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Abstract: Problem statement: In template-based motion recognition approachemstufe sets are
computed from the template for classification. Hwariants are widely employed for this purpose
since its inception. However, development of lowanensional feature vector sets is required for
faster computation along with robust recognitioheTtoncept of reduced size of Hu moment is really
interesting. From its inception, seven higher osdelu moments have been employed by many
researchers without considering why seven and vdiylass numbersApproach: In this study, we
analyzed with various feature sets with differeminber of Hu moments and rationalized that based on
the characteristics of central moments, it is rextessary to employ all the seven moments in every
applications and, in that way, we can reduce thepedational cost and make it fastBesults. Based

on various feature vectors sets, it is evident Watcan use lower dimensional feature vectors for o
Directional Motion History Image (DMHI) method anther methodsConclusion: Therefore, we can
conclude that we do not need all seven invariaather 1st two or three invariants seem enougheas w
are not reproducing the image. Higher invariants ramisy and hence can be ignored. The Oth order
moment for Energy images provide enough informatbout the mass area and hence, no need to
calculate the other seven invariants.
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INTRODUCTION increases dramatically with increasing order arelrth
containment of redundant information about shape.
Action understanding and motion recognition has  We estimated these invariants to calculate feature
various important applications and therefore,vectors using our Directional Motion History Image
development of robust action classification methads (DMHI) method (Ahad et al., 2008b; 2009). We
crying needs in the computer vision arena. Foremployed seven moments to one moment, with and
classification and action recognition, moment ifeats ~ without normalized Oth order moments, to create 12
are widely employed (Ahaeét al., 2008a) to develop different feature vectors for classification. leggs that
smart feature vector sets. Moment invariants wer®th order moment is not required to consider, toug
firstly introduced to the pattern recognition commity  for energy images, it can give key information aftbe
by (Hu, 1962), who employed the results of the theo mass of the motion area and hence, we can ignore to
of algebraic invariants and derived his seven fasnouemploy seven moments for energy images. However,
invariants to rotation of 2D objects. Since itsdption, instead of using seven moments for energy images, w
the Hu (1962) invariants became classical. Thealise can consider only the Oth order moments that peovid
moments for image analysis, object representatiwh a the total object area, as it seems sufficient amdhis
recognition was inspired by these invariants. Havev way, we can reduce feature vectors. Therefore ethes
both for image reconstruction and pattern recogmjti feature vectors can significantly reduce the
researchers employ all the seven invariants inr theicomputational cost without sacrificing the recommit
study for shape analysis. Even though it is assuimed rates. We vividly notice that the average recogniti
higher order moments are less stable, detailedates are still in satisfactory ranges even witivedo
experimental analysis has been unattended and henaBmensional feature vectors. We also present variou
all the invariants are computed. In general, gioegge  graphical demonstrations by which it becomes clear
shape is represented well by the lower-order mosnenthat the higher order moments are less useful for
and high-order moments only reflect the subtletiba  recognition purposes. It is evident that higher the
silhouette or boundary image. We find that compiexi invariants, more the variations in them. Higher the
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order for invariants, more noisier and unstablaureet  identification performance when moment orders are
they demonstrate. We note that the absolute esteris  increased beyond order 4 or 5 and in general, tidlr
much higher for higher order moments compared ¢o thmoments are very sensitive to noise and less stable
lower order moments. Therefore, for pattern rectigmi  (Celebi and Aslandogan, 2005; Prokop and Reeves,
purpose, lower order moments are the key to achiev&992; Shen and Ip, 1999; Teh and Chin, 1998).
more sound recognition. In another research, for shape analysis and
The concept of reduced size of Hu moment isclassification of weld defects in industrial radiaghy,
really interesting. From its inception, 7 higheders only the first two Hu invariants are employed along
Hu moments have been employed by many researchergth some other geometric parameters (Nacereddine
