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Abstract: Problem statement: In this study, DFT-based speech enhancement vianiim Mean-
Square Error (MMSE) amplitude estimators was carsid.Approach: Several variants of the basic
approach (MMSE-STSA) have been proposed over thesyie address certain shortcomings, chiefly
the quality of the remnant noise and its tradewdth speech distortion. In this study, we preserged
comparative study between the MMLSA and the estinsabased on the Gamma model, followed by
an implementation in Matlab of these algorithms amd objective evaluation using a corpus of
speech.Results: We obtained the best values of various parameteesl by different estimators.
Conclusion: Objective evaluation confirm superiority in noiseppression and quality of the
enhanced speech by the estimators derived undegeéheralized Gamma distribution than the
estimators derived under the normal distributionstiationary environments.
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INTRODUCTION DFT coefficients are used, because they lead to
estimators with improved performance than thosedas
The interest in the field of speech enhancemenpn a Gaussian model. Martin (2005) derived complex-
emerges from the increased usage of digital speedDFT estimators under Laplacian and Gamma speech
processing applications like mobile telephony, tdigi assumptions. Lotter and Vary (2005) proposed a MAP
hearing aids and human-machine communicatiommplitude estimator for a generalized Gamma
systems in our daily life. The trend to make theseamplitude distribution.
applications mobile increases the variety of paabnt MMSE estimators of the complex DFT
sources for quality degradation. Speech enhancemeunbefficients, assuming a two-sided generalized Gamm
methods can be used to increase the quality oktheslistribution, have been derived in (Jenseal., 2006).
speech processing devices and make them more robUMSE estimators for the amplitudes, assuming a one-
under noisy conditions. The large group of speechsided generalized Gamma distribution, are treated i
enhancement methods meant to improve certain gualit(Andrianakis and White, 2006) and (Hendridsal.,
aspects of these devices. In this study we willifoon  2006). For all these estimators, the decision-téc
single-microphone additive noise reduction and atm method is commonly used (Ephraim and Malah,
methods that study in the Discrete Fourier Tramsfor 1984).
(DFT) domain. In this study, we present a comparative study
The traditional hypothesis for speech enhancemerdetween the MMLSA, which is the most efficient
in the DFT domain is that the distribution of the variant of the estimators based on the Gaussiareimod
complex speech DFT coefficients is Gaussian (Ephrai and the estimators based on the Gamma model. This
and Malah, 1984; 1985). Therefore, the spectraktudy is followed by an implementation in Matlab of
amplitude distribution is modeled by a Rayleighthese algorithms and an objective evaluation using
distribution. Actually, super-Gaussian models o€ th corpus of speech.
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MATERIALSAND METHODS Where:

) ] lo = The 0Oth order modified Bessel function
MM SE spectral estimation: of the first kind

Modeling noise DFT magnitudes and assumptions: ) A . .
Assume that we observe a noisy speech signalhgt) t o = E{‘D‘ } = The noise spectral variance

is a sum of a speech and noise signal x(t) and d(t)

which are uncorrelated. Their representation in theGaussian based short-time spectral amplitude
Short Time Fourier Transform (STFT) domain is givenestimator: In this case, the DFT coefficients of both the
by: speech and the noise are assumed to be an independe
Gaussian random variables. Moreover, the speech
signal might not be present at all times and at all

_ frequencies. We therefore consider a two following
where, Y(k, 1) and D(k, 1) are the samples of thisyn ‘ ‘.
speech, the clean speech and the noise signal'd STHYPOthesesH, andH;:
correspondingly. The index k corresponds to the
frequency bins and the index | to the time framiethe HY = Speech absent in kth DFT biw, =D,
STFT. Since DFT coefficients from different time |,
frames and frequency indices are assumed to be?
independent, the indices k and | will be omitted fo

Y(k,I) =X(k,l) +D(k,1) (1)

