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Abstract: Problem statement: The evolution rules of membrane computing haventegeplied in a
nondeterministic and maximally parallel way. In erdo capture these characteristics, Gillespie’s
algorithm has been used as simulation strategy eflonane computing in simulating biological
systemsApproach: This study was carried to discuss the simulattostesgy of membrane computing
with Gillespie algorithm in comparison to the siaibn approach of ordinary differential equation by
analyzing two biological case studies: prey-predatupulation and signal processing in the Ligand-
Receptor Networks of protein T@F-Results: Gillespie simulation strategy able to confine the
membrane computing formalism that used to reprefentynamics of prey-predator population by
taking into consideration the discrete charactahefquantity of species in the system. With Gilles
simulation of membrane computing model of TGRhe movement of objects from one compartment
to another and the changes of concentration ofctbje the specific compartments at each time step
can be measuredConclusion: The simulation strategy of membrane computing w@hlespie
algorithm able to preserve the stochastic behafitwiological systems that absent in the deterrimis
approach of ordinary differential equation. Howethex performance of the Gillespie simulator should
be improved to capture complex biological charasties as well as to enhance the simulation
processes represented by membrane computing model.
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INTRODUCTION between membranes. The evolution rules are apjlied
a nondeterministic and maximally parallel way, vhic
Membrane computing enriches the model ofmeans all the objects that can evolve, must evolve
molecular computing by providing a spatial struetur (Paun, 1998).
for molecular computation, inspired by the hieréah As a result of a membrane computing model, a
structure of living cells. In the structure and thecomputing device is obtained, starting from aniahit
functioning of cell, membranes play an essentil lo  configuration and letting the system evolve. A ensal
which objects pass in a regulated fashion withid an clock is assumed to exist which means at each atep,
across the membranes. The cell is separated frem itules from all regions are simultaneously appliedl
environment by means of the plasma membrane and dbjects that can be the subject of an evolutioe. rul
is internally compartmentalized by means of internaWhen no further rule can be applied, the computatio
membranes. The membrane computing modehalts and we get the result in a prescribed wayth@n
formalizes this fundamental feature of the livingllc  contrary, if there is at least one rule that carapplied
namely, membrane structure (Paun, 2000). Membranfrever, then the computation is unsuccessful amd n
computing is introduced as a class of paralleloutputis obtained.
distributed and nondeterministic computing devices  Since its establishment, membrane computing has
(Paun, 1998). The fundamental features that are imse been a branch of theoretical computer sciencerem a
this computing model are a membrane structure wheref mathematical investigations. However, the irdere
objects evolve according to specified evolutioresyl has increased in investigating membrane computing
which also determine the communication of objectsinto practical computing applications. Since memira
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computing originated from biology, question of whig  in which each node consists of two 1.4 GHz Intdl PI
do not use membrane computing back into wheresit haCPUs with 1 GB of memory and connected by Myrinet
originated has arisen (Muniyandi and Abdullah, 2009 as well as gigabit Ethernet. This research imptied
Most of mathematical models of biological processeghis implementation achieves better performancenwhe
have been done by using continuous mathematicsuch hardware is available (Ciobanu and Guo, 2004).
especially system of Ordinary Differential Equation Although this could be possible direction for meare
(ODE) in which the variation of concentration ofcka computing in future, the cost of establishing the
chemical substance or object is modeled as a glob&lardware at this stage would be paramount if we
entity. In this respect, it is assumed that the loeinof  considering testing huge amount of membrane systems
objects of each type in the reaction mix is largdglat by setting up a processor for each membrane.
the reactions are fast. Therefore, when the nurober On the other hand, it is important to underline th
objects in reactions is small and the reactionsskow, fact that implementing a membrane system on an
which is common in most biological systems, the ODEexisting electronic computer cannot be a real
assumption is questionable. The ODE approach alsimplementation, it is merely a simulation. Howe\the
makes it difficult to develop a modular and scadabl simulations already circulated in this area haveeast
design for hierarchical system. The stochastiGrdie  three important merits: they have structure resandg
and hierarchical characteristics of membrane comgut to membrane structure, they have a didactic vahee a
is being considered as an alternative to solveetheshey can be used for simulating membrane systems
limitations by taking into considerations its ed&g@n which model certain real-life phenomena, with
features that are of interest for biological apgtiiens. relevance for other domains than computer science

