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Analyzing Performance and Power of Multicore Architecture
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Abgract: Problem statement: Scientific modeling and simulations have been panhwlused with
experiments and theoretical analysis in scienceeaigtheering communitied\pproach: Consequently,
computational demands are growing exponentiallyafford large scale modeling and simulations.
Results: As a result, multicore computing architectures baén proposed and several products are
already available. However, we do not have a prapedy on the performance, power and thermal
issues of real science and engineering problemausecsoftware, which takes advantage of multicore
architecture, is not availableConclusion/Recommendations: In this study, we explored the
performance and power characteristics of scien@figorithms on multicore architectures using a
multithreaded version of sparse iterative linedvesp named mtCG, with real scientific application
problems.
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INTRODUCTION multithreaded program on multicore architecture. We
also explore the scalability, power and thermaléss
Computational modeling and simulations have beemn multicore architectures with real scientific
popularly used in science and engineering commuaity application codes. Finally, we provide one variaft
describe and understand complex phenomena insfead scientific application benefits multicore architees.
expensive or dangerous experiments such as drigndes The latter could be used as a benchmark program in
global climate simulation, radiation simulation,ash  computing architecture community.
testing aerodynamics and combustion (Heath, 2002). This study consists of the followings. We introduc
These modeling and simulations are usually repteden some background information about benchmark
as Partial Differential Equations (PDEs) which riegju programs and related researches. Then, we deseribe
meshes and sparse matrices. In these applicatio;ns, simulation environments and multithreaded iterative
could not achieve the peak performance since timestn  solver. Experimental results of multithreaded ites
and sparse matrix algorithms lack data reuse aaditip. solver on multicore architectures are followingnddly
At the same time, high performance computingsome concluding remarks and future plans are
community increases the number of transistors in aescribed.
given area to improve performance. The latter meets
physical limitation and generates new problems sisch Background: SPEC Corporation (2000) has been used
power consumption and thermal issues. To overcomwidely in computer architecture community to measur
these problems, multicourse architecture has beethe performance of newly developed computing
proposed and several products are already available architectures. Several researches have been ddhe wi
the market. However, we do not have a proper study SPEC to measure the performance of multicore
performance, power and thermal issues on multicorarchitecture (Li et al., 2005; Manjikian, 2001).
processors since the lack of scientific applicaion However, these benchmark programs only support a
which benefits from multicore architectures. Selerasingle thread. Several single thread benchmark
researches to characterize the performance ofcordti programs are wused together in experiments.
architecture have been done with multiprogramming oConsequently, the results are very close to
loop level parallel benchmark programs (Jaletedl., multiprogramming  characteristics  rather  than
2006; Liet al., 2005; Manjikian, 2001). multithreaded program. Even with OpenMP version of
In this study, we profile the performance of SPEC supports loop level parallelism which is défe
scientific applications using a cycle accurate $atmr  with general multithreaded programs which have task
to further understand the characteristics oflevel parallelism.
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At the same time, NAS (Bailegt al., 1992) has explicitly stored using a standard sparse formde T
been used to represent the workloads of scierdifid  vectors p, g and r are stored as one-dimensionaysr
engineering problems. NAS supports various versiongn contiguous locations in memory. A single iteoati
of benchmark programs such as serial, Messagenigassiof CG requires one matrix-vector multiplication,otw
Interface (MPI), OpenMP and High Performancevector inner products, three vector additions amd t
Fortran (HPF). However, it does not supportfloating point divisions. Among these operatiotieg
multithread version of benchmark programs. Thematrix-vector multiplication dominates the
reason based on the fact that NAS has been usewmputational cost accounting for more than 90% of
heavily to measure the performance of clusteredhe overall execution time. Due to the sparse mabdir
systems rather than a single processor machine. the matrix A, the number of floating point operaiso

Splash-2 (Wooet al., 1995) has been used to per access to the main memory is relatively low
represent multithreaded workloads for Shared Memorygluring matrix vector multiplication. Additionallythe
Processor (SMP) computers. In addition, it has reahccess pattern of the elements in the vector prakspe
scientific kernels, cholesky, fft and lu and reakstific ~ on the sparse structure of A.
applications such as barnes-hut, fmm and water. To provide a multithreaded version of CG
However, this benchmark programs use synthetic datalgorithm, we divided the matrix by row-wise as
rather than real scientific application data. Tebdvior = shown in Fig. 2. Each thread multiplies row blodk o
and memory access patterns of the benchmarkatrix with the specific source vector members and
programs with synthetic data are different withttbh  stores at the destination vector members. Sincdave
the real scientific applications. not share the destination vector, this module has a

