Journal of Computer Science 7 (9): 1375-1385, 2011
ISSN 1549-3636
© 2011 Science Publications

A Review of Covering Arraysand Their Application to Software Testing

Bestoun S. Ahmed and Kamal Z. Zamli
Software Engineering Group, School of Electrical &tectronic Engineering,
University Sains Malaysia, 14300 Nibong Tebal, $abg Perai Selatan,
Pulau Pinang, Malaysia

Abstract: Problem statement: As a complex logic system, software may suffer fdifferent source

of faults. Those faults can be avoided by applyifterent testing processes. It appears recendy th
the interaction among the system factors represerdemmon source of faults. Software function
properly, all input factors and their interactiook the software need to be tested i.e., exhaustive
testing. Random testing, in another hand, doesmétrantee the coverage of all factors interaction.
Approach: Covering Arrays (CAs) are mathematical objectglus® platform or structure to represent
the interactions of factors for a given system. Tkes of CAs become important to reduce the test
cases by covering all t-interactions of the systaotors at least one timResults: This study focuses
exclusively on the applications of the CAs in sater interaction testing. We provide an overview of
CAs notations, types and construction meth@isiclusion: We reviewed the recent applications of
CAs to software testing and discuss the futureiptesdirections of the research. The researchim th
area seems to be an active research directiohéardming years.

Key words. Covering array, mixed covering array, interacti@sting, testing processes, software
testing, software system, parameters’ valaesstruction methods, meta-heuristics

INTRODUCTION behavior of the produced software under test and to
manage or mitigate the faults, risk and failurettod
Nowadays, our dependencies on software argystem (Agarwakt al., 2010). This can be tiresome, as
straightforward and increasing, as many kinds ofwhen a computer game doesn’t work properly, oait ¢
software have become a part of our daily lives.ikénl be disastrous, resulting in the loss of life.
the old days, the development lifecycle of these Unexpected Interactions among software system
software systems passes through several stages a@@mponents represent a common source of software
comprehends different activities that need to haiimeo ~ fault (Williams and Probert, 2001; Zamli and 1sa08).
carefully to meet the required user's specification ThiS risk is increasing when the numbers of sofewar
Generally, those activities can be classified as tw components are increased tremendously. To redige th
risk and ensure the quality of such software, the
manufacture may need to test all the interactionram
the components. For example, a complex software
Although the construction of the product is system with P components, each of which having two

important, however, checking the quality, whichlegl values, the mangfacture .ne.E(fStéS.t cases to test the
the “quality process”, represents the most impanpant software e_xhaustlvely. This inturn |nfea_S|bIe nagtice

of the software development lifecycle as it is spandu€ to different factors, including time, cost and
through the whole cycle. The quality process gained€Source constrains (Cohenal., 2007; Williams and
importance because each development stage may sufférobert, 2002). To this end, it is desirable toehav
from different errors and faults, which must beedted ~ Subset of all possible test interactions that havegh
as early as possible in order to preventitsPotential to uncover faults. Covering Arrays (CAs)
propagation in the whole software and reduce tiseap recently appeared as an alternative to exhaussteny
verification. To regulate and show knowledge of theby representing all the interactions of the compbsién
quality process, different levels of testing arediby @ minimized array, which can be used as a test.suit
the quality engineers during the software develagme fact, by using this effective property of CAs, sele
lifecycle. This testing process helps to providealistic =~ applications in different areas of research havenbe
and practical way to analyze and understand thintroduced in the literature not only in softwaesting.
Corresponding Author: Kamal Z. Zamli, Software Engineering Group, SchoblElectrical and Electronic Engineering,

University Sains Malaysia, 14300 Nibong Tebal, 3abg Perai Selatan, Pulau Pinang, Malaysia
1375

important activities, which are: activities to ctmst
the software product and activities to check thality
of the produced software (Baresi and Pezze, 2006).

J. Computer i, 7 (9): 1375-1385, 2011

However, in this study, we address the use of GAs i e ™
software testing exclusively because it is the wide 0002
research area in this direction (") 1000
. 0010

The rest of this study is organized as follows. We 1001 1111
give the definitions and mathematical notation tfirs 0101 1102
Then we discuss the methods used in literature to 1111 1012
construct the CAs. In addition, we declare the mece .< 1100 > .< co10 >
use of CAs in different software testing applicatio 0110 0100
Finally, we discuss the possible future directiohshe 1010 0112
research then we present the conclusions of thy.stu 0000 0101

- N . 0011 1001
Definitions and Preliminaries: Consider a software o ~/ 0011
system with P parameters (components or factors), _1 11 0_/

where P ={R, P, R}. Each parameter;Ran take @
one of the possible values of Where V= {w, v,, ,

vi}. To test such a system, test cases could b%ig. 1: The Representation of CA and MCA
constructed by assigning values to parameters then

apply on the system. For example, the test cage)[v
Va2, Vi, considers three parameters of the syste
(P;, P, P3), by taking the first value vof the first

—~
(=)}
=

Based on the CA construction, each column j
rTacorresponding to a parameter P), contain all wahie
) the corresponding parameters and every possibbeyt-w
pa(rjatrﬁeter, th% f|rs|t v?‘I)uet.\lh\fotrh_tr:je seconc;l parameter jieraction of the parameters’ values is coverekbadt
and the second valug lor e third parameter. one time by a row. Hencks=1 and the notation becomes

An interaction “I" of the parameters is a set of ca (Nt k.v), because it is normally sufficient feach t-
values assigned to distinct parameters, considafieg jneraction to occur once in the CA. Figure 1aespnts

strength of interaction (t) among the parameteai®s. 5 ca with the notation CA (9: 3,%pof size nine (i.e.