without considering why 7, why not less numbers. Weand Tridi, 2005). The first two invariants give reaees
analyzed with various feature sets with differentin relation with the pixel spreading in compariseith
number of Hu moments and rationalized that based othe center of mass (Nacereddine and Tridi, 2006 T
the characteristics of central moments, it is noffirst two moment invariants were used by H962)
necessary to employ all the seven moments in everp represent several known digitized pattems i
applications and, in that way, we can reduce thdéwo-dimensional feature space. In another research,
computational cost and make it faster. Therefore, wRizon et al. (2006) used only the first invariants for
can conclude that we do not need all 7 invariaathier ~ object detection. They claimed that from 2nd inaati
1st 2/3 invariants seem enough-as we are nabnward, the invariants are insignificant.
reproducing the image. Higher invariants are neisg Bidoggia and Gentili (2002) pointed that it is
hence can be ignored. The Oth order moment forggyner possible to see that the 4th and the 5th moments ha
images provide enough information about the mass ar the larger standard deviations (especially for Rutl
and hence, no need to calculate the other seveB-Y channels in color images) and that the moments
invariants. are less stable under rotation and scaling. Theg al
commented that this is not surprising, because the
Background: As pointed by Ahadet al. (2008a); higher order moments are the less stable. In ciler
Moeslundet al. (2006); Poppe (2007) and Aggarwal maintain a good stability, a smaller set of moménats
and Cai (1999), human activity and motion recogniti been selected, composed by the five moments in gray
has various paradigms and various approaches aeeale image (and for color image, by three moments
considered for pattern recognition. Hu moments ardoth R-G and B-Y images). The higher is the order o
widely used by many researchers for imagethe moment, the higher are the fluctuations (Bidagg
representation or image reconstruction, utilized asnd Gentili, 2002). As all the complex moments are
pattern recognition features in a number of apptics,  approximate, the last moments are the less stable,
such as, action recognition (Ahmad and Lee, 2006because they depend on higher power of uncertain
Bradski and Davis, 2002; Bobick and Davis, 2001;numbers. One study by (Teh and Chin, 1998) showed
Dudaniet al., 1977), for fingerprint verification (Yang that higher order moments are more vulnerable titewh
and Park, 2007), texture classification (Camptsal., noise, thus making their use undesirable for patter
2004; Nacereddine and Tridi, 2005), rapid matclohg recognition with higher order moments.
video streams, data matching (Wong and Hall, 2002), However, these invariants have several drawbacks.
character recognition (El-Khaly and Sid-Ahmed, 1,990 Information redundancy is one of the drawbackscé&in
Tsirikolias and Mertzios, 1993), image normalizatio the basis is not orthogonal, these moments sufien &
(Gruber and Hsu, 1997) and estimation of positind a high degree of information redundancy (Celebi and
the attitude of the object in 3-D space (Mukundad a Aslandogan, 2005). Moreover, in the presence odejoi
Ramakrishnan, 1996). the computed Hu invariant moments, begin to degrade
In general, gross image shape is represented welllso, large variation in the dynamic range of valueay
by the lower-order moments and high-order momentgreate instability. Since the basis involves powafre
only reflect the subtleties of a silhouette or badany  and g, the moments computed have large variatidhein
image (Mukundan and Ramakrishnan, 1996). Hencedynamic range of values for different orders. Timay
one may not even need all seven moment invariantause numerical instability when the image siziarige
functions to design a classifier (Mukundan and(Celebi and Aslandogan, 2005). The concept of lewer
Ramakrishnan, 1996). dimensional feature vector sets and the relevahitdon
Prokop and Reeves (1992) noted in their survey omaction recognition by employing our directional ioat
moment-based techniques that most practicahistory image method is presented below. Moreower,
experiments have shown little improvement inemploy other methods for further analysis.
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MATERIALSAND METHODS Hu derived relative and absolute combinations of
moment values that are invariant with respect tlesc
Since its inception, seven Hu moments are widelyposition and orientation based on the theories of
used. Similarly, we employ Hu moments to developinvariant algebra that deal with the properties of
feature vectors for the Directional Motion History certain classes of algebraic expressions which irema
Image (DMHI) representations for each activity. &ler invariant under general linear transformations. Sehe
we compute the (DMHI) templates based on a thrésholmoments are not invariant to geometrical