There are several other benchmarks or variants gderfect parallelism. However, sparse matrix aldonit
the traditional benchmark such as MinneSPE@i(KI could not benefit from cache as does in dense ratri
Osowski and Lilja, 2002) which are developed tosince it lacks data reuse and locality.
reduce simulation time and BioBench The total operation time required for sparse
(Albayraktaroglu et al., 2005) which represents matrix multiplication is represented as:
bioinformatics workloads and its parallel versicsing

OpenMP (Jaleel et al., 2006) and MineBench Tem= (M*Tmu+ (ML)*T 20d*N/Ninread+ Tmem (2)
(Narayanaret al., 2006) which represents data mining
workloads on single and parallel machines. N = Size of the matrix

On the other hand, many research on characterizinread = Number of threads
the performance, power and thermal of multicorem = Average nonzero values in a row
architectures have been done. Jaleelal. (2006) Tmem = Memory accessing time

characterized the last level cache performancelip C T,,and T.qq = Floating point operations
Multi Processor (CMP) using OpenMP version of

Biobench. Liet al. (2005) characterized performance, CGAD)

energy and thermal of Simultaneous Multi Thread
(SMT) and CMP with replicating single threaded
applications. Monchieroet al. (2006) explores the

design space for multicore architecture in perforoea

% % A - input matrix, b - right hand side
o Is initial guess:
r=b-Argip=rirp=r

power and thermal view using Splash-2 (Weical., fori=1.1...do
1995) benchmark programs. However, present study is q=Ap

the first contribution to characterize the multeor a=p/(p'q)
architecture  with real multithreaded scientific Ti=2i_1+ap

applications in author’'s awareness. F=r-ag
it |#/||bl] is small enough then stop

I

Multithreaded iterative solver: mtCG: The most -
p=

common algorithm in scientific modeling and

simulation is a sparse iterative solve such as @mtg p=glp

Gradient (CG). Fig. 1 contains an outline of a gene p=r+ -f!’_
CG algorithm used in many applications. This CG r=rp=p
scheme uses standard data structures for storig th end for

sparse matrix A and vectors p,q,r. Only the nonzdro _ _
sparse matrix Aand its corresponding indices are Fig. 1: The Conjugate Gradient (CG) scheme
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Memory access time, ,Em is determined by the Finally, hitratg; and hitrate, can be computed
cache architecture inside a system. Assume we haveom missratg; and missraig. Computing the exact
multicore architecture which has two levels of egch value of penalty, is difficult in real computing
L1 and L2. L1 cache is dedicated cache for eack corenvironment. However, even with a simple memory
and L2 cache is shared by all cores. Then, usimguia ~ Prefetcher, the value is negligibly small in our
from (Jaleekt al., 2006, Hennessy and Patterson, 2003)@lgorithm since it accesses memory in sequential

the memory access time is represented as: direction (Malkowskiet al., 2005a; 2005b).
Since, sparse matrix multiplication is one of #hos

Tumem= hitrate,* T ;+missrate,* penalty; ) embarrassingly parallel algorithm, we can define th

speed up as:
penalty, = hitratg,* T, + missrate,* penalty, (3) SpeedUp =T/ T, ©6)
hitrate, and hitratg; = Cache hit ratio T, = Single processor execution time
missrateg; and missratge = Cache miss ratio T, = Execution time with p processors
Tuand T = Cache access time
penalty; and penalty, = Cache miss penalty Considering, § for sparse matrix vector

) . multiplication is T/Nyreaq We can achieve PNeaqtimes
Algorithm Fig. 2 shows that we need two vectorsgpeed up in theory (Granehal., 2002).

which have length N and two other vectors whichehav
length nonzero. Then, without considering memory MATERIALSAND METHODS

refetcher or cache replacing scheme, average
P pacing verag We used SESC (Renaet al., 2005), a cycle

missrate; and missrate is defined as: . . : .
accurate architecture simulator, which supportspChi

missrate; = 2*(N + nonzero) / CacheLipg (4) Multi Processor (CMP) and Simultaneous Multi
Threading (SMT) architecture. Each core is an dut-o

missrate, = 2*(N+nonzero)/(CacheLing/Niyead  (5) order superscalar processor with private L1 caches
(separated instruction and data cache) and a sh&red

CachelLing, and CachelLing = Entries in cache ~ cache (hybrid instruction and data cache). Thaildet
nonzero = Nonzero elements in of the parameters we used for SESC simulator are
the matrix described in Table 1. We used Wattch (Broeksi.,