Several programming paradigms and programmingtself, such as artificial life, ecology and biochistry
languages were selected for implementing membran@aun, 2000).
systems simulators: Lisp, Haskell, MzScheme as In the P Systems webpage, there are some
functional programming languages (Suzuki andapplications have been described. Some of them are:
Tanaka, 2000; Arroyet al., 2003; Novalet al., 2003; PSim is a Java Simulator for membrane computing
Barandaet al., 2002) prolog, CLIPS as declarative based on the metabolic algorithm; SimCM is a Java
languages (Cordon-Frana al., 2004; Perez-Jimenez simulator for transition membrane computing; SubLP-
and Romero-Campero, 2004), C, Visual C++, Java aStudio is a software simulator for the Sub LP-Syste
imperative and object-oriented languages (Ciobanuodel, a variant of L-Systems and membrane
and Paraschiv, 2002). Membrane computing was alscomputing.
described as executable specifications in Maude Furthermore, different simulation strategies have
(Andrei et al., 2005). Therefore, there are manyalso been employed to investigate membrane
attempts to simulate membrane computing on theomputing such as dynamic probabilistic (Pesetiil.,
existing computers. They have both didactic and2006), metabolic algorithm (Manca, 2008) and
scientific values. However the membrane computing i Gillespie algorithm. Dynamic probabilistic and
inherently parallel and, in many variants, theyoals metabolic algorithm are using deterministic apphoac
exhibit an intrinsic non-determinism, hard to be Gillespie algorithm is using stochastic approach.
captured by sequential computers. By simulating  This study investigates and evaluates membrane
parallelism and non-determinism on a sequentiatomputing simulation strategy based on Gillespie
machine, one can lose the real power of paralletiacth  algorithm compared to deterministic approach of ODE
attractiveness of membrane computing. with experiments with two biological case studi€ke

On one hand, maximum parallelism could bedeterministic approach refers to no randomness that
obtained with an unbound number of processorsinvolved in the development of future states of the
assuming no scheduling overheads. Therefore ikere system in which the computation evolve under time
special interest to implement membrane computing byhen every action produces a reaction and every
simulations on multiple processors. Parallel angstelr  reaction, in turn, becomes the action of subsequent
implementation for membrane computing is presentedeactions. The stochastic approach refers to non-
using C++ and Massage Passing Interface (MPIlyeterministic behavior of reaction in which a syste
(Ciobanu and Guo, 2004). In the research by Ciobanfuture evolution is described by probability
and Guo (2004) a simplest variant of membrandistributions to determine its subsequent state.
computing, the transition membrane computing is  This investigation has two purposes. The fggbi
implemented. The program is implemented and testedxamine the consequence of number of objects in the
on a Linux cluster consists of 64 dual processateso reaction mix in the stochastic approach compared to
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deterministic approach and to verify how this facto has also been used to simulate the Quorum Sensing
could influence the performance of the system. Th€Romero-Campero and Perez-Jimenez, 2008).

second motive is to study the differences in sitiore The algorithm and its attributes are described in
between deterministic and stochastic approachésein detail in DT Gillespie (2001; 2003) research.
hierarchical system and to find out how this cougde

an effect on the activities of objects. The pregdator Case studiess Two biological case studies, prey-
population is used as the case study to analyze th@wedator population and signal processing in ligand
former and the signal processing in the Ligand-receptor network of protein TGFare chosen to model
Receptor Networks of protein TGFis used to analyze them by using membrane computing formalism and
the latter. then evaluate them by Gillespie simulator.

