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Abstract: Problem statement: Elastography is developed as a quantitative approach to imaging linear 
elastic properties of tissues to detect suspicious tumors. We propose an automatic feature extraction 
method in ultrasound elastography and echography for characterization of breast lesions. Approach: The 
proposed algorithm was tested on 40 pairs of biopsy proven ultrasound elastography and echography 
images of which 11 are cystic, 16 benign and 13 malignant lesions. Ultrasound elastography and 
echography images of breast tissue are acquired using Siemens (Acuston Antares) ultrasound scanner 
with a 7.3 MHz linear array transducer. The images were preprocessed and subjected to automatic 
threshold, resulting in binary images. The contours of a breast tumor from both echographic and 
elastographic images were segmented using level set method. Initially, six texture features of 
segmented lesions are computed from the two image types followed by computing three strain and two 
shape features using parameters from segmented lesions of both elastographic and echographic images. 
Results: These features were computed to assess their effectiveness at distinguishing benign, 
malignant and cystic lesions. It was found that the texture features extracted from benign and cystic 
lesions of an elastogram are more distinct than that of an ultrasound image .The strain and shape 
features of malignant lesions are distinct from that of benign lesions, but these features do not show 
much variation between benign and cystic lesions. Conclusion: As strain, shape and texture features 
are distinct for benign, malignant and cystic lesions, classification of breast lesions using these features 
is under implementation. 
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INTRODUCTION 

 
 Non-invasive methods used to diagnose breast 
cancer still have limitations. Detection techniques are 
currently based primarily on physical examination, 
mammography and sonography. Mammography and 
sonography are currently the most sensitive non-
invasive modalities for detecting breast cancer. 
Ultrasonography is chosen as the work up tool. 
Ultrasound has long been used to distinguish between 
harmless, fluid-filled cysts and solid masses. However, 
solid masses are not always malignant. For example, 
both fibroadenomas and scirrhous carcinomas are solid 
and stiff, but only the latter are malignant. The 
sonographic features for benign and malignant lesions 
have been shown to override each other substantially 
(Stavros et al., 1995). In mammography, the 
compression of breast tissue and the repositioning of 

the breast for different views cause patient discomfort. 
It is also difficult to image dense breast tissue in 
mammography. These limitations of mammography 
and sonography and the need, not to miss a malignant 
lesion in the early stage of disease leads to invasive 
surgical biopsy that cause unnecessary patient 
discomfort, anxiety and hospitalization in addition to 
increasing costs to the patient. This substantial problem 
remains in breast cancer diagnosis. 
 Existing imaging technologies have limited 
detection capabilities, as well as an inability to 
differentiate benign from malignant cancers. Overall, 
there is a need for alternative non-invasive methods of 
detection and diagnosis of breast lesions with greater 
sensitivity and specificity. 
 Mechanical measurements have shown that 
pathological tissue can be up to 30 times stiffer than 
normal tissue (Parkin et al., 2005). Ultrasound 



J. Computer Sci., 6 (1): 67-74, 2010 
 

68 

elastography described by Ophir et al. (1991) is a 
method for measuring the stiffness/elastic properties 
of tissues (Stavros et al., 1995; Parkin et al., 2005; 
Ophir et al., 1991; Hall et al., 2003). The basic 
operating principle of elastography involves the 
comparison of the spatial arrangement of tissue before 
and after compression. This scanning modality which 
can provide information about stiffness of the lesions is 
currently used for detecting and identifying lesions in 
the breast. Paired images are obtained, consisting of the 
standard B-mode image on the left and a pure strain 
image on the right (Hall et al., 2003). 
 Benign lesions usually appear smaller or of the 
same size on sonograms as well as on elastograms. In 
case of malignant lesions, the size appears larger on the 
elastogram (Elisa et al., 2000). Unlike benign lesions 
that have smoother borders and are more loosely bound 
to the adjacent perilesional tissue, thereby being more 
mobile, malignant tumors are known to form stellate 
boundaries that become firmly bound to the 
surrounding tissue through infiltration. During an 
applied compression, benign lesions tend to undergo 
motion in an opposite direction to that of the 
compression. On the other hand, malignant lesions 
move in the direction of compression while pulling the 
perilesional tissue in the same direction; thereby 
causing the perilesional tissue also to appear stiffer on 
the elastogram as well. 
 Studies have demonstrated that B-mode ultrasound 
imaging tends to underestimate the size of a tumor 
compared to pathology measurement. It is shown that 
the size of a breast tumor is larger in elasticity images 
than in B-mode ultrasound images and it is a reasonable 
hypothesis that the tumor size in elasticity images is a 
more accurate representation of that measured at 
pathology.  
 Because of the ease with which compression can 
be applied to the breast, it is an ideal organ on which to 
perform elastography. Due to the relative stiffness of 
breast cancer tissue, as compared to benign fibro 
adenomas and cysts, a method such as elastography 
which estimates tissue stiffness may be an attractive 
tool for distinguishing benign from malignant lesions. 
 In the diagnosis of breast cancer using 
elastography, Garra et al. (1997); Hall et al. (2003) 
proposed several diagnostic criteria such as lesion 
visualization, relative brightness and margin irregularity 
by capturing the radiofrequency data of the reflected 
echoes after giving compression to the lesion. Instead 
of using radiofrequency data, Steinberg et al. (2001) and 
Moon et al. (2005) used continuous ultrasound images 
which are obtained through probe compression. 