We say that I=t-way if all the t-interactions ofeth ,ine rows) for a system with four parameters, eaich
parameters’ values are taken. For example, ifys®B \yhich having two values.

consists of three parameters P, and B, then the 2- Similar to the OA, in the CA all the parameters
way interaction (or pairwise) of the parameterdhis contain the same number of values, but the t-intienas
representative values of {{I,), (PLP3), (P»P3)}. To in CA can occur more than one time. However, when
represent these interactions systematically, Odhalj the number of parameters’ values varies, this can b
Array is introduced in an early stage. handled by Mixed Covering Array (MCA), denoted by
MCA (N;t,p,(v,V2,...Vp)) (Colbournet al., 2006). The
Definition 1: An Orthogonal Array, denoted by QA notation can also be represented by MCA (N:Hp,v
(N; t, p, v), is an array of size N and p composamt Figure 1b represents a MCA with the notation MC2;(1
v values and strength t, in which for every Nxt sub 3, 2 3" of size 12 for a four parameters system, with a
array, the t-interaction elements occur exakttymes, combination of four parameters having three vahmes
whereA=N/V' (Ronneseth and Colbourn, 2009; Chengfive parameters having four values, to cover the-feay
1980; Beizer, 1990). interactions. Building from CA and MCA notationbgt
OA is often too restrictive because it requiree th Variab|e-strength Covering Array is emerged_
parameters’ values to be uniform. In other wortss i
required the same number offor all the P parameters, pefinition 3: A Variable-strength Covering Array,
to occur in the OA exactly one time, which is diffit genoted by VSCA (N: t,p, (Vs ..., V) , C) represents
when the parameters are growing. In addition, nobst 5, Nxp mixed level covering array of strength t
the time in practice, the values of the parameisgaot containing C, a vector of covering arrays and lassti
uniform. To overcome these limitations, the covgrin ¢ e p columns each of strength >t (Yilmezal.,
array is emerged. 2004b; Cohen, 2004).

Definition 2: A Covering Array, denoted by GA Throughout this study, we use the term “main-

(N:t,p,v), represents an array of size N on v value strength” to describe the strength of VSCA and *sub

such that every Nxt sub-array contains all orderefrength” to describe tr;e strength lOf C. Here for

subsets from the v values of size t at léastnes and ~€xample, VSCA (12; 2,°2%, {CA (3, 23Y)) represents:

p is the number of components (Colbourn, 20082 test suite of size 12 for a system of pair-wise

Yilmaz et al., 2004a). interactions of five parameters in the main configion
1376

J. Computer i, 7 (9): 1375-1385, 2011

with a combination of three parameters having two2006), Deterministic Density Algorithm (DDA) (Bryce
values and two parameters having three values. 1and Colbourn, 2007; 2009), Classification-Tree @idit

addition, a strength three sub-configuration ofe¢hr eXtended Logics (CTE-XL) (Lehmann and Wegener,

. .) o 2000; Yuet al., 2003), Test Vector Generator (TVG)
parameters is available, with a combination of one&Lh

i Tung and Aldiwan, 2000) and Jenkins (2010) regmes
parameter having three values and two parameteifie most well-known strategies using this consiouct
having two values. method.

As noted, despite the existence of MCA and VSCA Recently, the construction of CAs viewed as an
in different constructions from the CA, but botrear optimization problem. As part of one-row-at-a-time
based on the CA. Hence, throughout this study,ef&rr construction method, meta-heuristics are usedhieae
to them as “CAs”, unless there is a need to mentiomptimum number of rows. Different optimization
about a specific type of them. methods are used in strategies for constructioomFr

the published results, it has been appeared thlseth
CAs construction methods: As the CAs are used in Strategies can achieve better sizes in most cases b
testing processes, the first point to be consideremhy Wwith longer construction time than other strategies
construction method is the size minimization. It is(Afzal et al., 2009). So far, Simulated Annealing (SA)
desirable for any construction method to const@is (Cohen, 2004; Stardom, 2001), Genetic Algorithm
to cover all the required t-interactions with a miom (GA) (Shiba et al., 2004), Ant Colony Algorithm
number of rows. However, mathematically, the(ACA) (Shiba et al., 2004) and Tabu Search (TS)
construction of optimum CAs is an NP-complete (Nurmela, 2004), have been successfully implemented
problem. Hence, it is difficult to find a unified for small-scale interaction strength. We have also
construction method to construct optimum CAs adl th implemented Particle Swarm Optimization recently in
time (Lei and Tai, 1998). Therefore, it is normal t a strategy named Particle Swarm Test Generator
find a method that can achieve minimum CAs size{PSTG) (Ahmed and Zamli, 2010).
for some interactions, parameters, or values, wihile Most of the strategies support the construction of
cannot achieve that for others. To this end, ithesn CA and MCA. However, few strategies support the
appeared that it is desirable for a method to eaost construction of VSCA. A number of the aforementidne
minimum sizes with reasonable time in most casesstrategies have started to support VSCA constmctio
This in turn leads to the developments of different(e.g., PICT, IPOG, TVG, CTE-XL and SA). In addition
methods for construction. _ to these strategies, a number of new strategiesgenhe

Generally, CAs are constructed computationally toto particularly construct VSCA using the published
ensure minimization in terms of size and time. Most techniques. Wanget al. (2008) adopted the DDA
the construction methods are called strategiesuseca algorithm for a strategy called Density to construc
they are combination of different algorithms. Wenca yscAa. Wang et al. (2008) also adopted the IPOG
classify the developed strategies under two genergigorithm for a strategy called ParaOrder. Morepver
categories: (a) one-parameter-at-a-time strategi®d Chen et al. (2009) adopt the ACA algorithm for a
(b) one-row-at-a-time strategies (Grinéadl., 2005). I girategy called Ant Colony System (ACS) to congtruc
case of one-parameter-at-a-time, the strategy mmist \/gca, Compared with CA and MCA, VSCA covers
the array by adding one parameter’s value to theyar more tinteractions because of the sub-strengtt irse
and check for the coverage of t-interactions “gilg&d oq4ition to the main-strength. Hence, the time of

