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Abstract: Problem statement: Modular exponentiation constitutes the basis of many well-known and 
widely used public key cryptosystems. Approach: A fast portable modular exponentiation algorithm 
considerably enhanced the speed and applicability of these systems, also an efficient implementation of 
this algorithm was the key to high performance of such system. Results: In this study, two main 
approaches for solving this problem were proposed. The proposed approaches involved calculations 
without usage of extra operational memory for saving constants and calculations with usage of 
preliminary calculated constants. Conclusion/Recommendations: The estimation of complexity of the 
speedup and effectiveness of proposed approaches for the data were presented. 
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INTRODUCTION 

 
 Protection of information is one of the most 
important and complicated problems in computer 
equipment. Specialists face the task of creation of 
systems for transmission of information, which would 
maintain the high level of protection and security. 
 Nowadays the speediest systems of confidential 
information transmission are the systems with open 
keys. The majority of these systems use operation of 
modular exponentiation xy mod z as basic for great 
numbers (Diffie and Hellman, 1976). The performance 
of given operation requires high expenses of machinery 
time. That is why the necessarily of this procedure 
optimization raises. The given problem can be decided 
with the help of fastening of exponentiation operation 
performance for numbers of high digit capacity. 
 There two main approaches solving this problem to 
be underlined: the calculation without usage of extra 
operational memory for saving of constants and 
calculation with usage of preliminary calculated 
constants, which will be saved in memory location. The 
purpose of the work is investigation of exactly these 
methods of exponentiation. 
 

MATERIALS AND METHODS 
 
Calculation without usage of extra operational 
memory for saving of constants: In systems of 
calculus with alphabet {0, 1} numbers are given in such 
way: 
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 From this we have: 
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 For binary calculus the expression (2) takes the 
form of: 
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 With the help of Horner’s method the formula (3) 
can be represented by means of the following 
expression: 
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 The expression (4) is basis for description of the 
“binary” method of quick exponentiation (Knuth, 1981) 
resulting in the fact that the process of exponentiation 
for the numbers represented in binary calculus comes to 
execution of the following calculations: 
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where, Ri-intermediate result; i = 1, 2 …n. 
 The number of multiplication operations nm 
required for the realization of the exponentiation can be 
calculated according to the formula: 
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m 1n n n= +   (5) 
 
Where: 
n = Number of digits in representation of the number 
n1 = Number of units in the code 
 
 As the formula (5) shows, the number of 
multiplication operations depends on the code capacity 
and probability of occurrence of a unity in site. There 
are two methods to reduce the number of units in code: 
by means  of  representation  of  numbers  in  calculus’s  
with alphabet {0, 1, -1} or in redundant calculus's with 
alphabet {0, 1}, namely in Fibonacci Calculus (FC).  At 
usage of the first method because of the presence of 
code digit Fig. 1 the necessity of execution of division 
operation, which requires high time spending (Knuth, 
1981). That is why representation of numbers in FC is 
more reasonable. 
 Any natural number in FC is represented as the 
following (Stakhov and Luzhetsky, 1981): 
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 p = 1, 2, 3… 
 
 Hence expression takes on the following form: 
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 Process of exponentiation for numbers represented 
in FC comes to execution of the following calculations: 
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Fig. 1: Diagram of dependence of the number of 

