
Journal of Computer Science 7 (8): 1295-1301, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: A.R. Jayasudha, Department of Computer Applications, Hindusthan College of Engineering and Technology,
Coimbatore-641032 Tamil Nadu India

1295

A Stringent Authorization using Principles

and Policy for Grid Computing

1A.R. Jayasudha and 2T. Purusothaman
1Department of Computer Applications,

Hindusthan College of Engineering and Technology,
Coimbatore, 641032 Tamil Nadu, India

2Department of Computer Science, Government College of Technology,
 Coimbatore, 641012 Tamil Nadu, India

Abstract: Problem statement: The current information security mechanisms are insufficient to
address authorization issues. The access control models today are mostly static and they are not well-
suited for the service-oriented environments where information access is dynamic in nature.
Traditional authorization security techniques do not directly address these concerns as they primarily
use access control lists for authorization, where the user whose name appears in the list is authorized to
access the grid with some privileges associated with the names, which requires the resource provider to
maintain authorization decisions for every user, which is very time consuming and non-scalable
solution. Approach: Organizations pass user roles instead of name and date of birth but it used Public
Key Infrastructure user certificate for authorization which is inflexible when it comes to open
distributed systems (Grid) as it assumes a pre-agreed trust between Service Provider and the Service
consumer. Usage of Java authentication and authorization services is performed in a pluggable
fashion. It permits the application to remain independent from underlying authentication technology.
Results: Our implementation provides service providers with full control over authentication and
authorization of accounts that access services. Implementation of the proposed technique has proved
to be less time consuming and more secured for authentication and authorization as compared to the
traditional way of authenticating the users. The Policy Decision Service is envisioned to be used by
many Web services protected by their PEPs. Conclusion: The model brings out many advantages
over traditional identity. It is more flexible and more powerful and is suited for dynamic
environments for Web services.

Key words: Public key, authentication technology, underlying authentication, policy file, web services,

preferred customers, authorization decision, login module, decision point, traditional
authorization, authorization service, login module

INTRODUCTION

 The emergence of web service technologies has
enabled information systems to interoperate in a
platform-independent fashion, promoting
unprecedented collaboration and information sharing,
often across enterprise and network boundaries. As
more organizations and users are becoming interested
in using grid computing systems in a variety of
application domains, security becomes a key issue
(Simmons et al., 1991; Stell, 2004; Welch et al., 2003;
Yagoubi and Slimani, 2007). Public Key Infrastructure
assumes a pre-agreed trust between the service provider
and the service consumer. However, in an open

distributed environment such as Grid systems, resource
providers and consumers can join the grid dynamically
and these pre-agreements cannot be presumed. The use
of JAAS authentication is performed in a pluggable
fashion and it makes the applications remain
independent of the underlying authentication
technology. The Login Modules remain independent of
the different types of user interaction. SAML
technology provides a way to represent authentication,
attribute and authorization decision information in
XML. XACML provides XML schema for expressing
policies and rules. SAML and XACML are combined
to support distributed authentication and authorization.
Authorization based on users’ credentials is difficult to

J. Computer Sci., 7 (8): 1295-1301, 2011

1296

manage and PKI is inflexible when it comes to Grid.
Our work uses XACML, a general purpose access
control policy language. It provides syntax in XML to
define action (request) rules for subjects (users) and
targets (resources). It describes both access control
policy language and a request/response language.
Access control policy language is used to express
access control policies (who can do what, where and
when). The request/response language expresses
queries about whether a particular access should be
allowed.

MATERIALS AND METHODS

Authorization approaches: Currently existing Grid
authorization consists of access control lists (grid
mapfile) which is not scalable as it requires the
Resource Provider to maintain authorization state for
every user which is time consuming. User Credential
for one gird cannot be used directly to access resources
at another (Shamir, 1979). A user needs to maintain
multiple credentials if he/she wants to use multiple
grids.Recent grid security trends try to overcome this
problem by introducing a new authorization technique,
which supports policy based authorization, which
means authorization decisions are not based on the
users’ identity but on the policies generated and sent to
the service providers. PKI presumes a pre-agreed trust
between the service provider and the service consumer.
In an open distributed environment such as grid
systems, service providers and resource consumers can
join the grid dynamically. PKI certificate contains a set
of user attributes for determining authorization. These
attributes have to remain static. If the user changes
his/her role, some attributes could change as well (Ito et
al., 1987). Thereby the certificates need to be
invalidated and revoked. Hence, a user has to have
multiple certificates for each service and remember
which certificate to use, which is infeasible (Benaloh
and Leichter, 1989). Implementations of authorization
in recent years have largely adopted the XML based
SAML and XACML standards for authentication and
authorization. Combination of SAML and XACML
proves more beneficial.