Gillespie algorithm: Gillespie (2001; 2003) algorithm Prey-predator population: The prey-predator
provides a method for the stochastic simulation ofpopulation (Jones and Sleeman, 2003), also known as
systems of bio-chemical reactions. The validitytiwé ~ the Lotka-Volterra population, is frequently useal t
method is rigorously proved and it has been alreadflescribe the dynamics of biological systems in Wwhic
successfully used to simulate various biochemicafWo Species interact, one a predator and anotheiiten
processes. As well as this, the Gillespie’s alponiis ~ Prey- Primary example of a prey-predator system
used in the implementation of stochastic calculuOmprised a plant population and an herbivorous
(Philips and Cardelli, 2009) and in its applicattorthe ~ 2nimal dependent on that plant for food. The predat
modeling of biological systems (Priarei al., 2001). species is totally dependent on the prey specidssas

Meanwhile, multi-compartmental Gillespie algorithm only food supply. The prey species has an unlimited

(Perez-Jimenez and Romero-Campero, 2006) igood supply and no threat to its growth other thiaa

developed by taking into account the fact thathwit specific predator. If there were no predators, ey

. ) species grows exponentially. But there aredators,
respect to the original algorithm where only on&iue which must account for a negative component in the

is_ studied, i_n membrane computing where there arﬁrey growth rate. The assumptions for the modettaze
different regions or_compartments, each one can PEite at which predators encounter prey is jointly
seen as a volume with its own set of rules, besides roportional to the sizes of the two populations an
application of a rule inside a compartment can alsgixed proportion of encounters lead to the deattthef
affect the content of another one; for example theyrey,
application of a communication rule. The prey are assumed to have an unlimited food
Gillespie algorithm proposed that at each time,ste supply and to reproduce exponentially unless stitijec
the chemical system is in exactly one state and t@redation. The rate of predation upon the prey is
directly simulate the time evolution of the system.assumed to be proportional to the rate at which the
Basically, the algorithm determines the nature anyredators and the prey meet. Therefore the rule thee
occurrence o_f the next reaction, given that théesyss  prey can be interpreted as: The change in the rey’
In state s at time t. numbers is given by its own growth minus the rdte a
Gillespie algorithm has been applied to many which it is preyed upon.
silico biological simulation recently. Kastner and Fraser ~ The predator rule represents the growth of the
(2002) has applied the algorithm in simulation of predator population. However, the predator popuiati
Hoxcis—regulatory mechanisms. The simulation ngrO\N‘th is not necessar"y equa| to the rate at Wwhic
successful in reproducing key features of the Wiite  consumes the prey. There is another rule to represe
pattern of gene expression amusilico experiments the natural death of the predators which is an
yield results similar to that ofn vivo experiments. exponential decay. Hence the equation represests th
Besides that, Kierzelet al. (2001) had applied the change in the predator population as the growtthef

algorithm to simulation of LacZ gene expression anchredator population, minus natural death.
uncovered relationship between frequencies of

transcription and translation initiation on randomODE model of prey-predator: The prey-predator
fluctuations in gene expression. McAdams and Arkinequations are modeled by a pair of first order,-non
(1997) had also studied the transcript initiationd a linear, differential equations used to describe the
translation mechanism in the cellular regulatorydynamics of biological systems in which two species
network using the algorithm and concluded on séveranteract, the predator and the prey. It is moddted
behavior of stochastic gene expression mechanigms. differential equations (Robergsal., 2009) as:
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dx _ dy Each ligand induces the formation of a receptor
E“x(kl_kzy) anda——y(kg— k) complex with type | and type Il receptors, whicterth
signal through the channels. The capacity of most
Where: ligands to bin(_j several type I_and type Il recepiead
y = The number of some predator to a complex Ilgand-_recept(_)r interaction network.
X = The number of its prey TGF$ has particular interest in cancer research.

