
Journal of Computer Science 6 (5): 519-524, 2010
ISSN 1549-3636
© 2010 Science Publications

519

Methods of Fast Exponentiation

Mohammed Al-Maitah

Department of Computer Science, Alriadh Community College,
King Saud University, Saudi Arabia

Abstract: Problem statement: Modular exponentiation constitutes the basis of many well-known and
widely used public key cryptosystems. Approach: A fast portable modular exponentiation algorithm
considerably enhanced the speed and applicability of these systems, also an efficient implementation of
this algorithm was the key to high performance of such system. Results: In this study, two main
approaches for solving this problem were proposed. The proposed approaches involved calculations
without usage of extra operational memory for saving constants and calculations with usage of
preliminary calculated constants. Conclusion/Recommendations: The estimation of complexity of the
speedup and effectiveness of proposed approaches for the data were presented.

 Key words: Exponentiation, extra operational memory, consistent calculation, Fibonacci calculus

INTRODUCTION

 Protection of information is one of the most
important and complicated problems in computer
equipment. Specialists face the task of creation of
systems for transmission of information, which would
maintain the high level of protection and security.
 Nowadays the speediest systems of confidential
information transmission are the systems with open
keys. The majority of these systems use operation of
modular exponentiation xy mod z as basic for great
numbers (Diffie and Hellman, 1976). The performance
of given operation requires high expenses of machinery
time. That is why the necessarily of this procedure
optimization raises. The given problem can be decided
with the help of fastening of exponentiation operation
performance for numbers of high digit capacity.
 There two main approaches solving this problem to
be underlined: the calculation without usage of extra
operational memory for saving of constants and
calculation with usage of preliminary calculated
constants, which will be saved in memory location. The
purpose of the work is investigation of exactly these
methods of exponentiation.

MATERIALS AND METHODS

Calculation without usage of extra operational
memory for saving of constants: In systems of
calculus with alphabet {0, 1} numbers are given in such
way:

n 1

i i
i 0

N a w
−

=

= ⋅∑ (1)

 From this we have:

n 1

i i
i 0 i i

n 1a w
a wN

i 0

x x x

−

=

−

=

∑
= = ∏ (2)

 For binary calculus the expression (2) takes the
form of:

i
i

n 1
a 2N

i 0

x x
−

⋅

=

= ∏ (3)

 With the help of Horner’s method the formula (3)
can be represented by means of the following
expression:

 n 3 0n 1 n 2 1a aa a aN 2 2 2 2x (...(((x) x) x) ... x) x−− −= ⋅ ⋅ ⋅ ⋅ ⋅ (4)

 The expression (4) is basis for description of the
“binary” method of quick exponentiation (Knuth, 1981)
resulting in the fact that the process of exponentiation
for the numbers represented in binary calculus comes to
execution of the following calculations:

2
i 1 n i

i 2
i 1 n i

R , if a 0;
R

R x, if a 1
− −

− −

 == 
⋅ =

where, Ri-intermediate result; i = 1, 2 …n.
 The number of multiplication operations nm
required for the realization of the exponentiation can be
calculated according to the formula:

J. Computer Sci., 6 (5): 519-524, 2010

520

m 1n n n= + (5)

Where:
n = Number of digits in representation of the number
n1 = Number of units in the code

 As the formula (5) shows, the number of
multiplication operations depends on the code capacity
and probability of occurrence of a unity in site. There
are two methods to reduce the number of units in code:
by means of representation of numbers in calculus’s
with alphabet {0, 1, -1} or in redundant calculus's with
alphabet {0, 1}, namely in Fibonacci Calculus (FC). At
usage of the first method because of the presence of
code digit Fig. 1 the necessity of execution of division
operation, which requires high time spending (Knuth,
1981). That is why representation of numbers in FC is
more reasonable.
 Any natural number in FC is represented as the
following (Stakhov and Luzhetsky, 1981):

n 1 p n 2 p 0 pN a (n 1) a (n 2) ... a (0)− −= ϕ − + ϕ − + + ϕ

Where:

p

p p

0, if n 0,

(n) 1, if n 0,

(n 1) (n p 1), if n 0

 <
ϕ = =
ϕ − + ϕ − − >

 p = 1, 2, 3…

 Hence expression takes on the following form:

i pi i

n 1 n 1
a (i)a wN

i 0 i 0

x x x
− −

ϕ

= =

= =∏ ∏

 Process of exponentiation for numbers represented
in FC comes to execution of the following calculations:

i p 1R + + = i i p n p i

i i p n p i

R R , if a 0;

R R x, if a 1
+ − −

+ − −

⋅ =
 ⋅ ⋅ =

Fig. 1: Diagram of dependence of the number of

multiplication operations upon the value of
frame of calculus s

 Reduction of probability of occurrence of unity in
code leads to the increase of digit capacity of the code.
For calculus with alphabet {0, 1} in equation is valid:

i

i i l
l 1

w w 1−
=

≤ +∑

 Let:

i

i i l
l 1

w w 1−
=

= +∑

 Then according to expression (2):