multiplication operations upon the value of 
frame of calculus s 

 Reduction of probability of occurrence of unity in 
code leads to the increase of digit capacity of the code. 
For calculus with alphabet {0, 1} in equation is valid: 
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 Let: 
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 If the number of digits n for representation of 
number N is same for different Calculus’s, than the 
following in equation is valid: 
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 So, for maintenance of minimal number of 
multiplications it is reasonable to represent data in the 
calculus, for which the following equation is valid: 
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i.e., in binary calculus. 
 It is known that consistent calculation character is a 
principal lack of Horner’s method. That is why for 
parallelization of calculations let us represent the other 
method of quick exponentiation described as follows: 
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 So, the process of exponentiation comes to 
execution of the following calculations: 
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 According to expression (6) the number should be 
exponentiated in correspondence with the weights of 
code digits and the results with value of figure of code 
site equal unity should be multiplied. Peculiarity of this 
method for parallel calculation character lies in the fact 
that the number of units in code does not influence the 
duration of exponentiating process, as multiplication of 
grades occurs simultaneously with the formation of x2i 
dependently on values ai. In other words, the number of 
multiplication equals to the number of digits of binary 
code of a figure. The speedup S and effectiveness E of 
the given algorithm in consideration with «binary» is 
calculated according to the formulas: 
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Where:  
Tseq. = Time of fulfillment of sequential algorithm 
 Tper. =  Time of fulfillment of parallel algorithm: 
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S
E

m
=  

 
where, m-number of processors. 
 So, taking into account the expression (5) speedup 
of parallel algorithm equals to: 
 

1
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 As far as it is necessary to have 2 processors for the 
fulfillment of parallel algorithm, its effectiveness 
amounts to: 
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Calculation with usage of previously calculated 
constants: At usage of certain methods information 
transfer with open keys, where the calculation of value 
xy mod z, specifically in Diffie-Helman’s method, 
values x and z are considered as constants. It is also 
necessary to admit that relative cost of memory is 
considerably lower than relative cost of processor. That 

is why at fulfillment of operation of exponentiation it is 
necessary to use method of calculation with 
implementation of previously calculated constants 

i ia wx , which will be saved in memory and skimmed if 
necessary. So, average number of operations of 
multiplication that are of sequential character will equal 
to the number of nonzero values in code digits. 
 Let us estimate the ratio of average number of 
operations of multiplication for figures represented in 
different Calculus’s. 
 For Calculus’s with frame S = 2t, where t-whole 
positive figure, number of operations of multiplication 
in case of sequential fulfillment of operation of 
exponentiation is calculated according to the formula: 
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Where:  
ns = Number of digits for representation of number in 

calculus with frame s 
ws = Probability of occurrence of nonzero value in i-

digit of code 
n = Number of digits in binary code of figure 
 
 Analysis of diagram of dependence of the number 
of multiplication operations upon the value of frame of 
calculus s (Fig. 1) shows that representation of data in 
calculus’s of frame s = 4.16 has the highest advantage 
in number of operations. 
 For parallel process the fulfillment of 
exponentiation operation under the method of 
logarithmic summability for figures represented in 
calculus’s with frame s = 2t the number of 
multiplication operations is determined according to the 
formula: 
 

m.par. 2 sn log n=  
 
 As far as at fulfillment of exponentiation operation 
only nonzero values are taken into account, the number 
of operations can be calculated with the help of the 
following expression: 
 

m.par. 2 s s 2 m.seq.n log n w log n= ⋅ =  
 
 Diagram of dependence of the number of 
multiplication operations upon the value of frame s at 
use of parallel algorithm is shown on Fig. 2. 
 In this case speedup of parallel algorithm equals to: 
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Fig. 2: Diagram of dependence of the number of 

multiplication operations upon the value of 
frame s at use of parallel algorithm 

 

 
 
Fig. 3: Diagram of dependence of the number of 

multiplication’s upon the value of p 
 
 Is necessary to have (nsws-1) processors to carry 
out the given algorithm. That is why its effectiveness 
amounts to: 
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 For FC average number of multiplication’s for 
subsequent character of operation fulfillment is 
calculated according to the formula: 
 

m F Fn n w= ⋅  
 
Where:  
nF  = Number of digits in Fibonacci code 
wF = Probability of occurrence of the unity in code digit 
 
Then:  
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Where: 

F p
p

1
w

k
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⋅ α
 

k = Coefficient 
αP = “golden” p-ration (Stakhov and Luzhetsky, 1981) 