& on pixel values: transformations. To achieve invariance under
translation, we need to get central moment. The
H (x,y, 1) = T if Wo(x,y,t)>¢ central moment g4 can be defined as:
hald max(0, H* (x,y,t-1)8) otherwise o
. T i Wiy, 1) > € Moo = [ [ (X=%)"(y =9)"p(x, y)d(x = %) d(y~)
X,Y,1) = Co e
o Y max(0, H* (x,y,t-1)8) otherwise
, B T if W,y t) > & Here, Xx=m,,/my, Y=m,/my. This is essentially a
HO Oy, )= max(0, H’ (x,y,t-1)§5)  otherwise translated Cartesian moment, which means that the
- centralized moments are invariant under translation
HY (x,y,t) = T if Wy, 1) >¢ The first four orders (i.e., (p+q) is from 0-3) alefined
! max(0, H (x,y,t-1)8) otherwise as:
Here: Moo =My =H
(x,y) = _IF_’ier poslit(ijon . Mo =Hyu=0
t = Temporal duration _ <2
=m,,— KX
0 = The decay factor “20_ m2°_ UT
W(x,y,t) = The optical flow vector M =M “72’
Moz = Mg, —HY
In this equation, this vector is split into four Mao = Mo = 3Myex+ 30X
d?ffere_nt channels according to horizontal and ieet Hyy = My — M,y — 2m X+ U Xy
directions: Wy, =M, - MX— 2m,y+ XY
+X Hos = Mo~ 3Mgyy+ Y
wD{up( j dowr( ) rlgh ) Ief‘ )}
For the second and third order moments, following

seven orthogonal invariants are achieved to cakeula
From these DMHI templates, we get its binariesfeature vectors. The first six moments are rotation

energy image templates called DMEI. In this studg, scaling _and translation _invar_iants. 7th momentkisyxs
employ these templates. (and bi- correlatlons) invariant that enables it to

Lets define the 2D (p+f)order Cartesian moment distinguish mirror or otherwise identical imagesheT
My Of @ density distribution functiop(x,y): seven invariants are:

[, =Myt Ho,

mye = [ [ XyP0y)dxdy  (p.6F 0,1,2,. 1, = (Moo= Mo +44,7
o I3 :(“30_3“12)2 +(3u 21_”03)2
where, p and q are the order of the moments inxthe 1, =(Hyp+H)  +(Hat 1 )°

and y axes, respectively. A complete moment set of lg = (Hag = 3H1) (M a0 M DI(H s 1 2 =3( L+ 1 )]

order n consists of all momentsygisuch that p+gn By~ o)t I3 st o) — (5t p ]
and contains n+1)(n+ 2 elements. The moment
}/2( )( ) |6:(u20_|’10?)[(u30+“1)2_(u 21+U9)3]

+ AL (a0 + Hio) (M ort M od
17 = (BHz ~Hod (Mgt M (M 55t 122
iiix qf X y = 3(Has + Hoa) 1= (M a0~ 3 1) (M o+ K o)
pq NM ‘= y=1 [3(“30 + Ulz)z - (U atH 092]
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Based on these seven invariants, for the DMHI andecognition results. It seems that Oth order monient
DMEI templates, we need to compute seven Huwunot required to consider, though for energy imagfes,
moments for each of the eight compament can give key information about the mass of the omti
Moreover, to cover the overwriting issue signifitgn  area and hence, we can ignore to employ 7 moments f
we introduce the normalized Oth order Hu momentsenergy images. However, instead of using seven
(mZ) . The Oth order moments provide the total objecfNoments for energy images, we can consider only the
area or mass and hence provide important cues fOth order moments that provide the total objechaas

Q . M
motion region. Finally, considering seven invarsafar i seems sufficient and, in this way, we can reduce
64-36D feature vectors.

each along with eight normalized Oth order moment .

_ ) — ) For recognition purpose, we employ our dataset of
invariants (g, where wli{up, down, left, right}- \arous aerobics. Ten different actions (e.g., Body
directing four directions), we compute a 64-D featu stretching; Waving arms, bending and straighters;leg
vector, F\jmy (i.e., 7 Hu moments for each of the Tyrning the arms; Bending the chest; Bending thiybo
D|\/|H|_ and DMEI template_ (i.e., 7x8 = 56), in addiio sideway (left); Bending the body-front and back;
to eight (1x8) normalized Oth order moments.\yaying arms and twisting the body to the left; Biegd
Therefore, we get a feature vector of dimensions of 4 straightening arms up to shoulders, legs move;
56+8 = 64). Let us calculate Oth order moment forBending the body diagonally to bottom-both sided an

templatemedH" ( x,y.jas: Bending the body sideway (right)) from eight vagou
subjects are taken from an uncelebrated frontairvie
My (H7) =Y > medH™ ( x,y.) digital video camera with almost constant illumioat
x oy

condition in indoor environment. No special markers
dress or arrangement were considered in this