= Speech present in kth DFT biw, =X, +D,

simplicity. We can write X = A& and Y = A&”, where ~ Hence, the probability density function can be
random variables A and R represent the clean aisy no 9'Ven as:
amplitude and® and © the corresponding phases )
values. o P(Yk /Hg) -1 . F{_ l ] 4)
In this study we focus on MMSE estimation of the ™ (k) Ag(K)

clean amplitude A. The MMSE estimate of A is the

expectation of the clean amplitude conditional ba t ( ) 1 |y ‘2
noisy amplitude r(E{A/r}). With Bayes formula wera P(Y, /H)= ex;{ k ] (5)
express the MMSE estimate as: (A (k) +Aq (K)) | A (k) +Aq(K)

T where, A, (k)=E{|x|*/H: and A, (k) =E{|D,[*} are
[afya(va)1, (4 da (k) =E{|x [ rhi] .(K)=g{|p}

A =E{A/} =2 ) ';]hot?s\éariance of the spectral component of speech an
!fR/A (r/a)ta (a) da Let G, be some function of the short-time spectral

amplitude A of the clean speech in the kth bin (e.g.,

The estimation of the clean amplitude A requiresA. , 10gA, , A?). The MMSE estimatorC, of C,is
some assumptions about the distribution of the dpee given by (McAulay and Malpass, 1980):
and the noise. The speech has usually been assumed
Gaussian, e.g., (Ephraim and Malah, 1984; 19885), buC, = E{ G, /Y ,H} A H /Y)+
in recent times estimators based on super-Gaussian K
speech assumptions such as Laplacian or Gamma E{Ck /Yk'HO} P( K /Yk)
distributions have been derived (Lotter and Vary,

2004). A similar development has been seen for thavhere, E{/.}and P(./) denote conditional
noise a;jss(gmpti(_)ns; bn:OStt' co:nmonly tthref Eoise ixpectations and conditional probabilities, resipebt.
assumed Gaussian, but estimators exist which sappos.. Kl _ .

the noise to obey a super-Gaussian distributiortéto %IﬂCEE{Ck /YK’HO} =0, we have:

and Vary, 2004).

With the zero-mean Gaussian distribution G, = E{ G, /Y . H} A H /Y) (7)
assumption of the noise DFT coefficientgafi/a) can
be written as (McAulay and Malpass, 1980):

(6)

Thus, Gyy (k)= P(H /Y, )is the Multiplicatively-
o (t/a) -ﬂex rPea) [ 2ar @) Modification of the optimal estimator under the sgle
AN g2 presence hypothe.{sLSA (k)= E{Ck /Yk7Hf}) .
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Based on the results reported in (Ephraim and

Malah, 1985; Malalet al., 1999), the Multiplicatively-
Modified  Log-Spectral Amplitude (MM-LSA)
estimator (corresponding to,G logAy) outperformed
the traditional MMSE-STSA estimator (Ephraim and
Malah, 1984) with and without incorporating speech

presence uncertainty indicated as MMSE-SPU and

MMSE respectively (€= Ay).
The MM-LSA estimator is (Malakt al., 1999):

Aumisa =CGum (k)GLSA (k) Ry (8)
Under the Gaussian assumptions on the speech a
noise, the gain function Ga(k) is derived in (Ephraim
and Malah, 1985) to be:
=& exy t
1+§, 2

Gisa (& Vi) JeT d 9)

Yk
Where:

=&
1+,

- R _
Yk E{‘Dk‘z}
= M

1-q,
el

(o}

Vi Y«

3

Ny

(11)

Gamma based short-time spectral
estimator.
In the Gamma based MMSE estimators of the
speech DFT magnitudes; we assume that the speech
DFT magnitudes are distributed according to a one-
sided generalized Gamma prior density of the form:

VB\)
r(v)

amplitude

L(@=T_a"lexpBd ), a (12)

nd

where T(.)is the Gamma function and the random
variable A represents the DFT magnitudes, with the
constraints on the paramet@rs0, y>0, v>0.

The Gamma based MMSE amplitude estimators
for the casey = 1 andy = 2 have been derived in
(Andrianakis and White, 2006; Hendriks al., 2006;
Erkelenset al., 2007). We will use the cage= 2, as the
related estimator can be derived without any
approximations and the maximum achievable
performance for both cases is about the same.