dy/dt and dx/dt = Represents the growth of the twoFOr instance, in gpithglial gellg, it suppre_ssele&
populations against time; t representsgrOWth. and_ Its Inactivation contributes to
the time in seconds tumourigenesis. The versatility pf t.he pathway in
Ky, ko, ks and k = Parameters representing the ehqtmg different types o_f behavior is perh_apsstbg
interaction of the two species epitomized by the pervasive, father paradoxicalitabi
of TGF$ to change its function from suppressor to

_ _ _ S promoter of growth in epithelial cells during tumor
The simulation using Scilab in Fig. 1 shows theprogression. It has been suggested that BGfan

oscillations of the prey-predator model simetht suppress the growth of cells around the tumor, ithat
by ODE for 60 sec for x = 200 and y = 8@ith can shut down locally the immune system and that it

kinetic constantsk 1, k = 0.01, k = 0.05 and k=  can promote angiogenesis. All these paracrine tsffec
0.005. This result established the oscillation béhveof ~ would help the growth of the tumar vivo, where it has
prey-predator model. to compete with neighboring cells.

Signal processing in the ligand-receptor network of ODE model of ligand-receptor network of TGF-p:
TGF-p: Transforming Growth Factor Beta (TG The model intends to study the signal processing

: . 9 . . (_ Gris a potential of the ligand-receptor network and reoept
type of protein that functions in cells (Villat al., i aticking (villar et al., 2006). The essential elements
2006). In signal transduction some cells secret&-BG

of this model are: Ligands induce the formation of
and also generate receptors for TEFThe TGFB  receptor complexes with type | and type Il recegtor

signal transduction pathway plays a central role ilReceptors and ligand-receptor complexes can be
tissue homeostasis and morphogenesis. It transducesyresent in two spatially distinct compartments:shia
variety of extracellular signals into intracellular membrane and internalized endosomes; The signaling
transcriptional responses that control the excesfes activity is proportional to the number of ligandseptor
cellular processes such as cell growth, migrationcomplexes that are present in the internalized
adhesion, apoptosis and differentiation. At theendosomes; Receptors and ligand-receptor complexes
molecular level, complex signal transduction maehin are continuously internalized into endosomes and
integrates signals from the 42 known ligands of therecycled back to the plasma membrane; Receptor
TGF{ superfamily of proteins. The elements of thisdegradation has a constitutive contribution, whcthe
machinery incorporate the members of the two mairgame for free receptors and ligand-receptor conagtex
receptor families called type | and typgekteptors_ Receptor degradation has aligand-induced Contdbut
which affects only receptors that have been congalex

e with ligands.
S00 ) i i 0 f 1 In this model the concentration of ligand is dexdot
130! A f'] | | II Ii ﬁl by []. The numbers of type | and type Il recepsord
gz 104\ |\ ) [ |' \5 Mo I ligand-receptor complexes in the plasma membrage ar
3 14@-_,'\ \ | I". (A |'| |'1l Vo I". | |')\ | / |"| represented by [RI], [RII] and [IRIRII]. The numiseof
& 12041} ' '

. |
I L |' Iu 5.5 f ” | |||I ik }. I internalized type | and type Il receptor and ligand
) | | | \

1001 L\ ARVEARVALRYARYAAR [ receptor complexes in endosomes is represented by
EE: ". "\U' l'\ “'\;L_.;a \ }’I,I | I\‘r'i,-"ll \ h‘{, ) I". '\.#.L’,-" \ [RI], [RII] and [IRIRII] . The other parameters arg:i&
P VARV AR VAR VAGE VASEL VA the rate constant of ligand-receptor complex foiomat
20 pr and g, are the rates of receptor production;
0 10 20 30 50 60 ke and kg are the internalization, recycling,
L constitutive degradation and ligand-induced

degradation rate constants;is the fraction of active
Fig. 1: Oscillation of the prey-predator model siated  receptors that are recycled back to the plasma
by ODE membrane and can interact again with lipand.
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Fig. 2: Simulation of ODE model of TGfF{Villar et al., 2006)