The greedy algorithm chooses the parameters’ valuggnstryction normally is more than CA and MCA ih al

that can cover more t-interactions. In-Parametete®r ; ;

; L the strategies. However, here also those strategied
General (IPOG) (Leet al., 2007) and its improvements, \ata.heuristics achieved better sizes most of ithest
IPO-s (Calvagna and Gargantini, 2009), IPOG-F an Afzal et al., 2009)

IPOG-D (Leiet al., 2008) are the most recent strategies

that adopt this construction method. Recently, il Applications. CAs have been used recently in different

al. (2010) also proposed a tree based strategy for On%\reas of research. In addition to its use in Sofwa
parameter-at-a-time test generation method. : i IS use 1 W

Whereas, in case of one-row-at-a-time, in additiorf€Sting, it has been used in hardware testing (@oro
of using the greedy algorithm the strategy conttrape ~ @nd Grunskii, 1992), gene expression regulatiomgba
row and check for its coverage. The rows that akec €t a., 2001), advance material testing (Cawse, 2003),
more t-interactions are chosen to form the finahyar performance evaluation of communication systems
The Automatic Efficient Test Generator (AETG) (Hoskinset al., 2005) and many other research areas.
(Cohenet al., 1997), mAETG (Cohen, 2004), Pairwise Each area contains different applications. Software
Independent Combinatorial Testing (PICT) (Czerwonkatesting represents the wider area of research &8 C

1377

J. Computer i, 7 (9): 1375-1385, 2011

application. The aim of using CAs in the form of Table 1: A software system based on internet :

interaction testing is to find faults in the applion Payment server ~ Web server User browser Busineabais
. . . aster card iPlanet Chrome SQL

under test. Here, we review four_ main areas, WhIC isa card Apache Mozilla Oracle

are: components interaction testing, GUI interactio

testing, test case prioritization and regressiating Taple 2: 2-way Interaction for the System in Table

as well as fault characterization. Payment server Web server User browser Busineabats
Master card iPlanet Mozilla SQL

Components interaction testing: In the old days, the Visacard Apache Chrome Oracle

trend by the software industries was to producellsmg\“/"izzti;rc;rd K;'Zrc'ﬁg ,fﬂh(:;ﬂ"; Soé?_c'e

software to achieve a specific aim. Nowadays, thisyisa card iPlanet Mozilla Oracle

phenomenon has been changed. The trend now is tdaster card Apache Chrome SQL

produce software systems, in which they consist of

individual programs working on individual comporent Hoskins et al. (2005) applied CAs on a four

and connect these components together to collaboratcategorical factors software system. The aim wassto
This collaboration leads to achieve a unified safav CAs to measure the effect of type of database
system to serve different needs by the usersxmmple ~ Management system, platform, programmatic interface
communications systems, storage systems, or end type of indexing on the cache hit rate, nundfer
commerce systems. Testing the components an@age outs per second and number of physical reeds
programs of these systems individually is desiraile second. The results were compared with full faatori
may leads to find different faults. However, it een ~ data and D-optimal designs construction. From the
appeared that a common source of fault in the whol@chieved results, CAs outperforms D-optimal designs
system comes from the unexpected interaction amon@nd ex_hlblt lower variance. The re_sults support the
the individual components of the system itself (lafihs ~ contention that a CA whose strength is one less the
and Probert, 2001). As an example, we consider Qur_nber of _factors can be expected to outperform D-
software system based on the Internet in Table 1. optimal designs.

The system in Table 1 contains four components o
parameters. The system may use different paymerggw interaction testing: Graphical User Interface

server, web server, user browser and businessadatab Ul) has become practically the means of user
’ ' interaction with any software. GUI testing is agess of

In ord_er t_o test t_he syst_em, it is required to &bthe oo are testing to test the GUI of software toueeshat
combinations or interactions among the comp.ondamlls, it meets the required user specification (Memorg230

the tester may need ®st cases for test. For this system,pmost of the techniques used for GUI testing are
this number of test cases seems to be reasonablgcomplete and used ad hoc or manual testing. Hemev
However, if we have similar system but with 8 to formalize these kind of testing, recently, theme
components, each of which having 4 variables, ¢3¢ t three main directions of research, which are ufiimge

may need to test’4=65,536 test cases, which seems tostate machines (Robinson and White, 2008), pre and
be infeasible for testing, due to time, cost asgburces post-conditions (Liet al., 2007) and directed graph
limitations. Using CA with 2-way, 3-way or above models (Memon and Xie, 2005) techniques. CAs have
interaction seems to be a compromise method teen used with graph models to effectively test.GUI
guarantee the coverage of all interactions postisil Graph models used the Event-Flow Graph (EFG)
with minimum number of test cases. For example, alf model all possible event sequences that may be

) : . executed on a GUI (Huang al., 2010). In such a
the 2-way interactions of the components for_trmgfyl model, each event in the GUI is represented byde no
in Table 1 can be represented by a CA with sizasii

" X . N and the relationshi th ts i ti
Table 2. In additions, the 2-way interaction fore th bya:n ed%é.e Iilc:(r)g(a:rpn&?otnhge Geu|e\ilﬁ nFisg!szr:phgsigu

example % can be covered by a CA with size 27. gyents, which are: File, New, Open and Save: wierea
Different research proposed this solution. Willsam Fig. 2b is the representation of the GUI in node edge
and Probert (2001) proposed this solution formalid form. For two nodes GUI,rand), the edge from sto
studied the coverage of interactions for a padicul n, means that, along some execution path the event
interaction strength. In another research (Willizansl represented by,nmay be performed immediately after
Probert, 1996), they proposed this solution fotings the event represented by (Huanget al., 2010). This
network interface using 2-way interaction. Although relationship is called follows. Hence the directedes in
these researches proposed this solution, it was nthe EFG are represented by a set E of ordered (@girs
applied practically on a real software system. g), where {g, g} < N and (g g) € E if g, follows &.

