
Journal of Computer Science 6 (4): 406-412, 2010
ISSN 1549-3636
© 2010 Science Publications

406

Analyzing Performance and Power of Multicore Architecture

Using Multithreaded Iterative Solver

Ingyu Lee
Information System, Sorrell College of Business, Troy University, Troy, AL, USA 36081

Abstract: Problem statement: Scientific modeling and simulations have been popularly used with
experiments and theoretical analysis in science and engineering communities. Approach: Consequently,
computational demands are growing exponentially to afford large scale modeling and simulations.
Results: As a result, multicore computing architectures had been proposed and several products are
already available. However, we do not have a proper study on the performance, power and thermal
issues of real science and engineering problems because software, which takes advantage of multicore
architecture, is not available. Conclusion/Recommendations: In this study, we explored the
performance and power characteristics of scientific algorithms on multicore architectures using a
multithreaded version of sparse iterative linear solver, named mtCG, with real scientific application
problems.

Key words: Multicore architecture, performance, multithread, iterative solver

INTRODUCTION

 Computational modeling and simulations have been
popularly used in science and engineering community to
describe and understand complex phenomena instead of
expensive or dangerous experiments such as drug design,
global climate simulation, radiation simulation, crash
testing aerodynamics and combustion (Heath, 2002).
These modeling and simulations are usually represented
as Partial Differential Equations (PDEs) which require
meshes and sparse matrices. In these applications, we
could not achieve the peak performance since those mesh
and sparse matrix algorithms lack data reuse and locality.
 At the same time, high performance computing
community increases the number of transistors in a
given area to improve performance. The latter meets
physical limitation and generates new problems such as
power consumption and thermal issues. To overcome
these problems, multicourse architecture has been
proposed and several products are already available in
the market. However, we do not have a proper study on
performance, power and thermal issues on multicore
processors since the lack of scientific applications
which benefits from multicore architectures. Several
researches to characterize the performance of multicore
architecture have been done with multiprogramming or
loop level parallel benchmark programs (Jaleel et al.,
2006; Li et al., 2005; Manjikian, 2001).
 In this study, we profile the performance of
scientific applications using a cycle accurate simulator
to further understand the characteristics of

multithreaded program on multicore architecture. We
also explore the scalability, power and thermal issues
on multicore architectures with real scientific
application codes. Finally, we provide one variant of
scientific application benefits multicore architectures.
The latter could be used as a benchmark program in
computing architecture community.
 This study consists of the followings. We introduce
some background information about benchmark
programs and related researches. Then, we describe our
simulation environments and multithreaded iterative
solver. Experimental results of multithreaded iterative
solver on multicore architectures are following. Finally
some concluding remarks and future plans are
described.

Background: SPEC Corporation (2000) has been used
widely in computer architecture community to measure
the performance of newly developed computing
architectures. Several researches have been done with
SPEC to measure the performance of multicore
architecture (Li et al., 2005; Manjikian, 2001).
However, these benchmark programs only support a
single thread. Several single thread benchmark
programs are used together in experiments.
Consequently, the results are very close to
multiprogramming characteristics rather than
multithreaded program. Even with OpenMP version of
SPEC supports loop level parallelism which is different
with general multithreaded programs which have task
level parallelism.