The ODE model of signal processing in the TBIE-
represented as:

%[IRIRII] =k [NIRMNRIN & ¥ . %)[IRIRI]

%{RI] =pq ~kJIRIRI] 4k )R] «[RI] +
ak [IRIRII]

%[RII] =P ~KJNRIRI] £k, K)[RI] +
k [RII] + ok [IRIRII]

%[WRH] =k [IRIRII] « [IRIRII ]

SR =k [RI K [RI

d . _ N
SR =k[RI & [Ril

The signaling activity of the pathway is assuned t
be proportional to the number of internalized lidan
receptor complexegJRIRII] . The ODE model used to
analyze how different parameters affect the behlasfio
the system: Fig. 2a shows behavior of the model for
typical trafficking rates (k= 1/3, k= 1/30, kqy= 1/36,
kig= 14, k=1,a =1, jx = 1/8, g = 1/4); Fig. 2b-e
show the behavior of the model with same parameter
values as in 2(a), with the exception of : 2(h)HK/10,

k; = 1/100), 2(c) (k= 1, k= 1/10), 2(d) (lxw=0,a =
0.5) and 2(e) = 0.5). The results are analyzed and
described in detail in the Villaat al. (2006) research.

MATERIALSAND METHODS

Reactions and parameters. The two biological case
studies are taken from research (Jones and Sleeman,
2003; Villaret al., 2006) in which both case studies are
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modeled by using ODE approach. For each case studgompartments and the structural hierarchy and the

the objects, reactions and parameters involvechén t initial amounts of the objects from the SBML nodais.

biological processes are extracted from the ODEahod This is the initial state of the system and is gite the
simulator to produce an evolution of the objectgrov

Kinetic constants and initial multisets: The selection simulation steps. The membrane computing simulation

of initial multisets and the kinetic constants egquired  results using Gillespie algorithm are comparedhe t

to determine the computation in membrane computingesults of ODE approach.

model. This basically is an attempt to gain similar

simulation result as achieved with the ODE model of RESULTS

the biological system to subsequently analyze wdreth

membrane computing model could preserve theMembrane computing model of prey-predator

biological characteristics of the biological systbetter  population: A model for prey-predator population is

than the ODE model. The initial multisets and kimet obtained by considering a membrane computing with a

constants extracted from the ODE model are taken aompartment contains rules describing the reactions

initial test cases with Gillespie simulator. Thdéregde between preys and predators. The Prey-Predatoelmod

test cases are altered accordingly to determine th@P) is represented as:

appropriate multisets and kinetic constants for

membrane computing model. The kinetic constants for PP= (VU w,R)
membrane computing model of prey-predator
population are determined through simulation testis The objects are preys and predators represented as

Gillespie simulator. The best kinetic constants arex and Y respectively. They are:
chosen when the oscillation of prey-predator papuia

is obtained. The chosen kinetic constants forkk ks V ={X, Y}
are 10, 0.02 and 15, respectively, when the initial

numbers of preys and predators are fixed at 10@0 an  The initial multisets are:
200, respectively. The kinetic constants for meméra

computing model of TGB-are similar to that of the w={nX,mv}
ODE model except for the constant of ligand-recepto
complex formation rate (k and for ligand-induced
degradation rate (§. k, is adjusted from 1-0.01 to

accommodate the ligand concentrations changes fro%le to perform transformation of objects. Therefor

