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Abstract: Problem statement: Human ping-pong players determine the stroke trajg@ccording to
their experience before the ball enters their cddawever, to enable a humanoid robot to select the
appropriate stroke motion based on skills learneanf3D motion, important patterns must be
generated to simplify the complex 3D motigkpproach: This study developed an effective strategy
for teaching ping-pong skills to a humanoid roba&h optical/inertial motion-capture system that
retrieves the stroke motion was constructed, alwitly the retrieved stroke motion trajectories
analyzed to obtain the desired stroke patternd@frobot.Results: A motion capture system was
implemented mainly to orient the robot on the strakotion trajectory. This system was applied
directly to a ping-pong game between a human playera pitching machine to enable the robot to
learn backhand strokes through human demonstrafite. ball was continuously struck to the
opponent so that it hit the anticipated region be btpposite side of the court while the pitching
machine served the ball. The data were then cledsifsing the proposed stopping detector and then
processed by Principal Components Analysis (PCA)etoerate the stroke patterns after collecting 50
datasets for stroke trajectorigSonclusion: The right arm of the humanoid robot was successfull
instructed to perform the actual ping-pong strogi@g the generated trajectory.
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INTRODUCTION planar robot with 4 DOF and mounted it on a pingigpo
table. The robot could learn from practice and doul

In the recent decade, robot technology hagontinuously increase its skill by applying locally
extended from manufacturing to daily life activitidor ~ weighted regression. However, the robot shape rdiffe
instance, robots that assist humans in everydafrom that of a human and the system could not be
environments such as offices, homes and hospitals ataught directly by human skills. Humans decide Wwhic
highly desired. To meet these demands, wheelegosture is the most effective for striking befane ball
humanoid service robots have been developed imtecearrives. Given the difficulty in developing a fdalsi
years. However, demand for multi-functional humanoi algorithm for achieving such behavior, exactly how
robots is also increasing. This study attemptsjidea humans play ping-pong must be understood before
humanoid robot with the ability to determine theteaching a robot. Bentivegna and Atkeson (2003)
appropriate stroke motion trajectory in a robotiogp  proposed a method allowing a robot to learn task
pong game. primitives from observations and applied it to a DB

An important work in robotic ping-pong robot in air hockey and marble maze environmerige T
application studies is Acosth al. (2003), who devised method orients the robot to generate the correspgnd
a ping-pong playing robot with 5 Degrees Of Freedonplanar motion according to the planar environment.
(DOF). The robot drives two paddles using RC servo$iowever, enabling a humanoid robot to select the
to strike the ball; the ball is located by a camara appropriate stroke motion based on skills learmethf
conjunction with an algorithm based on the detectib 3D motion requires generating important patterns to
the ball and the shadow it projects on the tablesimplify the complex 3D motion.
However, the system is limited in low response ted Motion capture systems employ several available
inability to apply it directly to a standard pingipy  tracking technologies, including mechanical,
table. Matsushimeet al. (2005) later constructed a electromagnetic, acoustic, optical and inertial/nedi
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tracking (Aggarwal and Cai, 1999; Wasgal., 2003). Based on the distributed allocation of computatifos
For ping-pong paddle tracking, researchers havéeapp all algorithms, the sampling time for the servo
optical tracking in virtual-reality games (Kirat al., controller is 0.005 sec while the sampling rate for
2007; Rusdorft al., 2007) and have acquired smoothimage processing is 60 Hz for each video stream.
motion trajectories using commercial motion capture  Human ping-pong players must determine the
devices, e.g., Vicon. However, such devices arestroke trajectory and forehand/backhand stroke
prohibitively expensive and have some limitationsaccording to their experience before the ball entieeir
during implementation. court. The ball speed in a human ping-pong game is
Based on the above discussion, this study develoggenerally 4-5 m sét and a smash can obtain ball
a device to directly teach ping-pong skils to aspeeds of 15-20 m séc Despite its anthropomorphic
humanoid robot since the anthropomorphic nature ofature, the developed humanoid robot is not as
the robot enables direct orientation using humaltssk ~dexterous or as fast as a human and cannot perform
This study presents a novel opticallinertial motion Smashes. Therefore, the ball speed in this study is
capture system that integrates inertial trackinghwi limited to 4-5 m se€ and the robot generates a paddle
inexpensive optical tracking to retrieve motionadand ~ speed of 0.5 m s€cto return the ball, as analyzed
to elucidate human ping-pong motions. The data aréSing motion capture system developed in this study
then filtered/modified using a fusion mechanismGiven that the robot cannot quickly switch between
proposed by Roetenberj al. (2007). To analyze the forehand and backhand strokes, only the backhand