Table 1: The value of the coefficient k 
p 0 1 2 3 4 5 
k 2 2.2351 2.3979 2.5119 2.6363 2.6963 
 
Table 2: The value of the coefficient αp 
р 0 1 2 3 4 5 

αp 2 1.618 1.63 1.381 1.325 1.287 
 
Hence: 
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 The values of the k and a are listed in the Table 1 
and 2 correspondingly. 
 On the basis of the expression (7) was created a 
diagram of dependence between the average number 
of the operations of multiplication and the value of p 
(Fig. 3). The diagram analysis shows that fulfillment of 
exponentiation over the data operation, represented in 
FC, requires greater number of the operations than over 
the data, represented in calculus systems with frame of 
s = 2t. 
 In case of using parallel algorithm the amount of 
multiplication operations equals to: 

 

m.par. 2 F F 2 m.seq.n log n w log n= ⋅ =  

 
 Let’s estimate speedup and effectiveness of parallel 
algorithm for the data represented in FC: 
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 In case of using ( )F Fn w 1⋅ −  processors the 

effectiveness states: 
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n
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 Having analyzed the diagram of dependence of the 
number of multiplication operations upon the value of p 
and the value of speedup and effectiveness in case of 
using parallel algorithm for data Fig. 4, represented in 
FC, we may conclude the following: to provide the 
minimum amount of multiplication operations and to 
provide the greater effectiveness of parallel algorithm 
it's reasonable to represent the data in calculus systems 
with frame of s = 2t. 
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Fig. 4: Diagram of dependence of the number of 

multiplication operations upon the value of p 
in case of usage of parallel algorithm 

 

 
 
Fig. 5: Diagram of dependence of the number of cells 

upon the value of s 
 
Except the calculation of time expenses the weight 
meaning has the memory volume, necessary for saving 
constants. That’s why let’s evaluate the memory 
expenses in the amount of cells for different calculus 
systems. 
 Diagram of dependence of the amount of cells to 
save constants upon the value of s is shown on Fig. 5. 
 The amount of cells for saving constants at 
representing data in calculus systems with frame of s 
we can be calculated according to the following 
formula: 
 

] [cel s
2

n
n (s 1) n (s 1)

log s
= − ⋅ = − ⋅  

 
 Digit capacity of code of a figure represented in FC 
is RF times as much as the digit capacity of binary code 
(Stakhov and Luzhetsky, 1981): 
 

F Fn n R= ⋅  
 
where for Fn → ∞ : 
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Fig. 6: Diagram of dependence of amount of memory 

cells upon p parameter 
 
 Considering that fact we have diagram of 
dependence of amount of memory cells upon the p 
parameter (Fig. 6).  
 Comparative analysis of diagrams of dependence 
(Fig. 5 and 6) shows that the fulfillment of 
exponentiation operation in case of representation of 
figure in FC requires the less amount of memory cells, 
than in case of representation of figures in calculus’s 
with frame of s = 2t. 
 

RESULTS AND DISCUSSION 
 
• Diagram of dependence of the number of 

multiplication operations upon the value of frame 
of calculus s has the highest advantage in number 
of operations 

• Parallel algorithm with frame of s=2t provides the 
minimum amount of multiplication operations and 
provides the greater effectiveness   

• Fulfillment of exponentiation operation in case of 
representation of figure in FC requires the less 
amount of memory cells, than in case of 
representation of figures in calculus’s with frame 
of s = 2t 

 
CONCLUSION 

 
• Exponentiation of figures with high digit capacity 

without use of extra random-access memory for 
storage of constants with minimum number of 
operations supports representation of figures in 
binary calculus 

• Exponentiation of figures with high digit capacity 
with use of previously calculated constants is 
carried out with minimum number of operations 
with the highest effectiveness in case of 
representation of figures in calculus's with frame of 
s = 2t and representation of figures in FC requires 
the least memory volume 
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