3x107° to 0.01 at time 0. ;K which should be 0 in the - .
ODE model are adjusted to 0.01 in the membranéhe ransformation rule has the forRr[u]0t-[v],

computing model to obtain peak activity of IRIRH i Where u, v are multisets in a compartment. k iga r

endosomes. The initial concentrations of Rl andiRlII ?ungntrtigr?z:tZ ngfnrgeact:rt]i?)n ltjg]ti\::encc?t?ztcigt, which
the plasma membrane are selected through simulatidfP . JECtS.
The prey-predator population dynamics can be

test. The initial concentration for both Rl and Ril described By a simole set  of  rewriting  sule
plasma membranes is fixed at 1130 units. Thealniti (Manca 2008);' P 9
concentration of IRIRIl in endosomes is similarthe ’ :
ODE model and it is 40 units.

where, n and m are integer multiplicities.
Since the system has single compartment, it only

R1:[X]0f-[X, X]
Modeling: The objects, reactions and parametersgo.[x yjofa-[y,Y]
extracted from ODE model for the case studies aeelu ) f
in modeling them wusing membrane computing R3:[YIDE-[
formalism (Muniyandi and Abdullah, 2009).

R1, R2 and R3 are prey reproduction, predator

Simulation: Multicompartment Gillespie simulator in reproduction and predator death rules, respectively
C (Romero-Campero and Gheorghe, 2007) is used to
simulate the membrane computing model. Firstlg, th Membrane computing model of ligand-receptor
membrane computing model is converted into Systenuetwork of TGF-: Ligand-Receptor network of TGF-
Biology Markup Language (SBML) notations which B is two compartments system with 5 objects and 14
describe the components of the biological systemrules. The membrane system of Ligand Receptor
Then, the simulator will specify the list of Network of TGFB (LRN) can be represented as:
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LRN = (V, 1,0, @, R, Re) RI synthesis:
The system contains two compartments that are Rp5i[D3]PD—>[D1,R]P

Plasma membrane (P) and Endosome (E). Therefore its
membrane structure can be represented as:

H=[0d,

RI constitutive degradation:

R.6:[RI,0%-] ],
The objects are receptors and complex of ligand
and receptors. They are Receptor type | (RI), Recep R| internalization:
type Il (RIl) and ligand TGH. The ligand TGH , 7
formed complex with the receptors called ligand Ro7:RI[ |00~ [RI
receptors complex (IRIRII). Two objects, D1 and D2 .
are introduced to accommodate rules that produce RR! recycling:
and RIl respectively. The roles of these objects ar
merely to determine the continuous production obéh R1[ R, 0%~ RI[ |
receptors. Therefore the objects can be listedlfsaf:
V ={RLRILIRIRIL DL, D2} Ligand Receptor complex recycling:

The initial multisets are: Re2 :[lRlR”]E ot~ 'RIR”[ ]E

o, ={RI,RII,D1,D2} and w. ={IRIRI} R.8:[IRIRII|, O - [RI,RII]
The evolution rule has the form: RIl synthesis:
R, 1uv], 0 ulv], R,9:[DJ, 08 [D2,RI],
Where: _ _ RII constitutive degradation:
u,v,u,v = Multisets and a is compartment
k = A real number representing the Kkinetic

constant R.10 RN, O[],

There are transformation as well as communicatiorRlIl internalization:
rules in LRN system. The rules used in the LRN are:

. . R.IL:RI[ | O\ [RI
Ligand receptor complex formation: P [ ]E [ ]E

R.L: RLRII, O~ [IRIRII], Rl recycling:
Ligand receptor complex constitutive degradation: Re3:[RIJ ORI ]
Re2:[IRIRI], O[], Simulation of prey-predator population: The PP
model of membrane computing is simulated with
Ligand independent complex degradation: Gillespie simulator. Firstly, the information abothie
kinetic constants, initial objects in the populatiand
R 3:[IRIRII], O’ ] the rules represented in the model are extractem in
) P P

files respectively. The kinetic constants are oigdiby
considering the role of each rule in the system itad
contribution to Gillespie algorithm. The kinetic
constants k k,, ks are adjusted to 10, 0.02 and 15,
Re4:IRIRI[ | O~ [IRIRN] respectively. The initial multiset s = {1000X, 200Y}.
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Simulation of TGF-B: Membrane computing modef
TGF is evaluated by using Gillespie algorithm. This
experiment intended to analyze how different
parameters affect the behavior of the TBEystem by
using multi-compartment Gillespie simulator. The
signaling activity will peak or stop rising at carn
steps according to the changes in the parameiEns.
parameters are extracted from the mathematical Inode
build by Villar et al. (2006). The chosen initial
multisets arewr = {1130RI, 1 130RIl, 1D1, 1D2}
andw: = {401RIRII}.