data, a stopping detector based on Gaussian piitpabi
density functions (pdfs) is developed to segmeet th
motion data and to acquire important trajectoryuiess
through Principal Components Analysis (PCA). Finall
the stroke motion is performed directly using the
obtained motion pattern in conjunction with theglfii
condition of the ball observed by the robot.

MATERIALSAND METHODS

Humanoid robotic ping-pong player: Figure 1 shows
the developed humanoid robot and its stand-aloak re

time control system (Tsay James and Lai, 2008). Thg

robot consists of a head, arms, hands and a muodsle.

The robot is equipped with a 7 DOF robotic binocula
head, two 7 DOF arms and two 7 DOF hands in ord
to imitate the visual and ambidextrous behavioraof
human. The hardware architecture of the real-tim

to process images acquired by four color cameright e
motor boards and eight driver boards for contrglé®
servomotors and four processor boards for applyin
control strategies such as calculating robot dynami
All data are transmitted quickly through the DP-SRA
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Fig. 1: Developed humanoid robot
architecture of its real-time control system
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control system employs four image processing boardﬁ1

stroke motion and teaching are considered.

Stroke motion capture of human and robot behavior
teaching:

Motion capture system: This study constructs an
optical/inertial motion-capture system for acquiritine
central position/orientation of the paddle duridgypin
order to acquire the stroke motion trajectory oé th
paddle and to correctly orient the robot to perfaha
stroke motion in real time. An inertial measurement
unit provides sensor data for 3-axis linear acegilens
and 3-axis angular velocities. The optical tracking
ystem minimizes the effects of ambient light bings
infrared illuminators as active markers. Figurehdvgs

the system architecture and coordinate relatiosship
which the relationship between the robot and the
motion capture system is elucidated based on the
alibration pattern. In the proposed applicatiome t
otion capture system enables the robot to determin
the appropriate stroke motion trajectory, allowihgo
align the trajectory with the stereo-vision cooati

Yrame of the robot through the calibration pattern.

Infrared illuminators installed in the center biet
paddle surface must affect the touch between theuz
the paddle surface. Therefore, in this study, tinmirared
illuminators are installed in a circumferential
arrangement with the center of the paddle surface t
obtain its actual mation trajectory without influgmg
play. Figure 2 shows that pointg, @, and @ are the
installed positions of the active illuminated maskeThe
inertial measurement unit is then installed onlthek of
the paddle surface. Therefore, the correct
position/orientation of the paddle center is olgdinsing
a fusion filter (Roetenbergt al., 2007). The proposed
architecture consists of the inertial measuremenit u

and hardwarewith a high sampling rate and the optical traclsggtem

with a low sampling rate, as Fig. 3 shows.
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Fig. 2: Hardware architecture and coordinate refestiof motion capture system
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Fig. 3: Architecture of fusion filter for motion pture system

For inertial measurements, angular velocity  also used to measure acceleratidrard gravitational
acquired from rate gyroscopes is integrated ovee o  acceleration Ywith respect to the sensor coordinate
obtain the change in orientation with respect to arframe (S), which can be transformed to acceleradion

initially known orientation (Bortz, 1971): and gravitational acceleratior”gwith respect to the
inertial base coordinate frame (I) by rotation nxatr
P.
0 -0 Os:
P _ AP, S _ _
0" =0 [00 X:|, wx=| w, 0 -w, 1) ' - g =08 (as- g9 )
-0, w 0