Inserting Eq. 12 witly = 2 and Eq. 3 into 2 gives:

Tazv ex —a—z—Bé ) 281 Ga

A(z): 0 Gé 0123 (13)
T 2v-1 _fi_ 2ar|
fe o -5 B 57 o

where, the superscript (2) indicates that theupater

2. Using (Gradshteyn and Ryzhik, 2000), the
integrals can be solved for>0. After inserting the

relation betweenf3 and the second momem{Az},

with ny is called the a priori SNRy is the a posteriori
SNR and gis the a prior probability of speech absence
in the k-th bin.

The gain modification fa (k) is the soft-decision
modification of the optimal estimator under thensib
presence hypothesis and is given by (Ephraim an@stimator is (Hendriket al., 2006):

Malah, 1984; Malalet al., 1999):
_M(9+09 0 Mo(Q)

which for this case B=v/o? , witho? = {\Xk\z} , the

A(2)
A = (14)
A(K) “ rv) v M (Qu)
G, (k)= 10 k (~v+0.5,00\ ¥k
v (K) AR (10)
where, Q =y, n,/(v+n,), M,, is recognized as the
where the likelihood ratid\(k) is defined as: Whittaker function, or in terms of confluent

hypergeometric function,F,(a;b;x (Gradshteyn and

P(H) P(Y /H) _(1-a) A % /H) -

A(k) = . = . Ryzhik, 2000):

o) o)™ @ A ) Y )

and, g denotes the a priori probability of speech Al = F(v+08 o lE(V+?'§;l;QK)r (15)
absence in the kth bin. By using 4 and 5, we get: F(V) Vi 1F1(V'1'Qk)
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The special case = 1 is the traditional MMSE- a,RY
STSA estimator derived in (Ephraim and Malah, 1984) d,, . (%“q) =lo < RJ*T (17)
i
The decision-directed estimator of the a priori SNR: _
In order to evaluate the above gain functions, vstm \{Vhere.ﬂ _ o o
first estimate the noise power & anda, = The Linear Prediction (LP) coefficient
spectrun’)\d(k)=E{\Dk\2}. This is often done during vectors for the clean and processed
_ _ _ speech frame respectively
periods of speech absence as determined by a Voigg, = The autocorrelation of the clean speech
Activity Detector (VAD), by using a noise-estimatio frame
algorithm like the minimum statistics approach (Mar || R = A spectral distance measure which
1994; 2001), or by using a real noise in compagativ mainly models the mismatch between
studies. the formants of the original and
The a posteriori SNR estimatgyris the ratio of the enhanced signals
squared input amplitudeR? and the estimated noise i )
spectrum The mean LLR value was obtained by averaging

. the individual frame LLR values across the sentence
In.(I_Ephra.um and Malah, 1984; 1985 Cap_e,.1994),-|-he highest 5% of the LLR measures values were
a Qemglon.-dlrected approach for the a priori SNRdiscarded, as suggested in (Hansen and Pellom,),1998
estimation is proposed: to exclude unrealistically high spectral distanetues.
Az(k 1) The lower LLR measures for an enhanced speech, the
Ay - _ _ better are its perceived quality.
A (1) =max a Ag(k,1-2) (o)) =L, | (16) Since the correlation of SNR with subjective
quality is so poor. Instead, we choose the fransetha
segmental SNR by averaging frame level SNR

where the smoothing factox@sl, a value ofa = 0.98 estimates and is defined by (Hansen and Pellong§)199

was used in the implementation and the lower liif,

recommended by (Cape, 1994), is the same to thefuse Nm+N-1

the spectral floor in the basic spectral subtractio 10M= Y s(n)

method (Beroutet al., 1979). A lower limit of at least- SNRseg=MZ 100, g™ - (18)
15 dB is recommended. m= > [s(n)-s(n]

t=Nm

Implementation and performance evaluation: For  \hare M denotes the number of frames. The lowdr an
the experiment, the Noizeus database (Hu and Lo'zmﬂjpper thresholds are selected to be -10 dB anddB35
2007) was used which consists of 30 'RS'ﬁlteredrespectively.