1378

J. Computer i, 7 (9): 1375-1385, 2011

e To derive test cases for the EIG model, a common
o technique is to derive a test case for each ElGeedg
. ‘ which is called “smoke test” (Memon and Xie, 2005;
— @ Yuan et al., 2010). For example, (Open,New),
(Open,Save) and (New,Save) represent three smoke
/ I \ test cases with strength 2 for the EIG in Fig. Jhew
the length of the sequence grows, the numbers okem
@ @ @ test cases will grow exponentially exactly like
(@ (b) components interaction testing. Here CAs come te fa

to reduce these smoke test cases systematicalty. Fo
example, if we have five locations in the GUI eadh
them has three events; we neédB 243 test cases to
test the GUI exhaustively. However, using the CAs
properties, we can systematically sample thosetsven
Using 2-way interaction, for example, we can tegt b
only 11 test cases and the notation will be
CA(11;2,5,3).

To derive the events in any GUI, normally GUI
Ripper is used. The use of GUI ripper helps todrsg
a GUI under test automatically and extracts thenesve
(Huang et al., 2010). The problem with this ripping
process is that some parts of the retrieved inftona
may be incomplete or incorrect, which leads to

Fig. 3: The representation of EIG model introduce some constraints (Yua al., 2010). For
example, some event needs another event to be
Edit View Comments Forms Tools Help executed before it is enabled or sometimes two tsven
Qpen. Ctrl+0 cannot be executed consecutively. As in the case of
Create PDE b Fig. 4, we cannot run the “Save” event without riagn
gz L the “Save As...” event first.
Elu=ctl Most of the research efforts concentrate on the
save Cid:3 generation of the test cases and how to solve the
save fs.. Ctrl+ Shift=5 constraint problem. Yuan and Memon (2007) developed
K3 Email... a new feedback-based technique for GUI testing. The
_ technigue depends on creating and executing aalinit
' E’f”t'; Cirk+P seed test suite for the software under test. TH@ El
i model of the GUI is used to generate the seedstate
Properties... Ctrl+D and then automatic test case re-player is usexgetuée
it. A feedback is used to supplement the test suiten
Fig. 4: llustration of the GUI Constraints it is executing, by generating additional test sadée

relationship between pairs of events is identified
To achieve more compact and efficient GUI model,caPture how the events are related to each othean(y
Event-Interaction Graph (EIG) is emerged (Xie ang@nd Memon, 2007). The empirical study reveals ® th

Memon, 2008). In this model, the events to open O{act that although using this method, there ar8é sti

close menus, or open windows are not considered”feaSible test cases cannot be run in the tes. sui

Hence, menu-opening “File” event for the GUI in Fig In another research Memon tried to solve this
2a is neglected. To generate the EIG model from th@roblem by repairing the unusable test cases (Memon
EFG model in Fig. 2b it is required first to deleke ~ 2008). The study based on determining the usalde an

“File” event because it is a menu-open event, then unusable test cases automatically from the tede sui
all remaining events, the even after “File” is egsd then determine the unusable test cases that can be
by the “File” in the edge. In other words, each edg repaired so that they can be executed. The repairin
(ex,File) is replaced with the edge(eg) for each transformations are used to repair the test cases.
occurrence of edge (File,)e and for all ¢ delete all ~ Although useful and effective, from the resultshits
edges (File, 9. Figure 3 represents the EIG model forbeen appeared that there are still many kinds of
the GUI in Fig. 2a. constraints that should be solved and dealt with.

1379

J. Computer i, 7 (9): 1375-1385, 2011

Huang et al. (2010) developed a method to especially the initial test suite (Qa al., 2007). CAs
automatically repair GUI test suites and generatie¢gy have been used with this kind of testing effectivel
test cases that are feasible. The genetic algorithm because of optimized size. By using the generatssl C
used in the research to evolve new test casesitease as test suites, first, an extensive prioritizath@s been
the test suite’s coverage. The algorithm producespplied to the test suite and then it is appliedtfe
effective results for different types of constrainThe regression testing.
research showed that the genetic algorithm outpago There are few researches introduced the
the random algorithm and trying to achieve the samerioritization with CAs. Bryce and Colbourn (2006)
goal in almost all cases. present an algorithm for prioritizing the test esithat

More recently Yuanet al. (2010) used the pased on CAs. Although the research showed
aforementioned researches to define new criterfa fojmpressive results for prioritization using intetfan
GUI testing grounded in CAs in more detail. Thecoverage; however, the algorithm is not applieceai
research incorporated “context” into the criteria i software to illustrate its effectiveness. @ual. (2007)
terms of event combinations, sequence length and byseq multiple versions of two software subjects to
including all possible positions for each event.eTh oyamine the application and effectiveness of CAs fo
criteria are based on both the efficiency (measimed finding faults with regression testing. Before ajimd
the size of the test suite) and the effectivendiss (the test suites on the two subject software, thEsu

ability of the test s_u_ites to gletect faults). Th?dy have been prioritized. Several different algorithamsl
conducts more empirical studies than before usiolye methods used to control the prioritization. Duritig

applications. The results of those studies shovhed t empirical study, the interactions used are betvtes?

increasing the interaction strength t and by cdirip and 5. The results of the empirical study showeat th

the relative positions of events, large numberanfité the CA Hective 1o red the test fiadd
can be detected compared with earlier techniques. € ~AS are eflective 1o reduce the test spacehia
the faults. Using prioritization with CAs improvéise

Test case prioritization and regresson testing: ability to detect faults early in C(_artain s_ubjecTshe
Regression testing is a type of software testimgsaio results showed also that for the first subjectveairfe,
find uncovered new errors after changes have beeMost of the faults are covered by t=3; however,tfier
made to the software (Get al., 2010). This testing Second subject software, most of the faults covered
process is based on the fact that as the softveare yhen t=5.