The integral of the acceleratior'agives the
] ] o velocity V" and the double integral gives the position
where, 0" is the rotation matrix with respect to the p>- yjith respect to the base coordinate frame (P afte
base coordinate frame (P). Linear accelerometegs aremoving the gravity component:
948
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VASREAVA +J‘Ia(r)dT (3) velocity magnitude= | '+ Y+ V? (5)
PPr=p +J" V@ )d 4) where, \, V, and , refer to velocity values recorded
to

on the X-, Y- and Z-axis, respectively. In this
application, two Gaussian density functions
{®, ®} =@ are used to model the static situation and

dynamic situation, respectively. A Gaussian classi

) ) _ a Bayes classifier where class-conditional prolitsbil
markers in the image plane of _the two infrared camme density p(x |y ) for each classy is assumed to have a
are located and the 3D positiopX,pS,p0) of three Gaussian distribution

active illuminated markers is then reconstructed by '
stereo triangulation. Next, the position/orientatio
(P9 ,07%) of the paddle center is calculated using

where \§ and B are known values.
For optical tracking, the feature points
([u,v]; j=1.--,6) of the three active illuminated

p(x|w)=

geometric relationships. Finally, the measurementﬁexp{—}(X—Hi)'Zfl(X—ui )} ©
information is calibrated using the Kalman filter @™z 2

(Grewal and Andrews, 1993) to obtain an accurate

position/orientation (P*,0* ) of the paddle center. ﬁ:}ixk @)
Otherwise, the calibrated linear/angular velocity Nia

(v*,0") of the paddle center is also applied in the

stopping detector. $ =13k ~ M, ) 8)
N

Teaching the humanoid robot to play ping-pong: =

Given the difficulty in using mathematical equaBo® |\ here. n denotes sample size. By assumidw ) is a

describe the desired stroke motion trajectory & th multivariate Gaussian densitv. a discriminant fiorct
robot in space, the stroke motion trajectory must b ) Y woic
gan be expressed as:

obtained by using the motion capture system so tha
human motion can provide a reference for robot

motion. However, only some stroke trajectories ban d,(x)=Inp(x|w )Pt )= 1 CT DN It
generated since it is impossible for humans to igeee 2

stroke trajectories for all possible stroke points. +InPE )-1 |dz‘_g In 2t
Consequently, the collected stroke trajectoriesstone 2 2

stroke points cannot be directly applied to theotob

because these stroke points may differ from thosmi Once the Gaussian discriminant functions are
actual ping-pong game. Therefore, this Study prep@s obtained (tWO in the present case, one for thdcstat
novel method of producing stroke patterns to ortet ~ situation and one for the dynamic situation), the

(9)

robot on the stroke motion. decision process simply assigns data x to aa#s
First, a ball served by a pitching machine isaru
continuously using a backhand stroke. The selected=argmaxd (x) (10)

stroke points are in a region that the robot caikest

Given that all continuous stroke trajectories are

recorded on the computer during play, the data are The correct breaking points are obtained using the

segmented and classified. Obtaining the breakimgtgpo Stopping detector with Gaussian pdfs. Each piecerde

in continuous data is extremely difficult due te low  is quantified to have the same quantity. All quietdi

but continuous velocity. Therefore, a stopping dete ~ data are then presented in the following form:

is used as a simple adaptive two-class classifier f

segmenting the motion data into piece records.ther traj ={P',R",R* 9,0 "W,",

Fwo-class classifier, a three dimensior_lal featwretar _ LB P POT6, bE L

is used, whose first component is the velocity

magnitude at time t, second component is the ugloci

magnitude at time t-1 and third component is theWhere:

magnitude difference between the velocity at tilmed k = The number of piece records

t-1: n = The point number of each piece record
949
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Finally, a PCA is performed on these data to obtai Each group of raw data captured from one stroke
the important feature points of a stroke motionmotion was first compacted according to the stroke
trajectory. In a ping-pong player application for atrajectory curvature. All reduced training data evéren
humanoid robot, these feature points are choseheas processed through PCA to achieve the feature points
knot points of the motion trajectory for spline war a stroke motion. Finally, these feature points were
fitting. To perform the stroke motion, the desisttbke  selected as the knot points of each paddle trajeéto
trajectory is implemented using the spline curtenfy  spline curve fitting according to the initial anahdl
based on the stroke pose of the robot arm and motigposes of the paddle in order to generate the stroke
interval, which are obtained from the flight comgiit of  pattern for each stroke motion. The right of Fig. 9
the ball. shows the stroke patterns obtained for the four
consecutive strokes.