Drawbacks of role based authorization: Individual
actors called Entities are defined by public keys. Let
A,B,C,D,E range over entities. Each entity can create
arbitrary number of Roles in a namespace local to the
entity denoted A.r of roles. Suppose a Hotel H offers a
room discount to certain preferred customers, who are
members of H.preferred. The policy of H is to grant a
discount to all of its preferred customers in H.preferred

as well as to members of certain organizations. H
defines a role H. orgs that contains the public keys of
these organizations. Into that role H places, for example
the key of SSS, an association. The credentials are
summarized as:

H.discount← H.preferred
H.discount←H.orgs.memb
H.discount←SSSAt a later time, a special plan is
created to encourage travelers to
stay at H. A decision is made that all members of SSS
are automatically preferred customers.
H.preferred← SSS.memb
If X is a member of SSS. She has a credential
SSS.memb ← M

 X can prove in two different ways that he is
authorized for discount in two distinct ways. One he is
a member of H.orgs and the other a preferred customer
of H. Practical considerations may motivate H’s
decision about which proof to use.

Implementation of JAAS: JAAS uses an updated
technology that is plugged without requiring
modifications to the application. It uses different
underlying technologies such as Kerberos. There are
different ways of communicating with the user. The
Login Module performs authentication by remaining
independent of the different types of user interaction.
Figure 1 demonstrates the architecture of JAAS. For
communication KDC generates a session key which is
used for secure interaction. The Login Context
constructs the configured login module and initializes it
with new subject and callback handlers. In order to
authenticate a user, javax.security.auth.login.Login
Context is required.

Login contextlc:

NewLoginContext(<config file entry name>,
<CallbackHandler to be used for user interaction>)

 The LoginModule invokes a
javax.security.auth.callback.Callback Handler to
perform the user interaction and obtain the requested
information, such as the user name and password.
Snippet1 shows different ways of interacting with the
user. The calling application can subsequently retrieve
the authenticated Subject by calling the Login
Context’s getSubject method. Figure 1 shows the
architecture of JAAS.

J. Computer Sci., 7 (8): 1295-1301, 2011

1297

Fig. 1: JAAS Architecture

if (callbacks[i] instanceofTextOutputCallback) {

 // displays the message according to the specified type
TextOutputCallbacktoc
(TextOutputCallback)callbacks[i];
switch (toc.getMessageType()) {
caseTextOutputCallback.INFORMATION:
System.out.println(toc.getMessage());
break;
caseTextOutputCallback.ERROR:
System.out.println("ERROR: " + toc.getMessage());
break;
caseTextOutputCallback.WARNING:
System.out.println("WARNING: " + toc.getMessage());
break;
default:
throw new IOException("Unsupported message type: "
+ toc.getMessageType());
 }
Snippet1 for authentication.

 The Login Configuration specifies that the module
which uses Kerberos for authentication is required to
have success for authentication:

Let Ka bethe master key for A shared by A and KDC.
Kab session key shared by A and B. Tb Ticket to use B.
K{data}� data encrypted with key K
A - Ka{K ab,B}�Kab Kb{K ab,A}-B

 Performs mutual authentication to prove that A and
B know each other. User logs in with the granted
identity, based on which KDC generates password for
further communication for accessing services by
granting a ticket.

Implementation of JAAS Authorization: JAAS
authorization extends the java security architecture that
uses security policy to specify the access rights to
execute. The permissions are granted based on code
characteristics. A subject is created when a user is
authenticated. The Subject carries the identity that
distinguishes it from other Subjects. The purpose of the
Subject is to represent the authenticated user. A Subject
is comprised of a set of Principals, where each Principal
represents an identity for that user. For example, a
Subject could have a name Principal ("SS") and a
Social Security Number thereby distinguishing this
Subject from other Subjects. A Policy file is generated
that includes one or more principal fields:

grant codebase “file:./trialact.jar”, Principal
trial.principal.trialPrincipal “tsttrial”{
 permissionjava.util.PropertyPermission
“java.home”, “read”;
 permissionjava.util.PropertyPermission
“user.home”, “write”;
 permissionjava.io.FilePermission “”, “read” };
Snippet2 for policy file

J. Computer Sci., 7 (8): 1295-1301, 2011

1298

Fig. 2: Permit/deny override

Fig. 3: Architecture of JAAS with SAML and XACMl

Fig. 4: Architecture of JAAS with SAML and XACM

Permissions can be granted in the policy to specific
Principals. After the user has been authenticated, the
application can associate the Subject with the current
access control context. For each subsequent security-
checked operation (a local file access, for example), the

Java runtime will automatically determine whether the
policy grants the required permission only to a specific
Principal and if so, the operation will be allowed only if
the Subject associated with the access control context
contains the designated Principal (Brickell, 1989). A
subject is associated with access control after it is
authenticated and authorized. Figure 2 shows the permit
and deny override. The doAs method is called with an
authenticated subject. It associates the subject with the
current access control and invokes run method from the
action. The run method implementation contains all the
code to be executed as the specified subject:

Privileged Action act = new trialAction();
Subject.doAsPrivileged(subject,action,null);
Snippet 3 for Privileges.