Then we get normalized Oth order moment forgyneriment. Also the dress, height, size and agieof

medH ( x,y,§ by employing the following equation: subjects were different for each person. The frhae
resolution of 320x240 pixels. For classificationg w
moo(H:X) consider leave-one-out cross-validation approach. |
Mgy = ~ x Table 1, we present some comparative recognition
Mg (H)+ Moo H) + mo HY) + mof H?) P P g

results for the DMHI method with various featuretes
sets (Ahadet al., 2008c). In this process, we employ k-
hearest neighbor classification method for recammit
based on our database. In this analysis, we trigld w
seven moments to one moment to make 12 featurervect
sets for classification (Ahaet al., 2008c). It seems that
FVams = (00)(1,.7) U () (1. ) U (Oh.b) Oth order moment is not required to consider, thofiog
(mig‘o)u(me,mm)(@) energy images, it can give key information abow th
mass of the motion area and hence, we can ignore to
temploy 7 moments for energy images.

These normalized Oth order invariants confer th
relative mass of the motion area in the scene. We c
define the final feature vector, g\, as:

where, h denotes the motion history image compaenen
and e stands for energy pomponents of the D'v”-”'l'able 1: Recognition rate with various feature westemploying
method. However, we notice that for Hu moment, DMHI and DMEI

complexity increases dramatically with increasimges Hu moments

and their containment of redundant information d@bou

shape. The normalized Oth order moment provides EXDS‘* ;Or DMH'Oth . F;’r DMEI —— Re;;lrzte (%)
- . + norm. order + norm. order .
ration of the area. It is a measure of compactness. 56D 2 Hu moments 7 Hu moments 89.0
48D 6 Hu moments 6 Hu moments 89.0
RESULTS 40D 5 Hu moments 5 Hu moments 89.0
36D 7 + norm. Oth order norm. Galhder 97.3
) 32D0th 7 Hu moments norm. Otirder 89.0
We employ seven moments to one moment, with82D 4 Hu moments 4 Hu moments 89.0
and without normalized Oth order moments, to créate igg g EU mgmggi 2 :“ mgmgzi gg-g
. s . u u .
different fgature vectors for cIaSS|f|(;at|on (Tattle We 5o 1 Hu moments 1 Hu moments 890
also consider moments only for h|story templat_ed an 4p 1 Hu moments 0 80.6
only for energy templates and achieved different4D 0 1 Hu moments 44.5
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If we consider 7 or 6 or 5 or 4 moments to calieula
feature vectors for each history and energy templae
achieve the same recognition rate. We evaluatetbihe
five results for all recognitions and we did notdiany
change in its distribution, as the distances antbege
are almost the same even if we consider 7 or

recognition rates are almost unchangeable. Simijlarl
by employing the basic Motion History Image (MHI)
method by Bobick and Davis (2001), we achieve
similar conclusions. Therefore, we can concludd tha
for recognition purpose, it is not required to eoypéll
dnvariants-rather initial few invariants seem erlodgr

moments. However, if we use the first 3 Hu momentstemplate-based motion recognition methods.
then we notice changes among the results even lthoug

the recognition result is not varying significantly
Finally, we tried with history images only and emer
images only to get recognition result and it shgeer
recognition as it is evident that for better redtign,

we need to consider both motion history and energ
templates. Therefore, reduced numbers of Hu momen

are suitable and well-fit for this DMHI method. this
way, we can reduce the running time.

Some of these different feature vector sets can b

DISCUSSION

Here present various graphical demonstrations by
which it becomes clear that the higher order moment
are less useful for recognition purposes. It ident
Yhat higher the invariants, more the variationghiam.
Eigure 1 shows the variations of the 64 invarignes,
seven Hu invariants and normalized Oth order mosment
for each of the four history images and four energy
ﬁ'nages). In Table 2 and Fig. 1-5, we use ‘fv’ tmoie

shown as (every sub-equation here denotes featur?eature vector number’

vectors of 56, 40, 36, 32 and 24D respectively):