Figure 4 shows the behavior of the model for
typical trafficking rates. In this model, interradtion
rate (K) represented by,kk; and ks, is 1/3; recycling
rate (k) represented bygk kg, kig and ky is 1/30;
constitutive degradation rate.gkrepresented by,kkg
and k, is 1/36; ligand-induced degradation ratgyXk
represented byskis 1/4; complex formation rate jk
represented by, ks 0.01; synthesis rategpand ;) for
ks and k; is 8 and 4, respectively. The efficiency of
recycling of active receptors rate,is 1. The results
show that signaling activity is peaking when the
concentration of IRIRIl in Endosome is around 500.

When the rate constants for internalization and
recycling are decreased to 1/10 and 1/100 resmdygtiv
the peak of signaling activity is also desed as
shown in Fig. 5. The concentration of IRIRII in
Endosome is around 300. Meanwhile, when rate
constants for internalization and recycling areéased
to 1 and 1/10, respectively, the peak of signaling
activity is also increased as shown in Fig. 6. The
concentration of IRIRIl in Endosome is around 600.

The simulation in Fig. 7 and 8 show the behavior

The simulation in Fig. 3 shows the oscillations of of the model when the efficiency of recycling otiae

the prey-predator model
algorithm for 100000 simulation steps.

preys and predators in prey-predator model

simulated by Gillespiereceptors rate is decreased to 0.5. Figure 7 shioats

This resultwhen ligand-induced degradation rate is decreaged t
generated the oscillation behavior for the number 00.01, the signaling activity is peaking when the

concentration of IRIRIl in Endosome is arourtiD8
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800 A the ratio of initial objects is two predators tedfipreys,
700 f//‘ H\\“\A\,_Hm takes around 10 units time to complete a cyclehan t
600 7 f‘ e oscillation. Meanwhile, the Gillespie simulationtlvia

5 3007 / ratio of initial objects is one predator to fiveegs takes

£ 4007 / 15000 steps to complete a similar cycle. This show

= 3004 / that in the ODE approach, the large ratio in th& ofi
200 / objects in the reaction and the deterministic fiestu
1o/ make the reactions fast. And in the Gillespie satiah,

0

more time are needed to measure the weight of each
reaction based on the ratio in the mix of objects

2000
3000
[RILH]
G000
FO00
w00
Quon

A000
WAIRINN

Steps ' subsequently choose the appropriate reaction at eac
time step.
Fig. 7: Behavior of the model when rate constaats f The simulation results of membrane computing

ligand-induced degradation and efficiency of model of TGFB are compared to the simulation results
recycling of active receptors are decreased of ODE model generated by Villat al. (2006). The
simulation of (a), (b), (c), (d) and (e) in Fig. &e

300 3 ~ compared to the simulation of membrane computing
400 ] f -\\\ model in Fig. 4-8, respectively. The results shbat
= ] / . approximately similar simulation results of ODE rabd
£ 3003 S could also be obtained using membrane computing
= 200] ,/ “‘"wm_ﬂh model. The peak reached in the membrane computing
100 / T model is almost similar to the ODE model. However,
1/ since objects are modeled as a global entity irCtbé&
ol model, the concentration of objects in each of the
= £ £ 2 2 2 2 2 2 2 E compartments could not be verified. On the contrary
= &« = F & 28 g 8 8 the membrane computing model could determine the