upgraded or developed, the occurrence of similaltsa Later on, Quet al. (2008) applied the prioritization
is frequent. This in turn leads to keep those tases in regression testing with additional subjects. The
that detected faults in earlier version of thewafe to research study several versions of an open soaxte t
re-executing them after developing a new versiothef editor. The results showed that using prioritizatwith
same software. Using this method for testing hédps CAs can impact the fault finding ability of regress
verify that the changes of specific software haee n test suites by as much as 70%.

caused the software inadvertent side-effects amed th

software still meets its requirements (Rothermedl an Fault characterization: Fault characterization
Harrold, 1996). (sometimes called failure diagnosis), is a meclimaros

Test case prioritization techniques, in anotherdha method used to find and locate faults in givenveare.
aimed to increase the effectiveness of test cages BNVith the increase of software complexity, some kiod
scheduling them for execution to increase the oite faults appeared that could not diagnose by thétiadl
fault detection (Rothermedt al., 2001). This in turn methods. This is happened frequently when the syste
gives the estimation of how quickly faults are deed configuration spaces are large and resourcesraitedi.
in the testing process. Detecting the faults eadiging ~ FOr example, some systems like “Apache”, can have
the testing process provide faster feedback fotester hundreds of options that could not be tested eixtelys
and let him to begin correcting defects earlierntha Pecause of the large software configuration spaxe a
might otherwise be possible (Rotherraedl., 2001). thus leads to the |na_b|llty of character!zmg _sdmdts.

Most of the time, prioritization techniques are Fault characterization helps to identify the cause
associated with regression testing as the infoomati Of @ specific fault and save a great time by fixtheg
from previous execution of test cases can be used ffault quickly. In other words, fault characterizati
the ordering and sequencing processes (Rotheemel process helps to determine which specific
al., 2001). Both of regression and prioritization areconfiguration or setting of the system causing a
dependent on the test suite selected for the pspcesspecific failure (Yilmazt al., 2004a).

1380

J. Computer i, 7 (9): 1375-1385, 2011

Yilmaz et al. (2004b) developed a distributed Future research directions: There are many researches
continuous quality assurance process frameworledall on CAs. Most of the researches are concentratingpen
“Skoll” (Memon et al., 2004). The process is supported CAs construction methods, algorithms, or strategies
by tools to leverage the widespread computing i€®su The researches for investigating the applicatidrGAs
of worldwide users automatically. The aim was toin software testing are still in the beginning. we can

incrementally, opportunistically and efficientipprove

see from the aforementioned applications, theredfieave

the quality of software. Skoll divided the quality researches dealing with the application of CAs.
assurance process into sub-tasks, then the tasks |though all the areas need further investigatians

distributed around the world to different clientechames

assessments,

there are new directions that can be

using the client-server communication. Each C"emimpressive for applications. Based on that, our
downloads the software under test from a centrdeco racommendations to the future research focus coeld

repository and uses a given configuration to tést.
complete the overall quality process, the resutes a
returned back to a central site that collects tesahd
fused together (Yilmaet al., 2004a).

One important implemented task in skoll is thdtfau
characterization. This characterization procestolts
is done by testing different configurations andttieas
of the software under test and feed the resulthef t
testing to a classification tree analysis. The autpf
this classification tree analysis would be a moidel
describe the options and setting that best forecast
failure (Yilmaz et al., 2004b). Here, CAs used for
generating the configurations’ models for skoll this
way, all the combinations of the options and are
appearing in the provided configurations and will
greatly reduce the cost of fault characterization,
without compromising its accuracy.

Yilmaz et al. (2004a) evaluated the uniform CA
with interaction strength between 2 and 6. Theltesu
showed that even low strength CA can achieve teliab
fault characterization compared with those achidwed
exhaustive testing. By increasing the interactivargth
of CA, the research reported more precise fault
characterization, but with more test suite sizeke T
research concludes that the fault characterizattrid
be improved in term of accuracy with low cost i tlow
strength CA be used.

Yilmaz et al. (2006) extend the above research to
include more empirical studies. For the first tintieg
research reports the application of VSCA to tehts t
effects of using it practically. The use of VSCAoals
testing stronger interactions for subspaces wheeg t
are needed (i.e., in high-risk subspaces) and kgepi
lower strength of interaction across the entirecspa
(Yilmaz et al., 2006). The research reports the same
finding for the CA as in the case of the original
research. In addition, the research reported ttmuse
of VSCA reduces the cost of the fault characteiorat
process without compromising its accuracy. Morepver
the research showed that use of VSCA improved that
accuracy of the fault characterization process Wit
same cost of CA.

1381

in following two general directions mainly:

Further assessments to the existing researches:
although the exiting researches are achieving good
results, different areas need more assessments and
improvements. One of those areas is the
components’ interaction testing. So far, the
effectiveness of using CAs in this area is notrclea
Although it is studied theoretically in many
researches, there is little evidence showing its
effectiveness. It seems to be encouraging area for
empirical studies. An interesting direction, for
example, is the use of CAs in e-commerce software
systems. It seems to be interesting if a research
study the effect of the component interactions on
some performance criteria practically. In addition,
the application of VSCA is an open research
direction also. We can note from the study, the
application of VSCA is not investigated clearly. So
far, from the literature, there is only one reshkarc
apply and investigate the effectiveness of the VSCA
practically. This could be also applied with e-
commence systems by taking stronger interaction
strength among some special related components in
the system, for example.