J. Computer Sci., 6 (4): 406-412, 2010

407

 At the same time, NAS (Bailey et al., 1992) has
been used to represent the workloads of scientific and
engineering problems. NAS supports various versions
of benchmark programs such as serial, Message Passing
Interface (MPI), OpenMP and High Performance
Fortran (HPF). However, it does not support
multithread version of benchmark programs. The
reason based on the fact that NAS has been used
heavily to measure the performance of clustered
systems rather than a single processor machine.
 Splash-2 (Woo et al., 1995) has been used to
represent multithreaded workloads for Shared Memory
Processor (SMP) computers. In addition, it has real
scientific kernels, cholesky, fft and lu and real scientific
applications such as barnes-hut, fmm and water.
However, this benchmark programs use synthetic data
rather than real scientific application data. The behavior
and memory access patterns of the benchmark
programs with synthetic data are different with that of
the real scientific applications.
 There are several other benchmarks or variants of
the traditional benchmark such as MinneSPEC (Klein
Osowski and Lilja, 2002) which are developed to
reduce simulation time and BioBench
(Albayraktaroglu et al., 2005) which represents
bioinformatics workloads and its parallel version using
OpenMP (Jaleel et al., 2006) and MineBench
(Narayanan et al., 2006) which represents data mining
workloads on single and parallel machines.
 On the other hand, many research on characterizing
the performance, power and thermal of multicore
architectures have been done. Jaleel et al. (2006)
characterized the last level cache performance on Chip
Multi Processor (CMP) using OpenMP version of
Biobench. Li et al. (2005) characterized performance,
energy and thermal of Simultaneous Multi Thread
(SMT) and CMP with replicating single threaded
applications. Monchiero et al. (2006) explores the
design space for multicore architecture in performance,
power and thermal view using Splash-2 (Woo et al.,
1995) benchmark programs. However, present study is
the first contribution to characterize the multicore
architecture with real multithreaded scientific
applications in author’s awareness.

Multithreaded iterative solver: mtCG: The most
common algorithm in scientific modeling and
simulation is a sparse iterative solve such as Conjugate
Gradient (CG). Fig. 1 contains an outline of a generic
CG algorithm used in many applications. This CG
scheme uses standard data structures for storing the
sparse matrix A and vectors p,q,r. Only the nonzero of
sparse matrix A and its corresponding indices are

explicitly stored using a standard sparse format. The
vectors p, q and r are stored as one-dimensional arrays
in contiguous locations in memory. A single iteration
of CG requires one matrix-vector multiplication, two
vector inner products, three vector additions and two
floating point divisions. Among these operations, the
matrix-vector multiplication dominates the
computational cost accounting for more than 90% of
the overall execution time. Due to the sparse nature of
the matrix A, the number of floating point operations
per access to the main memory is relatively low
during matrix vector multiplication. Additionally, the
access pattern of the elements in the vector p depends
on the sparse structure of A.
 To provide a multithreaded version of CG
algorithm, we divided the matrix by row-wise as
shown in Fig. 2. Each thread multiplies row block of
matrix with the specific source vector members and
stores at the destination vector members. Since we do
not share the destination vector, this module has a
perfect parallelism. However, sparse matrix algorithm
could not benefit from cache as does in dense matrix
since it lacks data reuse and locality.
 The total operation time required for sparse
matrix multiplication is represented as:

Tsmv = (m*Tmul + (m1)*Tadd)*N/N thread + Tmem (1)

N = Size of the matrix
Nthread = Number of threads
m = Average nonzero values in a row
Tmem = Memory accessing time
Tmul and Tadd = Floating point operations

Fig. 1: The Conjugate Gradient (CG) scheme

J. Computer Sci., 6 (4): 406-412, 2010

408

 Memory access time, Tmem is determined by the
cache architecture inside a system. Assume we have
multicore architecture which has two levels of cache,
L1 and L2. L1 cache is dedicated cache for each core
and L2 cache is shared by all cores. Then, using formula
from (Jaleel et al., 2006, Hennessy and Patterson, 2003),
the memory access time is represented as:

Tmem = hitrateL1* TL1+missrateL1* penaltyL1 (2)

penaltyL1 = hitrateL2* TL2 + missrateL2* penaltyL2 (3)

hitrateL1 and hitrateL2 = Cache hit ratio
missrateL1 and missrateL2 = Cache miss ratio

TL1 and TL2 = Cache access time
penaltyL1 and penaltyL2 = Cache miss penalty

 Algorithm Fig. 2 shows that we need two vectors
which have length N and two other vectors which have
length nonzero. Then, without considering memory
prefetcher or cache replacing scheme, average
missrateL1 and missrateL2 is defined as:

missrateL1 = 2*(N + nonzero) / CacheLineL1 (4)

missrateL2 = 2*(N+nonzero)/(CacheLineL2/Nthread) (5)

CacheLineL1 and CacheLineL2 = Entries in cache
nonzero = Nonzero elements in

the matrix

Fig. 2: Multithread matrix vector multiplication

 Finally, hitrateL1 and hitrateL2 can be computed
from missrateL1 and missrateL2. Computing the exact
value of penaltyL2 is difficult in real computing
environment. However, even with a simple memory
prefetcher, the value is negligibly small in our
algorithm since it accesses memory in sequential
direction (Malkowski et al., 2005a; 2005b).
 Since, sparse matrix multiplication is one of those
embarrassingly parallel algorithm, we can define the
speed up as:

SpeedUp = Ts / Tp (6)

Ts = Single processor execution time
Tp = Execution time with p processors

 Considering, Tp for sparse matrix vector
multiplication is Ts/Nthread, we can achieve Nthread times
speed up in theory (Grama et al., 2002).