()
i

i i l
l 1

a w 1n 1
N

1
i 0

x x
−

=

 
 +−
 
 

=

∑
= ∏

 Let:

i

i i l
l 1

w w 1−
=

< +∑

 Then:

()
i

i i l
l 1

a w 1 rn 1
N

2
i 0

x x
−

=

 
 + −−
 
 

=

∑
= ∏

 If the number of digits n for representation of
number N is same for different Calculus’s, than the
following in equation is valid:

() ()N N

2 1
x x<

 So, for maintenance of minimal number of
multiplications it is reasonable to represent data in the
calculus, for which the following equation is valid:

i

i i l
l 1

w w 1−
=

= +∑

i.e., in binary calculus.
 It is known that consistent calculation character is a
principal lack of Horner’s method. That is why for
parallelization of calculations let us represent the other
method of quick exponentiation described as follows:

() ii i
i

n 1 n 1 a
a 2N 2

i 0 i 0

x x x
− −

= =

= =∏ ∏

J. Computer Sci., 6 (5): 519-524, 2010

521

 So, the process of exponentiation comes to
execution of the following calculations:

iR =
2
i 1 n i

2 2
i l i -1 n i

R , if a 0;

R R , if a 1
− −

− −

 =


⋅ =
 (6)

 According to expression (6) the number should be
exponentiated in correspondence with the weights of
code digits and the results with value of figure of code
site equal unity should be multiplied. Peculiarity of this
method for parallel calculation character lies in the fact
that the number of units in code does not influence the
duration of exponentiating process, as multiplication of
grades occurs simultaneously with the formation of x2i
dependently on values ai. In other words, the number of
multiplication equals to the number of digits of binary
code of a figure. The speedup S and effectiveness E of
the given algorithm in consideration with «binary» is
calculated according to the formulas:

seq.
par.

par.

Т
S

Т
=

Where:
Tseq. = Time of fulfillment of sequential algorithm
 Tper. = Time of fulfillment of parallel algorithm:

par.
par.

S
E

m
=

where, m-number of processors.
 So, taking into account the expression (5) speedup
of parallel algorithm equals to:

1
par.

n n 1.5n
S 1.5

n n

+= = =

 As far as it is necessary to have 2 processors for the
fulfillment of parallel algorithm, its effectiveness
amounts to:

par.
par.

S
E 0.75

2
= =

Calculation with usage of previously calculated
constants: At usage of certain methods information
transfer with open keys, where the calculation of value
xy mod z, specifically in Diffie-Helman’s method,
values x and z are considered as constants. It is also
necessary to admit that relative cost of memory is
considerably lower than relative cost of processor. That

is why at fulfillment of operation of exponentiation it is
necessary to use method of calculation with
implementation of previously calculated constants

i ia wx , which will be saved in memory and skimmed if
necessary. So, average number of operations of
multiplication that are of sequential character will equal
to the number of nonzero values in code digits.
 Let us estimate the ratio of average number of
operations of multiplication for figures represented in
different Calculus’s.
 For Calculus’s with frame S = 2t, where t-whole
positive figure, number of operations of multiplication
in case of sequential fulfillment of operation of
exponentiation is calculated according to the formula:

] [] [

m s s s

2 2

n n w n (1 1 s)

n (s 1) n
(1 1 s)

log s s log s

= ⋅ = ⋅ − =
− ⋅= ⋅ − =

⋅

Where:
ns = Number of digits for representation of number in

calculus with frame s
ws = Probability of occurrence of nonzero value in i-

digit of code
n = Number of digits in binary code of figure

 Analysis of diagram of dependence of the number
of multiplication operations upon the value of frame of
calculus s (Fig. 1) shows that representation of data in
calculus’s of frame s = 4.16 has the highest advantage
in number of operations.
 For parallel process the fulfillment of
exponentiation operation under the method of
logarithmic summability for figures represented in
calculus’s with frame s = 2t the number of
multiplication operations is determined according to the
formula:

m.par. 2 sn log n=

 As far as at fulfillment of exponentiation operation
only nonzero values are taken into account, the number
of operations can be calculated with the help of the
following expression:

m.par. 2 s s 2 m.seq.n log n w log n= ⋅ =

 Diagram of dependence of the number of
multiplication operations upon the value of frame s at
use of parallel algorithm is shown on Fig. 2.
 In this case speedup of parallel algorithm equals to:

m.seq.
par.