 Automated detection of tumor margin in breast 
elastography  is  desired  for  diagnostic   purposes. 
Wu Liu et al. (2007) proposed a preliminary 
segmentation algorithm using the coarse to fine active 
contour method. This method is effective for 
segmenting regions of images that have a relatively 
regular, well circumscribed single margin but might not 
be effective in segmenting speculated masses with 
irregular margins as seen in malignant tissue. 
 Xia and Liu (2007) method refers to contour 
evolution which improvises on the coarse to fine active 
contour method proposed by Liu et al. (2007). This 
method can handle features that the active contour 
method has difficulties with, including self intersecting 
contours and changes in topology. 
 In present study, ultrasound images of the breast, 
namely the B mode ultrasonogram and elastogram are 
preprocessed by a Speckle Reducing Anisotropic 
Diffusion filter (Yu and Acton, 2002). An automatic 
threshold applied to the preprocessed images results in 
binary images. The lesion region is identified by Renbo 
Xia’s method of contour evolution. Three sets of 
features namely texture, strain and shape features are 
computed from the segmented lesions of both image 
types.  
 The research is organized as follows. The contours 
of a breast tumor are evolved from the acquired 
ultrasound elastography and echography images of 
breast, followed by segmentation of breast lesions. 
Texture, strain and shape features are extracted from 
the segmented lesions.  
 

MATERIALS AND METHODS 
 
Image acquisition: Ultrasound elastography and 
echography images of breast are acquired using 
Siemens (Acuston Antares) ultrasound scanner with a 
7.3 MHz linear array transducer. Initially B mode 
image of the lesion is taken, following which a slight 
compression is applied. The effect of breathing and 
heart beat produce the required compression. The 
elastogram is generated by the machine by comparing 
pre and post compressed RF signals and the elastogram 
is displayed adjacent to the B mode image. The 
ultrasonograms and elastograms generated are gray 
scale images.  
 
Segmenting the lesion: Due to noise and speckles in 
the ultrasound B mode and elastographic images, noise 
filtering and edge-enhancement are required. There are 
several fundamental requirements of noise filtering 
methods for medical images. One, it should not lose the 
important information of object boundaries and detailed 
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structures. Two, it should efficiently remove noise in 
the homogeneous regions and finally, it should enhance 
morphological definition by sharpening discontinuities. 
The Speckle Reducing Anisotropic Diffusion (SRAD) 
filter (Yongjian Yu and T. Scott Acton, 2002) meets 
these requirements of noise filters and also improves 
the image quality significantly while preserving the 
important boundary information and hence, in present 
study, speckle reducing anisotropic diffusion filtering 
of real elastography and ultrasound B mode images is 
done to reduce noise and speckles. 
 Segmentation is required to separate the tumor 
region from its background. Segmentation algorithms for 
grey scale images are based on one of the two basic 
properties of image intensity values: discontinuity and 
similarity. In the first category, the approach is to 
partition the image based on abrupt changes in the 
intensity, such as edges in an image. The principal 
approaches in the second category are based on 
partitioning an image into two regions that are similar 
according to a set of predefined criteria. In present study, 
automatic threshold and level set active contour method, 
based on the above criteria are used for segmentation. 
 An automatic threshold-determination method, 
proposed by Otsu (1997), can choose the threshold to 
minimize the intraclass variance of the black and white 
pixels automatically. An additional control scheme is 
allowed to enable the user to change the threshold value 
when he is not satisfied with the threshold value 
assigned by this automatic method. In an elastogram, 
the tumor region appears to be darker and the 
background bright. In present study, the preprocessed 
images are subjected to the above mentioned automatic 
threshold scheme, resulting in binary images as this 
aids in separating the lesion from its background. The 
area of lesion is segmented from the binary image by 
applying level set segmentation technique. 
 