MATERIALS AND METHODS

 We used SESC (Renau et al., 2005), a cycle
accurate architecture simulator, which supports Chip
Multi Processor (CMP) and Simultaneous Multi
Threading (SMT) architecture. Each core is an out-of-
order superscalar processor with private L1 caches
(separated instruction and data cache) and a shared L2
cache (hybrid instruction and data cache). The details
of the parameters we used for SESC simulator are
described in Table 1. We used Wattch (Brooks et al.,
2000) to measure power usage on processor core and
Orion (Wang et al., 2002) to measure shared bus power
usage. Then, we applied Hotspot (Skadron et al., 2003)
to get thermal characteristics based on the results of
power consumption trace of SESC simulator. Since the
memory access pattern of artificially generated data set
is different with that of a real application, we used
bcsstk16 from MatrixMarket (Boisvert, 1997). The
latter is a sparse matrix generated from a real structure
analysis application and popularly used in a scientific
computation community.

Table 1: Simulation parameters
Parameters Description
Frequency 2 GHz
Machine 32 bits, 4/4/6 fetch/issues/retire
 ROB (126), intRegs (90), fpRegs (68)
L1 Icache 16*1024, 64, 2-way associative, hit latency (2)
L1 dcache 16*1024, 64, 4-way associative, hit latency (2)
L2 cache 1024*1024, 64, 8-way associative, hit latency (10)
 10 cycle hit latency
BTB 2048 entry, LRU policy
TLB 512 entry (D), 256 entry (I), LRU policy
Functional units 3 integer and 3 FP units
Cores 4 (0-3)
Shared bus width (64)
Memory BW 6G bytes/sec
Memory latency LRU, 64, 490 cycles

J. Computer Sci., 6 (4): 406-412, 2010

409

RESULTS

 Figure 3 shows our experimental results of mtCG
benchmark program using bcsstk16 as an input matrix.
Since the input matrix has regular nonzero pattern,
mtCG has good balance between cores by assigning the
same junk of rows to each thread. As a result,
Instruction Per Cycle (IPC) numbers are similar even
with different number of cores. In addition, we can
achieve linearly increasing speed up with an increasing
number of cores. Especially, L2 cache miss rates are
decreasing by adding more cores up to four cores. We
conjecture that the number of L2 accesses dramatically
decreases with eight cores since the data per core is
small enough to fit in L1 cache. Consequently, each
core uses a similar amount of power as shown in Fig. 3.
 In addition to the performance and power, the
temperature becomes an important factor in advanced
computing architectures. To better understand the
thermal characteristics, we traced the changes of
temperature during benchmark program executions
using Hotspot 3.0 (Skadron et al., 2003) based on the
floor plan as shown in Fig. 4a-c. The detail experimental
parameters related to thermal are shown in (Renau et al.,

2005). We investigated three multicore floorplans. The
first layout is spreading hot areas around the corner
and keeping L2 cache at the center. The second layout
is lining up cores to arrange functional units at the
center. The last layout is clustering functional units at
the center to improve the performance by having
functional units nearby each others. Based on the floor
plan in (Renau et al., 2005), we scale down four cores
into a single processor. As a result, every units are 1/4
scale of the floor plan. In addition, we locate shared
bus at the center to keep cache consistency using
MESI protocol.
 Figure 5 shows the temperature difference between
different floor plans of four cores architectures: Spread
(Fig. 5a), Lineup (Fig. 5b) and Centered (Fig. 5c). All
floor plans have hotspots on issue related units and
floating point units. The hottest unit is load/store queue
with this benchmark program. The multithreaded
version of algorithm mtCG has several synchronization
stops between threads during executions. The latter
raises the temperature of load/storequeues. In addition,
store queue is also suffering from corner effects; the
inside chip has plenty area to spread energy but corner
area cannot dissipate energy as does in center area.

