure 9
shows the evaluation chart for the cost obtained from
SA, GA and GA-SA.

J. Computer Sci., 7 (9): 1439-1447, 2011

1446

Table 1: Values obtained from SA
Bin size Number of strings Average String weight False positive rate Cost of BBF
10 96, 129. 174, 212 4.906, 4.663, 4.424, 4.101 0.0059, 0.0221, 0.0592, 0.0982 6119.99
 319, 321, 383, 385, 490, 491 3.694, 3.190, 2.607, 1.966 0.2139, 0.2159, 0.2767, 0.2786
 1.250, 0.385 0.3664, 0.3671
11 45, 45,124, 169 4.956, 4.757, 4.677, 4.445 1.79E-05, 1.79E-05, 0.0189, 0.0544 6122.02
 258, 259, 356, 357 4.095, 3.691, 3.211, 2.619 0.1485, 0.1496, 0.2511, 0.2521
 437, 438, 512 1.961, 1.242, 0.402 0.3244, 0.3252, 0.3825
12 91, 91, 91, 146 4.910, 4.688, 4.535, 4.364 0.0045, 0.0045, 0.0045, 0.0344 6085.45
 179, 220, 276, 276 4.090, 3.789, 3.404, 2.952 0.0640, 0.1069, 0.1682, 0.1682
 370, 371, 444, 445 2.417, 1.810, 1.127, 0.345 0.2646, 0.2655, 0.3302, 0.3310

Table 2: Values obtained from GA
Bin size Number of strings Average string weight False positive rate Cost of BBF
10 101, 113, 133, 156 4.901, 4.662, 4.465, 4.230 0.0077, 0.0129, 0.0247, 0.0427 6078.495
 210, 290, 466, 508 3.938, 3.558, 2.954, 2.135 0.0961, 0.1833, 0.3479, 0.3797
 511, 512 1.306, 0.402 0.3818, 0.3825
11 91, 110, 113, 130 4.910, 4.681, 4.496, 4.306 0.0045, 0.0114, 0.0129, 0.0227 6049.081
 149, 180, 246,445 4.068, 3.821, 3.498, 2.944 0.0368, 0.0650, 0.1353, 0.3310
 512, 512,512 2.140, 1.307, 0.402 0.3825, 0.3825, 0.3825
12 91, 93, 96, 108 4.910, 4.688, 4.530, 4.374 0.0045, 0.0050, 0.0059, 0.0105 6026.399
 130, 139, 168, 211 4.174, 3.962, 3.732, 3.440 0.0227, 0.0290, 0.0535, 0.0971
 438, 502, 512, 512 2.922, 2.132, 1.307, 0.402 0.3252, 0.3753, 0.3825, 0.3825

Table 3: Values obtained from GA-SA
Bin size Number of strings Average string weight False positive rate Cost of BBF
10 105, 120, 132, 139 4.898, 4.652, 4.448, 4.224 0.0092, 0.0166, 0.0241, 0.0290 6078.068
 207, 299, 462, 512 3.951, 3.567, 2.959, 2.140 0.0929, 0.1929, 0.3448, 0.3825
 512, 512 1.307, 0.402 0.3825, 0.3825
11 93, 103, 114, 123 4.908, 4.681, 4.503, 4.317 0.0050, 0.0084, 0.0134, 0.0183 6047.868
 152, 161, 237, 482 4.084, 3.845, 3.544, 2.975 0.0393, 0.0471, 0.1254, 0.3603
 511, 512, 512 2.139, 1.307, 0.402 0.3818, 0.3825, 0.3825
12 87, 88, 90, 111 4.913, 4.696, 4.547, 4.396 0.0035, 0.0037, 0.0042, 0.0119 6025.74
 114, 149, 158, 202 4.206, 3.997, 3.766, 3.489 0.0134, 0.0368, 0.0444, 0.0875
 480, 499, 511,511 2.950, 2.126, 1.304, 0.401 0.3588, 0.3731, 0.3818, 0.3818

DISCUSSION

 Bloom filters are simple randomized data
structures that are useful in practice. The BBF is an
extension of BF and inherits the best feature of BF such
as time and space saving. The BBF treats strings in a set
in a different way depending on their significance,
groups the strings into bins and allocates different false
positive rate to different bins. Important spam words
have lower false positive rate than false positive rate of
less significant words. GA has been used many types of
optimization problem. Premature convergence was the
main problem for GA. It is caused by lower diversity of
the population. Apparently maintaining higher diversity
is important to obtained better result. To increase the
diversity as well as preventing premature convergence
SA is incorporated with GA for every 10 iterations of
10% of population. The experiment results show that
the results obtained from GA-SA have lesser total
membership invalidation cost than values obtained
from SA and GA.