FVago = (Th) (1, ) U (Ce)(1,. o)
FVa0o = (0h)(1.5) U (Ce)(1.. o)
FVep = (0h)(1,.) U (0h) (i) U (08)(
FVo = (0h) (1, ) U (Te) )
FVaio = (0N)(1,.5) U (Ce) (1. 5

For example, F¥sp consists of seven invariants for
both history and energy templates, whereas;,§get

is composed with seven invariants for history ingmage
along with the normalized Oth order moments of the,

Table 2 shows the definition of the different
features; e.g., fvl~fv7 denotes the seven invaifot

H™(x,y,t) where fvl is for the 1st invariant, fv2
denotes the 2nd invariant and so on. Figure 2 shievs
variations of the seven different Hu invariantslag-
scale forH:X(x,y,t) (i.e., fvl~fv7). From this Fig. 2, it
is clearly understood that the first invariant tabde
compared to its higher invariants. Higher the order

invariants, more noisier and unstable natures they
demonstrate.

Table 2: Various Feature Vectors (FV)'s definition

Definition/comment

energy images. Therefore, these feature vectors camn

significantly reduce the computational cost without V1~

sacrificing the recognition rates much.

We can vividly notice that the average recognition

rates are still in satisfactory ranges even witvdp

fv7 1st seven invariants fd'rl;rx (x,y,1)
fv8~fvl4 1st seven invariants fHT_X (x,y,1)

fv15~fv21  1st7 invariants foH;ry (X,Y,1)

dimensional feature vectors. We find it a wonderful
development with the DMHI method, because in allfv22~fv28
other approaches that have employed Hu invariants i
their works, have calculated the seven invariagwen
though higher invariants are more noise-prone.hbn t fv3s~fv42
case with the DMHI, the deployment of Ilower
dimensional feature vectors can also produce goo#43~fv49
recognition results and we achieved average retiogni
rates of 91%. Therefore, we can find a faster
recognition strategy with the DMHI approach f57-f60
considering lower-dimensional feature sets. In the
similar fashion, we have analyzed with the
Hierarchical Motion History Histogram (HMHH)
method (Menget al., 2006). We consider four patterns
in this case and computed with various feature $d&s
found that until the initial three invariants, the
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1st seven invariants fle';y (x,y,t)
fv29~fv35 1st seven invariants f(E:X (X,y,1)
1st seven invariants f(ET_X (X, y,1)
1st seven invariants de:y (X, ¥,1)
fv50~fv56 1st seven invariants f(ET_y (x,y,9)

Norm. Oth order moments fd'rI:X (X, ¥, 1),
HX(x,y, 1), HY (x,y,t) and H Y (x,y,1)
fv61~fv64  Norm. Oth order moments ch:X (X, y.1),

EX(xy. 9. EY(x,y,)and EY (XY, 1)
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Log {abs (mv.)) for § persons for a® for 64-D DMHI
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Fig. 1: All 64 invariants of the DMHI for various
persons for an action
Log-scale mvariants for & persons for a’ for DMHI (x7)
) A ¥ & & ¢
= = 2 ke = 5

Log-scale value

o d N ddh B RS O
f P

Person
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Fig. 2: Invariants  variations  for H™(x,y.t) -these

clearly shows that higher the invariants, more

the variations

Figure 3 shows the normalized Oth order moments

(i.e., fv67~fv64) and the 1st invariant for all kig
directional-history and directional-energy tempsate
(i.e., fvl, fv8, fvl5 and fv22 are for four DMHI

templates and fv29, fv36, fv43 and fv50 show the

corresponding 1st invariants for four DMEI tempfate
respectively). From Fig. 4, graph for the 1st inamats
are presented. We see that the range for y-aXis0i®
only and the ranges of values are from -0.77 td7-0.
(for 1st invariants). So the variation is less. Btr and
7th invariants, we will see wide range of values.

In the similar fashion, we compared the 6th arfd 7t ;
invariants for the same action for eight different

persons. Figure 5 demonstrates these for 6th svri
(i.e., fv6, fv13, fv20, fv27, fv34, fv4l, fv48 anid55
for four DMHIs and four DMEI respectively) and for
7th invariants (i.e., fv7, fvl4, fv21, fv28, fv35v42,
fv49 and fv56 for four DMHIs and four DMEI
respectively). It is clearly seen that thexs is
very large (0-14.0) compared to that of Fig0%®.9).