Fig. 3: Performance and power usage of mtCG benchmark program

 (a) (b)

J. Computer Sci., 6 (4): 406-412, 2010

410

(c)

Fig. 4: Multicore floor plans: (a) spread, (b) lineup and (c) centered

 (a) (b)

(c)

Fig. 5: Temperature for mtCG benchmark program on different floor plans: (a) spread, (b) lineup and (c) centered

The latter causes the temperature of right side of core
has higher temperature than that of left side of core in

our lineup displacement. The centered displacement has
the coupling thermal effect which two hotspots held up

J. Computer Sci., 6 (4): 406-412, 2010

411

high temperatures and affects each other. The
temperature difference between spread, lineup and
centered layout is not noticeable in our experiment. The
centered layout has slightly higher temperature in
overall chip area.

DISCUSSION

 In our experiments, sparse iterative solver shows
linearly increasing performance with an increasing
number of cores. Considering the sparse matrix vector
multiplication, which is scalable, dominates the cost of
sparse iterative solver, the observation is not surprising.
Accordingly, each core uses similar amount of power
during the computation since each core executes
approximately similar number of floating point
operations in our scheme. Consequently, theoretical
Nthread speed up with using N thread as in our analysis is
possible with a multicore computing architecture if the
algorithm is designed to take benefits from multicore
architecture.
 Multithreaded sparse iterative solver raises
temperature on issue related units and floating point units
since the algorithm requires synchronization between
threads and also executes huge number of floating point
multiplications and additions. The latter raise the
temperature of the related units including load/store
queue and floating point units. To relieve the temperature
in the related units, we could arrange the related units to
locate far apart or use L2 cache as a coolant to surround
the hot units.

CONCLUSION

 In this study, we explore performance, power and
thermal issues on modern computing architectures
with using real scientific applications. We investigate
multicore architectures with multithreaded benchmark
programs mtCG with real scientific application data.
Multicore architectures could provide an incredible
speed up with the given power and thermal constraints
as long as the algorithms are scalable. Finally, we
provide a multithreaded version of CG benchmark
program, named mtCG, which can be used to measure
the performance of multicore architectures.
 We are planning to develop more multithreaded
benchmark programs based on real scientific and
engineering applications. In the near future, we could
provide multithreaded NAS benchmark programs to
evaluate multicore architectures. In addition, we are
studying on additional computing architecture issues

such as cache sharing policy and thread scheduling to
lower temperature.

REFERENCES

Albayraktaroglu, K., A. Jaleel, X. Wu, M. Franklin and

B. Jacob et al., 2005. Biobench: A benchmark suite
of bioinformatics applications. Proceeding of the
ISPASS 2005, Mar. 20-22, IEEE Computing
Society Press, Austin, TX, USA., pp: 2-9.

Bailey, D.H., L. Dagum, E. Barszcz and H.D. Simon,
1992. NAS parallel benchmark results. Proceedings
of the 1992 ACM/IEEE Conference on
Supercomputing, Nov. 13-18, IEEE Computer
Society Press, Los Alamitos, CA, USA., pp: 386-
393.

Brooks, D., V. Tiwari and M. Martonosi, 2000. Wattch:
A framework for architectural-level power analysis
and optimizations. Proceedings of the 27th Annual
International Symposium on Computer
Architecture, June 10-14, ACM Press, Vancouver,
BC, Canada, pp: 83-94.

SPEC Corporation, 2000. CFP2000 (Floating Point
Component of SPEC CPU 2000).
http://www.spec.org/cpu2000/CFP2000

Grama, A., G. Karypis, V. Kumar and A. Gupta, 2002.
Introduction to Parallel Computing. 2nd Edn.,
Prentice Hall, USA., ISBN: 10: 0201648652.

Heath, M., 2002. Scientific Computing: An
Introductory Survey. 2nd Edn., Prentice Hall,
USA., ISBN 10: 0072399104.

Hennessy, J. and D. Patterson, 2003. Computer
Architecture: A Quantitative Approach. 3rd Edn.,
Morgan Kaufmann Publishers, USA., ISBN: 10:
1558605967.