Discovering new directions of software testing
applications: CAs could be applied in a different
way for software testing. There is a need to study
and investigate new software testing directions
using CAs. One important direction is to combine
the CAs features with other software testing
methods. As we mentioned previously, CAs have
been used with regression testing and test case
prioritization. It also could be useful if the CAs
features are used with fault localization techngjue
Recently, fault localization has become an active
research area. So far, the use of CAs not
investigated with fault localization. Wong al.
(2010) investigate a new fault localization method
using code coverage heuristic. In other recently
researches, interaction testing using CAs have been

J. Computer i, 7 (9): 1375-1385, 2011

effeqti_ve for improving g:ode coverage gsing someBaresi, L. and M. Pezze, 2006. An introduction to
empirical studies (Zamiet al., 2011; Klaibet al., software testing. Elect. Notes Theo. Comput. Sci.,
2008). This in turn could be an important 148:89-111. DOI: 10.1016/J.ENTCS.2005.12.014
motivation for using CAs with code coverage gejzer, B, 1990. Software Testing Techniques. 2nd
heuristics to improve the fault localization as Edn. Van Nostrand Reinhold. New York. ISBN:
conducted by Wongt al. (2010). ; . ' ' '
0442206720, pp: 550.
CONCL USION Borodai, S:Y. and 1.S. Grunskii, 1992. Recursive
generation of locally complete tests. Cybernett.Sys
The applications of CAs and interaction testing Anal., 28: 504-508. DOI: 10.1007/BF01124983
have been an active research area recently. In thBryce, R.C. and C.J. Colbourn, 2006. Prioritized
study, we aimed to demonstrate the CAs and report interaction testing for pair-wise coverage with
their existing applications to software testing. To seeding and constraints. Inform. Software Technol.,
understand the CAs use in the applications, wd firs 4g: 960-970. DOI: 10.1016/J.INFSOF.2006.03.004

illustrate their types, notations and constrycti_()nBryce, R.C. and C.J. Colbourn, 2007. The density

methods. Then, we reviewed several recent appitsti lgorithm f o . ina. Soft

of CAs to software testing. We briefly mention soafe algorithm or pairwise |n_teract|0n testing. Softear
o : . Test. Verificat. Reliabil., 17: 159-182. DOI:

those applications and the achieved results tstitite

the effectiveness of CAs in those applications. The 10.1002/STVR.365 _

research in this area seems to be an active résearBryce, R.C. and C.J. Colbourn, 2009. A density-dase

direction for the coming years. To this end, irstsiudy greedy algorithm for higher strength covering
we also give different research directions for filtere arrays. Software Test. Verificat. Reliabil., 19:-37
and we also suggest some important ideas for the 53 DOI: 10.1002/STVR.393

coming researches. Calvagna, A. and A. Gargantini, 2009. IPO-s:

Incremental generation of combinatorial interaction
test data based on symmetries of covering arrays.

This research is partially funded by the generous Proceedings of the IEEE International Conference
grant (“Investigating T-Way Test Data Reduction on Software Testing, Verification and Validation
Strategy Using Particle Swarm Optimization Workshops, April. 1-4, IEEE Xplore Press, Denver,
Technique”) from the Ministry of Higher Education CO, pp: 10-18. DOI: 10.1109/ICSTW.2009.7
(MOHE) and the USM research university grantsCawse, J.N., 2003. Experimental Design for
(“Development of Variable-Strength Interaction Tiegt Combinatorial and High Throughput Materials
Strategy for T-Way Test Data Generation”). Thetfirs peyelopment. 1st Edn., Wiley-Interscience,
author, Bestoun S. Ahmed, is a recipient of the USM Hoboken, ISBN: 0471203432, pp: 317.

fellowship. Chen, X., Q. Gu, A. Li and D. Chen, 2009. Variable
REFERENCES strength interaction testlng with an ant. colony
system approach. Proceedings of the Asia-Pacific

Afzal, W., R. Torkar and R. Feldt, 2009. A systeimat Software Engineering Conference. Dec. 1-3, IEEE
review of search-based testing for non-functional ~ Xplore Press, Penang, pp: 160-167. DOl
system properties. Inf. Software Technol., 51: 10.1109/APSEC.2009.18
957-976. DOI: 10.1016/J.INFSOF.2008.12.005 Cheng, C.S., 1980. Orthogonal arrays with variable

Agarwal, B.B., S.P. Tayal and M. Gupta, 2010. numbers of symbols. Ann. Statist., 8: 447-453.

Software ~ Engineering and Testing: An DOI: 10.1214/A0S/1176344964
Introduction.1st Edn., Jones and Bartlett Learningcohen, D.M., S.R. Dalal, M.L. Fredman and G.C.

Hingham, ISBN: 1934015555, pp: 515. Patton, 1997. The AETG system: an approach to
Ahmed, B.S. and K.Z. Zamli, 2010. PSTG: A t-way T ' |2 Sysiem. an app
testing based on combinatorial design. IEEE Trans.

strategy adopting particle swarm optimization.])
Proceeding of 4th Asia International Conference Software Eng., 23: 437-444. DOL:
10.1109/32.605761

on Mathematical/Analytical Modelling and o]

Press, Kota Kinabalu, Malaysia, pp: 1-5. DOI: Interaction Testing. 1st Edn., Computer Science-
10.1109/AMS.2010.14 University of Auckland, New Zealand, pp: 171.
1382

ACKNOWLEDGEMENT

Cohen, M.B., M.B. Dwyer and J. Shi, 2007. Interacti

Grindal, M., J.

Jenkins, B.,

Klaib, M.F.J., K.Z. Zamli, N.A.M. Isa, M.l. Youniand

J. Computer i, 7 (9): 1375-1385, 2011

testing of highly-configurable systems in the

Lehmann, E. and J. Wegener, 2000. Test case degign

means of the CTE XL. Proceeding of the 8th

presence of constraints. Proceedings of the 2007 European International Conference on Software

International Symposium on Software Testing and
Analysis, (ISSTA ‘07), ACM, New York, pp: 129-
139. DOI: 10.1145/1273463.1273482

Existence tables and projection. Discrete Math.,
308: 772-786. DOI: 10.1016/J.DISC.2007.07.050

Colbourn, C.J., S.S. Martirosyan, G.L. Mullen, D.