XACML formulation:
Implementation of SAML and XACML: The
Security Assertion Markup Language is an XML

J. Computer Sci., 7 (8): 1295-1301, 2011

1299

framework for exchanging authentication and
authorization information (Zhang et al., 1999). This
security information is expressed in the form of
assertions about subjects, where a subject is an entity
that has an identity within a security domain. Assertions
can convey information about authentication acts
performed by subjects, attributes of subjects and
authorization decisions about where subjects are
allowed to access a certain resources. Our XACML
based policy management and authorization system
allows a authoritative entity to create, modify and
package resource policies. The Policy Decision Point
(PDP) answers authorization queries based on the
resource policies:

A Rule is represented as
Pre(r) �Con(r)
Rule Set = Strict-rulesχχχχDefeasible-rules

Policy Enforcement Point: The Policy Enforcement
Point (PEP) is responsible for requesting authorization
decisions and enforcing them. Figure 3 and 4 shows the
flow of sequences among the subjects and the
resources. In essence, it is the point of presence for
access control and must be able to intercept service
requests between information consumers and providers.
Although the diagram depicts the PEP as a single point,
it may be physically distributed throughout the network.
The most important security engineering consideration
for the implementation of a PEP is that the system must
be designed such that the PEP cannot be bypassed in
order to invoke a protected resource:

<Target>
<Subjects>
<AnySubject/>
</Subjects>
<Resources>
<Resource>
<ResourceMatchMatchId=
"urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValueDataType=
"http://www.w3.org/2001/XM
#string">MainServer</AttributeValue>
<ResourceAttributeDesignatorDataType=
"http://www.w3.org/2001/XMLSchema#string"
 AttributeId=
"urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<AnyAction/>
</Actions>
</Target>

 The Policy Decision Point (PDP) is responsible for
evaluating the applicable policies and making the
authorization decision (permit or deny). The PDP is in
essence a policy execution engine. When a policy
references a subject, resource, or an environment
attribute that is not present in the request, it contacts the
appropriate AA to retrieve the attribute value(s).

RESULTS AND DISCUSSION

User authorization: XACML implementation is used
as a part of the authorization system. Their main
function is to bind the XACML schemato
javarepresentations, handles the attributes and marshals
the contents to XACML request format. In the most
general form, a Policy Rule that decides on whether a
subject s can access a resource r in a particular
environment e, is a Boolean function of s, r and e’s
attributes:

Rule: can_access (s, r, e)
∫(ATTR(s), ATTR(r), ATTR(e))

 Given all the attribute assignments of s, r and e, if
the function’s evaluation is true, then the access to the
resource is granted; otherwise the access is denied. A
Policy rule base or Policy Store may consist of a
number of policy rules, covering many subjects and
resources within a security domain. The access control
decision process in essence amounts to the evaluation
of applicable policy rules in the policy store.
 Results obtained using JAAS has been compared
with the results of the earlier authenticating system. It
proves less time consuming and more secured:

Enter the user name: JAVA
Enter the pwd: object oriented programming language
Inside get dbconnection
Elapsed time is� 6 ms
Bash-3.004 java time diffcheck
Enter the user name system1
Enter the pwd: systemadminone
Inside getdbconnection
Elapsed time is� 6 ms
Bash-3.004 java time diffcheck
Enter the user name: user name
Enter the pwd: password
Inside getdbconnection
Elapsed time is� 4 ms
Bash-3.004 java time diffcheck
Enter the user name: cbe
Enter the pwd: hindusthan 0 coimbatore
Inside getdbconnection
Elapsed time is� 4 ms
Bash-3.004 java time diffcheck

J. Computer Sci., 7 (8): 1295-1301, 2011

1300

Table 1: Measuring time for distributed environment
Password length Time (milliseconds)
21 4ms
26 5ms
36 6ms
16 6ms
8 4ms
23 4ms

Fig. 5: Time for distributed environment

The conventional way of authentication is analyzed and
compared with the newly developed JAAS
authentication. Table 1 show the time measured during
conventional authentication. Figure 5 demonstrates the
varying time consumed during authentication.