REFERENCES

Asoh, H. and H. Mühlenbein, 1994. On the mean

convergence time of evolutionary algorithms
without selection and mutation. Parallel Problem
Solving Nat., PPSN III, 866: 88-97. DOI:
10.1007/3-540-58484-6_253

Bloom, B., 1970. Space/time tradeoffs in hash coding
with allowable errors. Commun. ACM., 13: 422-
426. Doi: 10.1145/362686.362692

Bonabeau, E., M. Dorigo and G. Theraulaz, 1999.
Swarm Intelligence from Natural to Artificial
Systems. 1st Edn., Oxford University Press, New
York, ISBN0195131584, pp: 307.

Cohen, S. And Y. Matias, 2003. Spectral bloom filters.
Proceeding of the ACM SIGMOD International
Conference on Management of Data, (SIGMOD
'03), ACM New York, USA, pp: 241-252. DOI:
10.1145/872757.872787

Feng, W., K.G. Shin, D.D. Kandlur and D. Saha, 2002.
The BLUE active queue management algorithms.
IEEE/ACM Trans. Network., 10: 513-528. DOI:
10.1109/TNET.2002.801399

J. Computer Sci., 7 (9): 1439-1447, 2011

1447

Goldberg, D.E., 1989. Genetic Algorithms-in Search,
Optimization and Machine Learning, Addison-
Wesley Publishing Company Inc., Reading, Mass.,
ISBN0201157675, 9780201157673, pp: 412.

Guo, D., J. Wu, H. Chen and X. Luo, 2006. Theory and
network applications of dynamic bloom filters,
Proceeding of the 25th IEEE International
Conference on Computer Communications, April
23-29, IEEE Xplore Press, Barcelona, Spain, pp: 1-
12. DOI: 10.1109/INFOCOM.2006.325

Hart, W.E., 1994. Adaptive global optimization with
local search. Ph.D. thises, University of California
San Diago.

Holland, J., 1975. Adaption in Natural and Artificial
Systems. 4th Edn., U Michigan Press, Oxford,
England, pp: 183.

Khodabakhshi F, A. R. Ghirian and N. Khakzad ,
2009. Applying Simulated Annealing For Optimal
Operation of Multi-Reservoir Systems . Am. J.
Eng. Applied Sci., 2: 80-87. DOI:
10.3844/ajeassp.2009.80.87.

Lobo, F.G. and D.E. Goldberg, 1997. Decision making
in a hybrid genetic algorithm. Proceeding of the
IEEE International Conference on evolutionary
Computation, APR. 13-16, IEEE Xplore Press,
USA, pp: 121-125. DOI:
10.1109/ICEC.1997.592281

Mitzenmacher, M., 2002. Compressed bloom filters.
IEEE/ACM Trans. Network., 5: 604-612. DOI:
10.1109/TNET.2002.803864

Nazif H and L. S. Lee , 2010. Optimized Crossover
Genetic Algorithm for Vehicle Routing Problem
with Time Windows. Am. J. Applied Sci., 7: 95-
101. DOI: 10.3844/ajassp.2010.95.101.

Thierens, D., D. Goldberg and P. Guimaraes, 1998.
Domino convergence, drift and the temporal-
salience structure of problems. Proceeding of the
IEEE International Conference on Evolutionary
Computation Anchorage, May 4-9, IEEE Xplore
Press, USA, pp: 535-540. DOI:
10.1109/ICEC.1998.700085

Xiao, M., Y. Dai and X. Li, 2004. Split bloom filter.
Chinese J. Electronic, 32: 241-245.

Xie, K., Y. Min, D. Zhang, J. Wen and G. Xie, 2005.
Basket bloom filters for membership queries,
Proceedings of IEEE Reigon 10, Nov. 21-24, IEEE
Xplore Press, USA, pp: 1-6. DOI:
10.1109/TENCON.2005.301258

Xie, K., Y. Min, D. Zhang, J. Wen and G. Xie, 2007. A
Scalable bloom filter for membership queries.
Proceeding of the IEEE Conference on Global
Telecommunications, IEEE Xplore Press, USA, pp:
543-547. Doi: 10.1109/GLOCOM.2007.107

Yuan, Z., Y. Chen, Y. Jia and S. Yang, 2008. Counting
evolving data stream based on hierarchical
counting bloom filter. Proceeding of the
International Conference on Computational
Intelligence and Security, Dec. 13-17, IEEE Xplore
Press, USA, pp: 290-294. DOI:
10.1109/CIS.2008.216