In the application stage, the feature points oleti
Experimental verification: Figure 4 illustrates the for the ;troke motion were applied to the de\{eloped
constructed ping-pong paddle motion-capture systesn humanoid robot for the ping-pong stroke motion. A
the ping-pong environment, where a pitching machinégular ping-pong paddle was mounted directly @ th
ball to the player. The motion capture system iheth developed humanoid robot was then instructed to
two infrared cameras mounted on the ceiling foivact perform the actual ping-pong stroke using the geeelr
marker capture; three infrared illuminators werstiatied ~ trajectory based on the initial and stroke poseshef
around the paddle surface to serve as an activkemar paddle and motion interval. The developed robot arm
device. A gyro/accelerometer device attached tdofltk has a 7 DOF redundant structure. In this study, a
of the paddle surface provided inertial tracking.verify ~ Lagrangian network (Wang al., 1999) was utilized to
the effectiveness of the constructed motion capturgolve the inverse kinematics problem of this redumd
system, a human player holding the ping-pong paddlarm with a modified weighting matrix, in which
performed a backhand shadow stroke. Figure %lements were adjusted based on the performance
summarizes the measurement results of theriteria for preventing joint limits and collision
optical/inertial motion-capture system for a onmel&t  sypidance with robotic body. Figure 10 shows stills

motion  trajectory. Despite the significant noise from a stroke motion video when a ball was served b
interference in the measurement results for thécalpt pitching machine.

tracking and inertial tracking, a smooth low-naisetion This study on ping-pong stroke learning in

trajectory was ob_talned using a Kalm_an filter. humanoid robots provided the preliminary data ndede
In thle_z cljelejr_nlngl stage, the motion captuk:e systerny, develop humanoid robots that can play ping-pong
was applied directly to a ping-pong game between §un o hyman opponent. The proposed motion capture
human player anq a p|tch|r)g mgchme such that th‘gystem obtained a smooth low-noise motion trajgctor
robot could be trained to strike with backhand ko from raw captured data using a Kalman filter, despi

throm_Jgh human demon;tratlon. _T_he ball was StrUClihe significant noise interference in the measuregme
continuously so that it hit the anticipated regafrthe results for the optical tracking and inertial tragk

court on the opposing side while the pitching maehi However, raw captured data from one stroke motion

served the ball (Fig. 6). The data were then diaski : -
) . ; could be compacted according to the stroke trajgcto
using the proposed stopping detector after coligafata curvature in grder to reduceg the computatioi]?time

for 50 stroke trajectories. The trivariate Gaussia ;
distributions of the stopping detector could nophmted heeded for the following PCA.
since they required a fourth dimension. Figure Gwsh Infrared  Cameras
three univariate Gaussian distributions computeplaais z

of the trivariate Gaussian distribution for the tista
situation class and dynamic situation class. In &dour
groups of consecutive raw data show the variation i
motion trajectory of the center of the paddle steféor e
four consecutive strokes. The four peaks in Fig. € k_‘:‘, :
reveal that each stroke motion persisted for 1€2 Ehe Rl
left of Fig. 9 depicts the paddle trajectories i §ace,
which were obtained from raw capture data for e f  Fig. 4: Ping-pong environment and the constructed
consecutive strokes. ping-pong paddle motion-capture  system
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Fig. 5: Measurement results of the optical/inenti@tion-capture system
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Fig. 6: Consecutive strokes for ball served bytahiing machine
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Fig. 10: Stills from a stroke motion video

CONCLUSION enhancing robotic skills by self learning. The rakite

objective is developing a humanoid robotic ping-gon
This study presented a motion capture system foplayer that can interact realistically with humdayers.
teaching ping-pong skills to a humanoid roboticypla

The anthropomorphic nature of the humanoid robot
enabled direct orientation using human skills. Fyna

stroke pattern method was proposed to orient thetro The researchers would like to thank the National
on how to perform the actual ping-pong stroke ial re Science Council of the Republic of China, for

time. As for future research, efforts are underway financially supporting this research under Contidot
develop an appropriate intelligent learning stratély ~ NSC 94-2212-E-006-022.
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