Algorithm:

• The main assumption is the Service providers and the

Identity providers trust each other within in a VO
• The application sends the authentication and

authorization service its request for authentication
• Login context and callbacks determine the

technology to be used for authentication
• Successful authentication generates a

subject/Principal with SSN number which is its
unique identity

• Users are authorized based on the SSN and a policy
file is generated

• Policy file carries the identity of the user with the
resource/services that he/she is authorized for

• Depending on the users’ request, a SAML assertion
is send to the Identity Provider

• The Identity Provider after matchmaking forwards
to the service Provider

• Based on the assertion, a XACML request is
marshaled to a file. It also contains Policy
Enforcement Point(PEP) and Policy Decision
Point (PDP)

• XACML PDP generates authorization decision
statement and forward the decision to the
XACML PEP

• Finally, the response is send to the subject in the
form of a SAML response

CONCLUSION

 This study analyzed the requirement of
authorization services and proposed the use of JAAS
and combination of SAML and XACML as a basic
mechanism for implementing authorization services in
large scale distributed computing systems.
 While pointing out the desirable features of the
complex authorization policies, the study also discussed
the practical limitations of traditional authorization in
such environment and designed an new authorization
service architecture for VO. authorization service for
VO. Further research includes satisfactory of protocol
authentication and visualization monitor to the
execution effect of authorization scheme.

REFERENCES

Benaloh, J. and J. Leichter, 1989. Generalized secret

sharing and monotone functions. Adv. Cryptol.,
403: 27-35. DOI: 10.1007/0-387-34799-2_3

Brickell, E.F., 1989. Some ideal secret sharing scheme.
Proceedings of the Workshop on the Theory and
Application of Cryptographic Techniques on
Advances in cryptology, Springer-Verlag New
York, Inc. New York, NY, USA., 105-113. ISBN:
3-540-53433-4

Ito, M., Saito, A. and T. Nishizeki, 1987. Secret sharing
scheme realizing general access structure. Elect.
Commun. Jpn., Part III: Fundamental Elect. Sci.,
72: 56-64. DOI: 10.1002/ecjc.4430720906

Johnston, W., S. Mudumbai and M. Thompson, 1998.
Authorization and attribute certificates for widely
distributed access control. Proceedings of the IEEE
7th International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, Jun. 17-19, IEEE Xplore Press,
Stanford, CA., pp: 340-345. DOI:
10.1109/ENABL.1998.725715

Jayasudha, A.R., 2010. Grid Scheduling using
Differential Evolution (DE) for solving multi-
objective optimization parameters. Int. J. Comput.
Sci. Eng., 2: 2322-2327. ISSN: 0975-3397

Keahey, K. and V. Welch, 2002. Fine-grain
authorization for resource management in the Grid
environment. Proceedings of the 3rd International
Workshop on Grid Computing (IWGC’02),
Springer-Verlag, London, UK., pp: ISBN: 3-540-
00133-6

J. Computer Sci., 7 (8): 1295-1301, 2011

1301

Shamir, A., 1979. How to share a secret. Commun.
ACM, 22: 612-613. DOI: 10.1145/359168.359176

Simmons, G.J., W. Jackson and K. Martin, 1991. The
geometry of shared secret schemes. Bull. ICA, 1:
71-88.
http://pure.rhul.ac.uk/portal/en/publications/the-
geometry-of-shared-secret-schemes%2877a41a12-
7060-489e-8ca2-a6e9822932d5%29.html

Stell, A.J., 2004. Grid Security: An Evaluation of
Authorization Infrastructures for Grid Computing.
MSc Dissertation, University of Glasgow.
www.nesc.gla.ac.uk/projects/etf/MScProj.pdf

Welch, V., F. Siebenlist, I. Foster, J. Bresnahan and K.
Czajkowski et al., 2003. Security for grid services.
Proceedings 12th IEEE International Symposium
on High Performance Distributed Computing, Jun.
22-24, IEEE Xplore Press, pp: 48-57. DOI:
10.1109/HPDC.2003.1210015

Yagoubi, B. and Y. Slimani, 2007. Task load balancing
strategy for grid computing. J. Comput. Sci., 3:
186-194. DOI: 10.3844/jcssp.2007.186.194

Zhang, C.R., K.Y. Lam and S. Jajodia, 1999. Scalable
threshold closure. Theoretical Comput. Sci., 226:
185-206. DOI: 10.1016/S0304-3975(99)00072-9