Shasha and G.B. Sherwoetrhl., 2006. Products of
mixed covering arrays of strength two. J. Combinat.

Designs, 14: 124-138. DOI: 10.1002/JCD.20065 Lei,
Czerwonka, J., 2006. Pairwise testing in real world

practical extensions to test
Microsoft Research.

Offutt and S.F. Andler, 2005.
Combination testing strategies: A survey. Software
Test. Verificat. Reliabil.,, 15: 167-199. DOI:

10.1002/STVR.319

case (generator.

Gu, Q., B. Tang and D. Chen, 2010. Optimal regoessi

Testing, Analysis and Review,
Citeseer, Kopenhagen Denmark, pp:

(STAR'00),

Lei, Y. and K.C. Tai, 1998. In-Parameter-Order: &sT
Colbourn, C.J., 2008. Strength two covering arrays:

Generation Strategy for Pairwise
Proceedings of the 3rd IEEE International
Symposium on High-Assurance Systems
Engineering, Nov. 13-14, IEEE Xplore Press,
Washington, DC, USA, pp: 254-261. DOI:

10.1109/HASE.1998.731623

Y., R. Kacker, D.R. Kuhn, V. Okun and J.
Lawrence, 2007. IPOG: A general strategy for t-
way software testing. Proceedings of the 14th
Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based
Systems, March, 26-29, |IEEE Xplore Press,
Tucson, AZ, pp. 549-556. DOI:

10.1109/ECBS.2007.47

Testing.

testing based on selective coverage of teskel, Y. R. Kacker, D.R. Kuhn, V. Okun and J.

requirements. Proceedings of the International
Symposium on Parallel and Distributed Processing
with Applications, Sep. 6-9, IEEE Xplore Press,
Taipei, pp: 419-426. DOI: 10.1109/ISPA.2010.62

2005. Software performance testing using covering
arrays: Efficient screening designs with categdrica
factors. Proceedings of the 5th International
Workshop on Software and Performance, (WOSP
‘05), ACM, New York, pp: 131-136 DOI:
10.1145/1071021.1071034.

Huang, S., M.B. Cohen and A.M. Memon, 2010.

Repairing GUI test suites using a genetic algorithm
Proceedings of the 3rd IEEE International
Conference on Software Testing, Verification and

Lawrence, 2008. IPOG/IPOG-D: efficient test
generation for multi-way combinatorial testing.
Software Test. Verificat. Reliabil., 18: 125-148.
DOI: 10.1002/STVR.381

Hoskins, D.S., C.J. Colbourn and D.C. Montgomery,|j p. T. Huynh, M. Reformat and J. Miller, 200%.

practical approach to testing GUI systems. Emp.
Software Eng., 12: 331-357. DOI: 10.1007/S10664-
006-9031-3

Memon, A., A. Porter, C. Yilmaz, A. Nagarajan and D

Schmidtet al., 2004. Skoll: Distributed continuous

quality assurance. Proceedings of the 26th
International Conference on Software Engineering,
IEEE Computer Society, Washington, DC., pp:
459-468.

Validation, April, 6-10, IEEE Xplore Press, Paris, Mémon, AM. and Q. Xie, 2005. Studying the fault-

245-254. DOI: 10.1109/ICST.2010.39
2010. Jenny Download Web Page.
http://burtleburtle.net/bob/math/jenny.html

R. Abdullah, 2008. G2Way a backtracking strategy
for pairwise test data generation. Proceedinghef t

detection effectiveness of GUI test cases for tgpid
evolving software. IEEE Trans. Software Eng., 31:
884-896. DOI: 10.1109/TSE.2005.117

Memon, A.M., 2002. GUI testing: pitfalls and proses

Computer, 35: 87-88. DOI:

10.1109/MC.2002.1023795

2008 15th Asia-Pacific Software Engineering Memon, A.M., 2008. Automatically repairing event

Conference, Dec. 3-5, IEEE Xplore Press, Beijing,
pp: 463-470.DOI: 10.1109/APSEC.2008.49

Klaib, M.F.J., S. Muthuraman, N. Ahmad and R. Sjdek

sequence-based GUI test suites for regression
testing. ACM Trans. Software Eng. Methodol. DOI:
10.1145/1416563.1416564

2010. Tree based test case generation and codurmela, K.J., 2004. Upper bounds for covering

calculation strategy for uniform parametric paimvis
testing. J. Comput. Sci. 6: 542-547. DOI:
10.3844/JCSSP.2010.542.547

1383

arrays by tabu search. Discrete Applied Math.,
138: 143-152. DOI: 10.1016/S0166-
218x(03)00291-9

J. Computer i, 7 (9): 1375-1385, 2011

Qu, X., M.B. Cohen and G. Rothermel, 2008.wang, Z., B. Xu and C. Nie, 2008. Greedy heuristic
Configuration-aware regression testing: an g|gorithms to generate variable strength
empirical study of sampling and prioritization. combinatorial test suite. Proceedings of The Eighth

Proceedings of the 2008 International Symposium International Conference on Quality Software
on Software Testing and Analysis, ACM, New ' uahity ware,

York, pp: 75-86. DOI: 10.1145/1390630.1390641 ~ Aug. 13-13, IEEE Xplore Press, Oxford, pp: 155-
Qu, X., M.B. Cohen and K.M. Woolf, 2007. 160. DOI: 10.1109/QSIC.2008.52

Combinatorial interaction regression testing: aWillams, AW. and R.L. Probert, 1996. A practical

study of test case generation and prioritization. strategy for testing pair-wise coverage of network

Proceedings of the IEEE International Conference interfaces. Proceedings of the th& ternational

on Software Maintenance, Oct. 2-5, IEEE Xplore gymposium on Software Reliability Engineering,