Level set method: Level sets are first described by 
Osher and Sethian (1988) as a method for capturing 
moving fronts. In the level set formulation, the 
segmentation problem is equivalent to the computation 
of a surface Γ (t) that propagates in time along its 
normal direction. The Γ surface is also called a 
propagating front, which, according to Osher and 
Sethian (1988), is embedded as a zero level of a time-
varying higher dimensional function φ(x, t): 
 

( ) ( )3t {x x, t 0}Γ = ∈ℜ φ =  (1) 

 
 An evolution equation for an interface Γ, where Γ 
is a closed curve in ℜ2, can be written in a general 
form: 

F | | 0
t

∂φ + Λφ =
∂

 (2) 

 
 The function φ describes a curve defined by: 
 

φ(x, t) = d 
 
where, d is a signed distance between x and the surface 
Γ. If x is inside (resp. outside) of Γ, then d is negative 
(resp. positive). The function F is a scalar speed function 
that depends on image data and the function φ. The main 
drawback of this procedure is that during the evolution, φ 
can assume sharp or flat shapes. To overcome this 
problem, φ is initialized as a signed distance function 
before the evolution. Later, during the evolution, it is 
periodically  reshaped to be a signed distance function 
(Li et al., 2005). Li et al. (2005) proposed a modification 
of traditional variational level sets to overcome the 
problem of the reshaping of function φ to be a distance 
function within the evolution cycle.  
 In present study, variational level sets are used, 
which are more robust than those originally proposed 
by Osher and Sethian because they incorporate shape 
and region information into the level set energy 
functions. Here, the initial contours of lesions of both 
ultrasound and elastography images are determined by 
the method proposed by Xia and Liu (2007). This 
algorithm consists of finding all endpoints in an edge 
map. All the valid pairs are established. The linking 
cost for all the valid pairs is computed. All the pairs 
keyed on cost are placed in a heap with the minimum 
cost pair at the top. The pair of least cost from the heap 
is iteratively linked and the connected pair is removed. 
This algorithm has been applied to both ultrasound B 
mode and elastography images. The segmentation 
results are shown in Fig. 1-4. 
 After tumor contours are segmented from the 
elastographic and US B mode images, six texture 
features, three values for features of strain-contour 
difference, perimeter difference and area difference and 
two values for the shape feature- solidity and width to 
height difference are computed.  
 
Feature extraction: Features are to be computed from 
the segmented region to identify lesions into one of 
the three types, namely benign, malignant or cystic. 
 
Strain and shape features: The size of a malignant 
breast tumor is larger in elasticity images than shown in 
B-mode ultrasound images. Similarly, the size of a 
benign lesion in elasticity images is smaller or equal to 
B-mode ultrasound images. Based on the difference in 
size of lesions in elasticity images and B-mode 
ultrasound images it is decided to concentrate on features 
namely area difference, perimeter difference and contour 
difference (Kavitha et al., 2009). 
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Fig. 1a: Original US B mode image of malignant lesion 

 

 
 
Fig. 1b: Filtered   image 
 

 
 
Fig. 1c: Image after applying automatic threshold 
 

 
 
Fig. 1d: Final contour 
 

 
 
Fig. 1e: Segmented tumor (ROI) 

 
 
Fig. 1f: Computer delineated margin of lesion 
 

 
 
Fig. 2a: Original elastogram of malignant lesion 
 

 
 
Fig. 2b: Filtered image 
 

 
 
Fig. 2c: Image after applying automatic threshold 
 

 
 
Fig. 2d: Final contour 
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Fig. 2e: Segmented tumor (ROI) 
 

 
 
Fig. 2f: Computer delineated margin of lesion 
 

 
 
Fig. 3a: Ultrasound image and elastogram of a benign 

lesion 
 

 
 
Fig. 3b: Computer delineated margin of lesion of 

ultrasonogram 
 

 
 