Jaleel, A., M. Mattina and B. Jacob, 2006. Last-Level
Cache (LLC) performance of data-mining
workloads on a CMP-a case study of parallel
bioinformatics workloads. Proceeding of the 12th
HPCA, Feb. 11-15, IEEE Computer Society Press,
Austin, TX., pp: 1-1.
http://www.lib.umd.edu/drum/handle/1903/7453

Klein Osowski, A. and D.J. Lilja, 2002. Minnespec: A
new spec benchmark workload for simulation-
based computer architecture research. IEEE
Comput. Architect. Lett., 1: 1-7.
http://portal.acm.org/citation.cfm?id=1115804

Li, Y., Brooks, D., Z. Hu and K. Skadron, 2005.
Performance, energy and thermal considerations
for SMT and CMP architectures. Proceeding of the
11th HPCA, Feb. 12-16, IEEE Computer Society
Press, San Francisco, CA., pp: 71-82.
http://portal.acm.org/citation.cfm?id=1043406

J. Computer Sci., 6 (4): 406-412, 2010

412

Malkowski, K., I. Lee, P. Raghavan and M. Irwin,
2005a. Conjugate gradient sparse iterative solvers:
Performance-power characteristics. Proceeding of
the International Parallel and Distributed
Processing Symposium (IPDPS), Apr. 25-29, IEEE
Computer Society Press, Rhodes Island, Greece,
pp: 1-8.

 http://fortknox.csc.ncsu.edu/proj/hppac/papers/son.
pdf

Malkowski, K., I. Lee, P. Raghavan and M. Irwin,
2005b. On improving performance and energy
profiles of sparse scientific applications.
Proceeding of the International Parallel and
Distributed Processing Symposium (IPDPS), Apr.
25-29, IEEE Computer Society Press, Rhodes
Island, Greece, pp: 1-1.
http://d.wanfangdata.com.cn/NSTLHY_NSTL_HY
13711487.aspx

Manjikian, N., 2001. multiprocessor enhancements of
the simpleScalar toolset. ACM SIGARCH
Computer Architect., 29: 8-15.
http://portal.acm.org/citation.cfm?id=373578

Boisvert, R., 1997. Matrix market: A web resource for
test matrix collection. Town meeting on Online
Delivery of NIST Reference Data, NIST,
Gaithersburg, MD.

 http://math.nist.gov/MatrixMarket
Monchiero, M., R. Canal and A. Gonzalez, 2006.

Power/Performance/Thermal design-space
exploration for multicore architectures. IEEE
Trans. Paral. Distribut. Syst., 19: 666-681.

Narayanan, R., B. Ozisikyilmaz, H. Zambreno, J.P.G.
Memik and A. Choudhary, 2006. Minebench: A
benchmark suite for data mining workloads.
Proceeding of the International Symposium on
Workload Characterization, Oct. 25-27, IEEE
Computer Society Press, San Jose, CA., pp: 1-7.
http://www.bioperf.org/NOZ06.pdf

Renau, J., B. Fraguela, J. Tuck, W. Liu and M.
Prvulovic et al., 2005. SESC simulator,
http://sesc.sourceforge.net.

Skadron, K., M.R. Stan, W. Huang, S. Velusamy and
K. Sankaranarayana et al., 2003. Temperature-
aware microarchitecture ACM SIGARCH
Computer Architect., 31: 2-13.
http://portal.acm.org/citation.cfm?id=871656.8596
20

Wang, H.S., X. Zhu, L.S. Peh and S. Malik, 2002.
Orion: A power-performance simulator for
interconnection network. Proceeding of the
MICRO 35, Nov. 18-22, IEEE Computer Society,
Istanbul, Turkey, pp: 294-305.

Woo, S.C., M. Ohara, E. Torrie, J.P. Singh and A.
Gupta, 1995. The splash-2 programs:
Characterization and methodological
considerations. Proceedings of the 22nd Annual
International Symposium on Computer
Architecture. June 22-24, ACM, Ligure, Italy,
pp: 1-13.
http://www.csd.uoc.gr/~hy527/papers/splash2_isca
.pdf