speech signals sampled at 8 kHz, contaminated by Tphe perceptual  evaluation of speech quality

various additive noise sources. The frame size568 2 (Rix et al., 2001), predicts the subjective quality of

samples, with an overlap of 50%. The data windowgpeech signals with high correlation between stibjec
used was a Hanning window. The enhanced signal wag,q objective results and expresses the qualitg in

combined using the overlap and add approach. The &qre from 1.0 (worst) up to 4.5 (best).
priori probability of speech absence, gvas set to

gk = 0.3 in (7). The noise variance was estimatethfro RESULTSAND DISCUSSION

0.64 seconds of noise only, preceding speech gctivi _

Matlab implementations available from, (Borrowes, ~ We evaluate the two estimators (MM-LSA and the
2003) have been used to evaluate the conflueff@mma based estimator). For a proper choice efe
hypergeometric functions. evaluated the estimator _for a wide range of values
have used the segmental SNR, the Log-LikelihoodSNR segmental and PESQ versusyfer2, at O and
Ratio measure (LLR) (Hansen and Pellom, 1998) an& dB SNR, in the case of white noise and babbleejoi
the Perceptual Evaluation of Speech Quality (PESQyespectively.

(Rix et al., 2001). All the measures show high We see the similarity between the PESQ plots and

correlation with subjective quality. the SNR seg plots. Furthermore, the better perfocma
The LLR measure for each 20-ms speech frame iis reached with lowev-values and the Gamma based
given by: estimator scores very well for0.1.
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5 3 Table 1:Objective quality scores for various aidpons under white,
—+—SNR = 0dB —+—SNR = 0dB babble and car noise, SNR =5 dB
45 4+ SNR=5B | ag 4 SNR=3dB || 5 dB SNR
al K 1 28|14 | .
t - {_ k. Noise Method LLR SNRy PESQ
3 5 1 27F % ] White  Noisy 1.545 -2.327 1.799
Z 3 | Y MMLSA 0.945 4.204 2.706
= iy, Z 26 e 1 GAMMA 0.891 4.609 2.775
2 23] T - Babble  Noisy 0.715 -1.783 2.006
Z = MMLSA 0.478 3.661 2.791
ST i GAMMA 0.437 4.059 2.851
1.5 - Car Noisy 0.795 -2.173 1.891
i 23 MMLSA 0.511 3.589 2.703
GAMMA 0.469 3.977 2.763
0.5 2.2
‘ 5 Table 2: Objective quality scores for various aldns under white,
0 0 1 2 3 21 3 babble and car noise, SNR = 0 dB
- W) 0dB SNR
Noise Method LLR SNRy PESQ
Fig. 1: SNR segmental and PESQ performance White  Noisy 1.802 -5.081 1.539
MMLSA 1.142 1.822 2.351
GAMMA 1.087 2.169 2.421
4.5 . 3 . Babble  Noisy 0.895 -4.632 1.705
il B =it ] | = MMLSA 0.617 1.288 2.441
& = 29 4, G GAMMA 0.577 1.639 2.494
st & 1 % Car Noisy 1.014 -4.959 1.634
A% - f % ] MMLSA 0.652 1.273 2.365
e O %, i LY GAMMA 0.612 1.609 2.426
= 25 * o e |
¥ LN 127 L CONCLUSION
-\zf = ey . . .
= g g This study considered DFT based techniques for
L single channel speech enhancement. We show an
e increase in the quality of the enhanced speech with
» different noise types. Results, in terms of objexti
- measures and listening test, indicated that the dam
23 based estimator yielded better performance than the
3 0 1 2 3 MM-LSA estimator based on a Gaussian model.

) In the future, we plan to evaluate its possible
application in preprocessing for new communication

Fig. 2: SNR segmental and PESQ performance versusSystems and hearing aid system.
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