Press, Paris, pp: 255-264. DOI:) ; .
10.1109/ICSM. 2007 4362638 Oct. 30-Nov, 2, IEEE Xplore Press, White Plains,

Robinson, B. and L. White, 2008. Testing of user- NY:» USA pp: 246-254. DOL
configurable software systems using firewalls. ~ 10.1109/ISSRE.1996.558835
Proceedings of the 19th International SymposiumWilliams, A.W. and R.L. Probert, 2001. A measure fo
on Software Reliability Engineering, Nov. 10-14, component interaction test coverage. Proceedings of
IEEE Xplore Press, Seattle, WA, pp: 177-186. DOI: the ACS/IEEE International Conference on
10.1109/ISSRE.2008.46 i Computer Systems and Applications, June, 25-29,
Ronneseth, A.H. and C.J. Colbourn, 2009. Merging IEEE Xplore Press, Beirut , Lebanon, pp: 304-311.

coverin arrays and compressin multiple
sequenge aligr){ments. Discrer'ze App%ied Ma?h., ,,DOI: 10.1109/AICCSA.2001.934001)
157: 2177-2190. DOI: WI”IamS, A.W. and R.L. Probert, 2002. Formulatiofh
10.1016/J.DAM.2007.09.024 the interaction test coverage problem as an integer
Rothermel, G. and M.J. Harrold, 1996. Analyzing program. Proceedings of the IFIP 14th International
regression test selection techniques. IEEE Trans. Conference on Testing Communicating Systems
Software Eng., 22: 529-551. DOI: XIV, Kluwer, B.V. Deventer, The Netherlands,
10.1109/32.536955 The Netherlands, pp: 283-283.
Rothermel, G., R.H. Untch and C. Chu, 2001. ntp://portal.acm.org/citation.cfm?id=748164
Prioritizing test cases for regression testing. BEEE Wong, W.E., V. Debroy and B. Choi, 2010. A familiy o

Trans. Software Eng., 27: 929-948. DOI:] - :
10.1109/32. 962562 code coverage-based heuristics for effective fault

Shasha, D.E., A.Y. Kouranov, L.V. Lejay, M.F. Chou localization. J. Syst. Software, 83: 188-208. DOI:
and G.M. Coruzzi, 2001. Using combinatorial 10.1016/3.JSS.2009.09.037)]
design to study regulation by multiple input signal Xi€, Q. and A.M. Memon, 2008. Using a pilot study t
a tool for parsimony in the post-genomics era. Plan ~ derive a GUI model for automated testing. ACM
Physiol., 127: 1590-1594. DOI: 10.1104/PP.010683 Trans. Software Eng. Methodol., 18: 1-35. DOI:

PMid: 11743103 PMCid:1540192 10.1145/1416563.1416567
Shiba, T., T. Tsuchiya and T. Kikuno, 2004. UsingYiimaz, C., M.B. Cohen and A. Porter, 2004a. Cavgri
artificial life techniques to generate test cases f arrays for efficient fault characterization in cdmp

combinatorial testing. Proceedings of the 28th configuration spaces. ACM SIGSOFT Software
Annual International Computer Software and Eng. Notes 29: 45-54. DOI:

Applications Conference, Sep. 28-30, IEEE Xplore 10.1145/1013886.1007519

Press, Hong ~Kong, ~pp: 72-77. DO yjyna, ¢ MB. Cohen and AA. Porter, 2004b
Sta rég.nl]l(?lwczl\goPlS Aﬁez,[gggulrgigog nd the Search fo Covering arrays for efficient fault characterizatio
. ' in complex configuration spaces. Proceedings of the

Covering and Packing Array Department of . ;
Mathematics. M.Sc. Thesis. Simon Fraser 2004 ACM SIGSOFT International Symposium on

University. Software Testing and Analysis, ACM, New York,
Tung, Y.W. and W.S. Aldiwan, 2000. Automating test pp: 45-54. DOI: 10.1145/1007512.1007519

case generation for the new generation missiorfilmaz, C., M.B. Cohen and A.A. Porter, 2006.

software system. Proceedings of the |EEE Covering arrays for efficient fault characterizatio

Aerospace Conference, Mar. 18-25, IEEE Xplore in complex configuration spaces. IEEE Trans.

Press, Big Sky, MT , USA, pp: 431-437. DOI; Software Eng., 32: 20-34. DOI:

10.1109/AER0O.2000.879426 10.1109/TSE.2006.8

1384

J. Computer i, 7 (9): 1375-1385, 2011

Yu, Y.T., S.P. Ng and E.Y.K. Chan, 2003. Generating Yuan, X., M. Cohen and A. Memon, 2010. GUI
selecting and prioritizing test cases from interaction testing: incorporating event context.
specifications with tool support. Proceedings @ th IEEE Trans. Software Eng., pp: 1-1.DOL
3rd International Conference on Quality Software. ~ 10.1109/TSE.2010.50
Nov. 6-7, IEEE Xplore Press, USA., pp: 83-90. Zamli, K.Z., Isa, N.A.M., 2008. JTst - An automated
DOI: 10.1109/QSIC.2003.1319089 unit testing tool for java program. Am. J. Applied

Yuan, X. and A.M. Memon, 2007. Using GUI run-time Sci. 5, 77-82. DOI: 10.3844/AJASSP.2008.77.82

amli, K.Z., M.F.J. Klaib, M.l. Younis, N.A.M. Isand

R. Abdullah, 2011. Design and implementation of a
t-way test data generation strategy with automated
execution tool support. Inform. Sci. 181: 1741-1758
DOI: 10.1016/J.INS.2011.01.002

state as feedback to generate test cases. Prog@edilz
of the 29th International Conference on Software
Engineering, May, 20-26, IEEE Xplore Press,
Minneapolis, MN, pp: 396-405. DOIL:
10.1109/ICSE.2007.94

1385