Steps movement of objects from one compartment to another
and with this the changes of concentration of dbjét
the specific compartments at each time step can be
measured. Meanwhile, the ODE simulation takes
Meanwhile, with the same ligand-induced degradatiorround 200 time units to reach a peak and the <pite
rate as in F|g 4, the Signa"ng activity is pe@(mhen simulation takes around 2500 steps to reach thiasim
the concentration of IRIRII in Endosome is arouf®5 Peak with same initial concentration of IRIRIh
Endosome. This shows that more time needed totselec
DISCUSSION a reaction in the stochastic approach at each siee
In the membrane computing model the numbers of
The investigations above demonstrates that, the P#mulation steps are almost similar to each of the
model that described using differential equatisreble ~ investigation and it could not be adjusted as en@DE
to be formalized in membrane computing and thismodel due to the limitations of Gillespie simulator
formalism could be used to produce similar resultswhich could not accommodate event objects. Event
This shows that Gillespie simulation strategy atdle Objects trigger the state changes in model when a
confine the membrane computing formalism that use@pecific event or condition is invoked. In this regd
to represent the dynamics of prey-predator pomﬂati Ilgand can be considered as the event object ichwhi
Differential equations in PP are used to modeltikse the event at time O should change the ligand
of the reactions of two species. It would continslgu concentration from 810° to 0.01. However this
vary the concentration of species in deterministicelement is not accommodated in the Gillespie sitoula
dynamics. In contrast, membrane computing takes intand due to this limitation the ligand concentratien
consideration the discrete character of the quawtit fixed at 0.01 at all the time.
species in PP system by using rewriting rules. The
inherent randomness in PP system is captured Img usi CONCLUSION
stochastic simulation strategy of Gillespie alduorit
Nevertheless, there are differences in performance The experiments above show that Gillespie
between these approaches. The ODE simulation withlgorithm can capture the stochastic charactesisiic
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Fig. 8: Behavior of the model when recycling ofieet
receptors is decreased
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In the both case studies, the simulation of menwran  2002. Towards an electronic implementation of
computing model with Gillespie algorithm is able to membrane computing: A formal description of
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the membrane computing model is capable of Lecture Notes Comput. Sci., 2340: 350-359. DOI:
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systems. This is not the case with the ODE which i€iobanu, G. and D. Paraschiv, 2002. Membrane
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of biological system can be represented in a betssr Inform., 49: 61-66.
by using membrane computing model in order to be  http:/psystems.disco.unimib.it/procwmc01/CIOBA
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model. Nonetheless, due to the stochastic chaistiter Perez-Jimenez and F. Sancho-Caparrini, 2004. A
of membrane computing model, more time is required Prqlog simulator for deterministic P systems with
to complete the simulation with membrane computing ggtglv?jg]-eT(?rlaon(?;.aggg\(l)siezgé Comput., 22: 349-
model as shown by prey-predator population. .. o e .

. : 7 : . Gillespie, D.T., 2001. Approximate accelerated
Meanwhile, the investigation of hierarchical systefn ; . . ; .
two compartments in protein TGF-shows the stochastic simulation of chemically reacting

: ) systems. J. Chem. Phys., 115: 1716-1733.
membrane computing model preserve the element and y y

o . . S http://users.soe.ucsc.edu/~msmangel/Gillespie01.pdf
characteristics of hierarchical system which isoigu Gillespie, D.T., 2003. Improved leap-size selection

in the ODE model. In order to reduce the computatio  gccelerated stochastic simulation. J. Chem. Phys.,
time in the simulation of membrane computing model  119: 8229-8234.
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the simulator to increase its performance should be  0ld03.pdf
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unable to capture features like event handling has Equations and Mathematical Biology. Chapman
contributed to the inability to accommodate therg\as and Hall/lCRC Press, London, UK.,

required by TGH. This is because the Gillespie ISBN: 9781420083576, pp: 183.
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