2 m.seq.

n
S

log n
=

J. Computer Sci., 6 (5): 519-524, 2010

522

Fig. 2: Diagram of dependence of the number of

multiplication operations upon the value of
frame s at use of parallel algorithm

Fig. 3: Diagram of dependence of the number of

multiplication’s upon the value of p

 Is necessary to have (nsws-1) processors to carry
out the given algorithm. That is why its effectiveness
amounts to:

()
m.seq.

par.

m.seq. 2 m..seq

n
E

n 1 log n
=

−

 For FC average number of multiplication’s for
subsequent character of operation fulfillment is
calculated according to the formula:

m F Fn n w= ⋅

Where:
nF = Number of digits in Fibonacci code
wF = Probability of occurrence of the unity in code digit

Then:

2
F

2 p

n log k
n 1

log α

+= −

Where:

F p
p

1
w

k
=

⋅ α

k = Coefficient
αP = “golden” p-ration (Stakhov and Luzhetsky, 1981)

Table 1: The value of the coefficient k
p 0 1 2 3 4 5
k 2 2.2351 2.3979 2.5119 2.6363 2.6963

Table 2: The value of the coefficient αp
р 0 1 2 3 4 5

αp 2 1.618 1.63 1.381 1.325 1.287

Hence:

 2
m p

p 2 p

1 n log k
n 1

k log

 += −  ⋅ α α 
 (7)

 The values of the k and a are listed in the Table 1
and 2 correspondingly.
 On the basis of the expression (7) was created a
diagram of dependence between the average number
of the operations of multiplication and the value of p
(Fig. 3). The diagram analysis shows that fulfillment of
exponentiation over the data operation, represented in
FC, requires greater number of the operations than over
the data, represented in calculus systems with frame of
s = 2t.
 In case of using parallel algorithm the amount of
multiplication operations equals to:

m.par. 2 F F 2 m.seq.n log n w log n= ⋅ =

 Let’s estimate speedup and effectiveness of parallel
algorithm for the data represented in FC:

m.seq.
par.

2 m.seq.

n
S

log n
=

 In case of using ()F Fn w 1⋅ − processors the

effectiveness states:

m.seq.
par.

m.seq. 2 m.seq.

n
E

(n 1) log n
=

−

 Having analyzed the diagram of dependence of the
number of multiplication operations upon the value of p
and the value of speedup and effectiveness in case of
using parallel algorithm for data Fig. 4, represented in
FC, we may conclude the following: to provide the
minimum amount of multiplication operations and to
provide the greater effectiveness of parallel algorithm
it's reasonable to represent the data in calculus systems
with frame of s = 2t.

J. Computer Sci., 6 (5): 519-524, 2010

523

Fig. 4: Diagram of dependence of the number of

multiplication operations upon the value of p
in case of usage of parallel algorithm

Fig. 5: Diagram of dependence of the number of cells

upon the value of s

Except the calculation of time expenses the weight
meaning has the memory volume, necessary for saving
constants. That’s why let’s evaluate the memory
expenses in the amount of cells for different calculus
systems.
 Diagram of dependence of the amount of cells to
save constants upon the value of s is shown on Fig. 5.
 The amount of cells for saving constants at
representing data in calculus systems with frame of s
we can be calculated according to the following
formula:

] [cel s
2

n
n (s 1) n (s 1)

log s
= − ⋅ = − ⋅

 Digit capacity of code of a figure represented in FC
is RF times as much as the digit capacity of binary code
(Stakhov and Luzhetsky, 1981):

F Fn n R= ⋅

where for Fn → ∞ :

F
2 p

1
R 1

log
= +

α

Fig. 6: Diagram of dependence of amount of memory

cells upon p parameter

 Considering that fact we have diagram of
dependence of amount of memory cells upon the p
parameter (Fig. 6).
 Comparative analysis of diagrams of dependence
(Fig. 5 and 6) shows that the fulfillment of
exponentiation operation in case of representation of
figure in FC requires the less amount of memory cells,
than in case of representation of figures in calculus’s
with frame of s = 2t.

RESULTS AND DISCUSSION

• Diagram of dependence of the number of

multiplication operations upon the value of frame
of calculus s has the highest advantage in number
of operations

• Parallel algorithm with frame of s=2t provides the
minimum amount of multiplication operations and
provides the greater effectiveness

• Fulfillment of exponentiation operation in case of
representation of figure in FC requires the less
amount of memory cells, than in case of
representation of figures in calculus’s with frame
of s = 2t

CONCLUSION

• Exponentiation of figures with high digit capacity

without use of extra random-access memory for
storage of constants with minimum number of
operations supports representation of figures in
binary calculus

• Exponentiation of figures with high digit capacity
with use of previously calculated constants is
carried out with minimum number of operations
with the highest effectiveness in case of
representation of figures in calculus's with frame of
s = 2t and representation of figures in FC requires
the least memory volume

J. Computer Sci., 6 (5): 519-524, 2010

524

REFERENCES

Diffie, W. and M.E. Hellman, 1976. New directions in
cryptography.
http://www.cs.rutgers.edu/~tdnguyen/classes/cs671
/presentations/Arvind-NEWDIRS.pdf

Knuth, D.E., 1981. The Art of Computer Programming:
Seminumerical Algorithm. Addison-Wesley, pp: 2.

Stakhov, A.P. and V.A. Luzhetsky, 1981. Machine
arithmetic of digital computers in Fibonacci codes
and golden proportion. Scientific Council of
Academy of Science of the USSR on Complex
Problem. Cybernetics, pp: 64.