Fig. 3c: Computer delineated margin of lesion of 

elastogram 

 
 
Fig. 4a: Ultrasound image and elastogram of a cystic 

lesion 
 

 
 
Fig. 4b: Computer delineated margin of lesion of 

ultrasound image a sound image 
 

 
 
Fig. 4c: Computer delineated margin of lesion of 

elastogram 
 
Area difference: The area difference is used to 
compare areas of lesions between two images, as lesion 
area changes in accordance to the applied pressure. The 
area difference is defined as the difference between 
areas of lesions in the ultrasound images and 
elastograms divided by the number of pixels in the 
lesion region of the ultrasound image: 
 

eu

u

a a
Area difference 100

a

−= ×  (3) 

 
where, au and ae are the lesion areas of ultrasonogram 
and elastogram respectively. 
 
Perimeter difference: The perimeter of the lesion is 
computed by calculating the distance between each 
adjoining pair of pixels around the border of the region. 
It is length of the nuclear envelope calculated as the 
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length of a polygonal approximation of the boundary 
(B), where p is perimeter of lesion. Polygonal 
approximation is approximating a closed curve as a 2D 
polygon by which a simple representation of the planar 
object boundary is provided: 
 

x B

p 1
∈

=∑  (4) 

 
 The perimeters of lesions in ultrasonogram and 
elastogram are computed. 
 
Solidity: Shape values can be used to distinguish 
between benign and malignant tumors. Benign lesions 
usually have smooth shapes and so they produce a 
regular shape in both ultrasound and elastographic 
images whereas malignant lesions present irregular 
shapes in elastograms. This difference can be obtained 
in terms of a feature called solidity: 
 

ar

ar ar

tot

cvx
Solidity

cvx tumor
N

= −
∑

 (5) 

Where: 
Ntot = The total number of imaging modalities 

involved 
cvxar = The area obtained from the convex hull of a 

tumor 
tumorar = The area of tumor 
 
 The convex hull (Zunic and Rosin, 2002) is the 
smallest convex set containing a tumor and resembles a 
rubber band wrapped around the tumor. 
  

  
 (a) (b) 
 

 
(c) 

 
Fig. 5: Registered contour. (a) malignant lesion; (b) 

benign lesion; (c) cystic lesion 

Contour difference: The contour difference feature is 
used to compare differences of contours between the 
ultrasound B mode lesion and elastogram lesion. 
Initially the contours are registered by linear conformal 
method transformation. It is the transformation of an 
image by scaling the image, rotating the image and 
translating the image to a different coordinate system. 
Intensity weighted centroids are used as reference 
points for the two lesions (Moon and Chang, 2005):  
 

condiffN
Contour difference 100

N
= ×  (6) 

 
Where: 
Ncondif = The pixel difference between the two 

registered contours 
N = The number of tumor pixels in the ultrasound 

image (Moon and Chang, 2005) 
 
 The registered contours are shown in Fig. 5a-c for 
malignant, benign and cystic lesions respectively. 

 
Width to height difference: Due to applied stress, a 
benign lesion appears smaller in an elastogram 
compared to B-scan image, whereas a malignant lesion 
appears larger in an elastogram because of its solid 
nature. Based on this, the width to height difference can 
be taken as a feature. An ellipse that has same 
normalized second central moment as the region of 
interest is drawn. The major axis length (height) and 
minor axis length (width) of the ellipse are computed. 
The ratio of width to height is calculated for lesions of 
ultrasonogram and elastogram respectively.  

 
Texture features: The texture features represent 
changes of grey level intensity. The second order 
statistical features namely standard deviation, energy, 
entropy, dissimilarity, homogeneity and contrast are 
computed using Grey level Co-occurrence Matrix 
(Haralick et al., 2007) from ultrasonogram and 
elastogram. This square matrix estimates the inter-pixel 
positioning and each cell carries the count of the 
number of times a pixel pair occurs as a function of two 
other parameters, the distance ‘d’ and the angle ‘θ’ 
between them. Generally the value of ‘d’ is fixed at 1 
and θ is allowed to vary in steps of 45° clockwise up 
to 180° to get 4 such matrices completely describing 
the image region. The features are obtained from 20 
ultrasound images and 20 elastograms. The minimum 
and maximum  value   of  each feature is shown in 
Table 1-3. The obtained features are presented in 
Table 1-3. 
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Table 1: Texture features of ultrasonogram 
 (Minimum to maximum) 
 ---------------------------------------------------------------- 
Features Benign lesion Malignant tumor Cystic lesion 
Energy 10000-50000 500-10000 7000-43000 
Entropy -830 to -1290 -120 to -280 -2000 to -16000 
Dissimilarity 100-500 40-10000 3000-15000 
Homogeneity 30-430 57 -78 300-2000 
Contrast 100 to1000 150-3000 450-20000 
SD 20-60 0.22 -1.0 0.6-35 