Inv.value

Fig

Laog (inv.)

Fig.

Log tabs (inv.))

Fig

Nomn. Oth and 1st inv. -8 persons, 8-DMHIs for a®
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For 8 different persons’ action, 1st ineats is
shown. Range for y-axis is 0-0.9

6th and Tth inv. for 8-DMHIz for § persons for a®
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6th and 7th invariants for 8 different pers’
action (for both energy and history images). Y-
axis is larger (0~-14) than the same for Oth and
1st invariants (0~-0.9)

Also the variations among the same invariant for
different persons are high and hence less stalfle. T
range for the DMEIs is from-4.4-13.15 and the séone
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DMHIs is from-3.55-10.0. These features show cilearl Ahad, M.A.R., J. Tan, H. Kim and S. Ishikawa, 2009.

that higher invariants are more unstable and noisy. Temporal motion recognition and segmentation
We also analyze the absolute error for some approach. Int. J. Image Syst. Technol., 19: 91-99.
invariants to see the variation of the invariamtsrf the DOI: 10.1002/ima.v19:2

first person to the rest of the subjects, whichAhad, M.A.R., J. Tan, H. Kim and S. Ishikawa, 2008a
demonstrate that the higher order moments are noisy Human activity recognition: Various paradigms.
and unstable. Therefore, for pattern recognition Proceeding of the International Conference Control
purpose, lower order moments are the key to achieve Automation and Systems, Oct. 14-17, IEEE Xplore

more sound recognition. Press, Seoul, Korea, pp: 1896-1901. DOI:
10.1109/ICCAS.2008.4694407
CONCLUSION Ahad, M.A.R., T. Ogata, J. Tan, H. Kim and S. Isiui,

2008b. A complex motion recognition technique

Since its inception, the Hu's invariants became  employing directional motion templates. Int. J.
classical and, despite of their few drawbacks, moomee Innovat. Comput. Inform. Control, 4: 1943-1954.
works have been devoted to various applicationsareaAhad, M.A.R., J. Tan, H. Kim and S. Ishikawa, 2008c
The use of moments for image analysis and object Template-based human motion recognition for
representation was inspired by these invariants. We complex activities. Proceeding of the IEEE
notice that most of the cases, both for image International Conference on Systems, Man and
reconstruction and pattern recognition, researchers Cybernetics, Oct. 12-15, IEEE Xplore Press,
employ all the seven invariants in their study sbape Singapore, pp: 673-678. DOI:
analysis. Even though it is assumed that higheerord 10.1109/ICSMC.2008.4811355
moments are less stable, detailed experimentaysisal Ahmad, M. and S.W. Lee, 2006. Human action
has been unattended and hence, all the invariaats a  recognition using multi-view image sequences
computed. features. Proceeding of the International

We analyzed with various feature sets with Conference on Automatic Face and Gesture
different number of Hu moments and rationalized tha Recognition, Apr. 2-6, IEEE Xplore Press,
based on the characteristics of central momens nivt Southampton, UK., pp: 523-528. DOI:
necessary to employ all the seven moments in every 10.1109/FGR.2006.65
applications and, in that way, we can reduce theéBidoggia, R. and S. Gentili, 2002. A basis of inaat

computational cost and make it faster. Based olowsr moments for color images. Proceeding of the
FV sets, it is evident that we can use lower dirters International Workshop on Systems, Signals and
feature vectors for the DMHI and other methods. Image Processing, Nov. 7-8, World Scientific,
HMHH and MHI methods are also exploited and we Singapore, pp: 527-531. DOI:

achieved similar results. Therefore, we can corelud 10.1142/9789812776266_0080

that we do not need all seven invariants, rathetvie  Bobick, A. and J. Davis, 2001. The recognition of
or three invariants seem enough-as we are not human movement using temporal templates. |IEEE
reproducing the image. Higher invariants are noisy  Trans. PAMI, 23: 257-267. DOl:
and hence can be ignored. The Oth order moment for 10.1109/34.910878

Energy images provide enough information about thdBradski, G. and J. Davis, 2002. Motion segmentation
mass area and hence, no need to calculate the other and pose recognition with motion history gradients.

seven invariants. Mach. Vis. Appli., 13: 174-184. DOL:
10.1007/s001380100064
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