 
Table 2: Texture features of elastogram 
 (Minimum to maximum) 
 ---------------------------------------------------------- 
Features Benign lesion Malignant tumor Cystic lesion 
Energy 300-1000 2000-8000 3000-20000 
Entropy -60 to -540 -300 to -500 - 780 to -8000 
Dissimilarity 3000-4000 80-1200 1300-20000 
Homogeneity 52-278 268-530 160-1000 
Contrast 100 to1000 90-2500 430-3000 
SD 0.1-0.25 0.7-40 0.39-0.84 

 
Table 3: Strain and shape features from ultrasongram and elastogram 
 (Minimum to maximum) 
 -------------------------------------------------------
Features Benign and cystic lesion Malignant tumor 
Area difference 5-100 -60 to -10000 
Solidity 0.6-0.8 0.2-0.6 
Perimeter difference 10-100 100-1000 
Contour difference 7-100 1-10 
Width-height ratio -40 to -150 15-100 

 
RESULTS 

 
 The segmentation results are shown in Fig. 1-4. 
Figure 1a-f show the various stages of filtering and 
segmentation of an US B mode image of a malignant 
lesion. Figure 2a-f show the various stages of filtering 
and segmentation of an elastogram of a malignant 
lesion. Figure 3a-c shows the ultrasound image and 
elastogram of a benign lesion and their segmented 
images. Figure 4a-c shows the ultrasound image and 
elastogram of a cystic lesion and their segmented 
images. The computed delineated margin is the white 
outline. 
 The features  extracted are listed in Table 1-3. 
Table 1 presents the texture features of malignant, 
benign and cystic lesions of an US B mode image. 
Table 2 presents the texture features of malignant, 
benign and cystic lesions of an elastogram. Table 3 
presents the strain and shape features obtained from 
parameters of both US and elastography images. 
 

DISCUSSION 
 
 The above algorithm is tested on 40 pairs of 
ultrasound and elastography biopsy proven images 
where 11 are cystic, 16 benign and the remaining 13, 

malignant tumors. Malignant masses are stiffer and 
therefore deform less than benign masses, besides they 
appear darker and larger than benign masses on an 
elastogram. A benign tumor would be of comparable 
size in both sonogram and elastogram. A cyst is 
characterized by its inner anechogenic substance and 
thin echogenic outer wall nature. It is depicted as nidus 
(bull’s eye appearance) in an elastogram (Fig 4c). The 
computed delineated margin is the white outline.  
 Texture features of a lesion in an elastogram 
provide better information about the inner details of 
cyst than texture features of a lesion in an US B mode 
image. Hence a cyst is well identified in an elastogram 
than in an US B mode image. From Table 2, it is seen 
that there is not much of difference between the 
elastogram texture features of benign and malignant 
lesions, but there is much difference between the 
elastogram texture features of benign and cystic lesions.  
 From Table 3, it is observed that strain and shape 
features extracted using parameters from US B mode 
image and elastogram, well differentiate the malignant 
tumors from benign and cystic lesions. 
 Hence, elastogram texture features are superior in 
differentiating cystic lesions from benign conditions. 
The strain and shape features well differentiate the 
benign from malignant lesions. Hence, we conclude 
that it is appropriate to combine the information 
obtained from both US elastography and US B mode 
images for better diagnosis. 

 
CONCLUSION 

 
 In this proposed method the two sets of images are 
initially preprocessed by anisotropic diffusion filtering 
and then by an automatic threshold technique. The level 
set method is utilized to segment the lesion in the 
combined image. The texture, strain and shape features 
are computed from the segmented lesions. Some of the 
features are distinct in an elastogram for the three 
specified conditions and hence elastogram increases the 
specificity of diagnosis. Classification of breast lesions 
using texture and strain features obtained from 
ultrasound images and elastograms is under 
implementation. 
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