2000) to measure power usage on processor core and
Orion (Wanget al., 2002) to measure shared bus power
usage. Then, we applied Hotspot (Skadebal., 2003)

to get thermal characteristics based on the reglflts
power consumption trace of SESC simulator. Sinee th
M memory access pattern of artificially generatedh st

Thread 1

Thread 2

* Theeod 3 is different with that of a real application, weeds
L becsstk16 from MatrixMarket (Boisvert, 1997). The
— Thread 4 latter is a sparse matrix generated from a reattire
L L analysis application and popularly used in a s#ient
Mekrix A Sourve  Dectination computation community.

mtSMY (myid.startx.endx)

NN ; Table 1: Simulation parameters
% myid = my thread id;

) : ) Parameters Description
% startx = starting row index for my thread; Frequency 2 GHz
% endx = ending row index for my thread, Machine 32 bits, 4/4/6 fetch/issues/retire
% row_index = row index vector L1 1cach ngo(%ie()iﬁmgqegs (90), fpl?egsh('(ti?);e(ﬁ)
0 ol _ . . e cache , 64, 2-way associative, hit la
r[ col-index = column index vector L1 dcache 16*1024, 64, 4-way associative, hit leye(2)
" nonz_val = nonzero values vector L2 cache 1024*1024, 64, 8-way associative, hinleyeg(10)
for i=startx.endx do 10 cycle hit latency
for j=row_index[i].row_index[i+1] do ‘?’II‘E gggs entrybLRzUSé)ONCy ) LRU ool
PRSP s . - entr , entry (1), olic
destination[i]=nonz_val[j] *source[col _index][j]]; Functional units 3 integgr(arld 3 FP un)i/té) policy
end for Cores 4 (0-3)
end for Shared bus width (64)
Memory BW 6G bytes/sec
Fig. 2: Multithread matrix vector multiplication Memory latency  LRU, 64, 490 cycles
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RESULTS 2005). We investigated three multicore floorpla$e
first layout is spreading hot areas around the &orn
Figure 3 shows our experimental results of mtCGand keeping L2 cache at the center. The secondifayo
benchmark program using bcsstk16 as an input matrixs lining up cores to arrange functional units la¢ t
Since the input matrix has regular nonzero patterncenter. The last layout is clustering functionaitsimat
mtCG has good balance between cores by assignéng tithe center to improve the performance by having
same junk of rows to each thread. As a resultfunctional units nearby each others. Based onltue f
Instruction Per Cycle (IPC) numbers are similarreve plan in (Renaut al., 2005), we scale down four cores
with different number of cores. In addition, we caninto a single processor. As a result, every unigslad
achieve linearly increasing speed up with an irgirep =~ scale of the floor plan. In addition, we locate relta
number of cores. Especially, L2 cache miss rates arbus at the center to keep cache consistency using
decreasing by adding more cores up to four cores. WMESI protocol.
conjecture that the number of L2 accesses dranigtica Figure 5 shows the temperature difference between
decreases with eight cores since the data per isore different floor plans of four cores architectur&gread
small enough to fit in L1 cache. Consequently, eacl{Fig. 5a), Lineup (Fig. 5b) and Centered (Fig. ).
core uses a similar amount of power as shown inFig floor plans have hotspots on issue related unit an
In addition to the performance and power, thefloating point units. The hottest unit is load/gt@ueue
temperature becomes an important factor in advancedith this benchmark program. The multithreaded
computing architectures. To better understand theersion of algorithm mtCG has several synchronirati
thermal characteristics, we traced the changes dftops between threads during executions. The latter
temperature during benchmark program executionsaises the temperature of load/storequeues. Irtiaddi
using Hotspot 3.0 (Skadrogt al., 2003) based on the store queue is also suffering from corner effeths
floor plan as shown in Fig. 4a-c. The detail experital inside chip has plenty area to spread energy huteco
parameters related to thermal are shown in (Rehau,  area cannot dissipate energy as does irerceamta.

Performance for meg with besstk16 Power consumption for mcg with besstkl16
e .

B | core . core
[ 2 cores B cores
ol | T34 cores [ coreq
I & cores 14 coreq

15 coreq
16 core
7 cores
s o
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Llmiss L2miss IPC speed up 1 core 2 core 4 core 8 core

]

Fig. 3: Performance and power usage of mtCG bendhpragram

x10° x10”
5 5
\ | | \

450 — —— 45+
' [ ] ' [ ]
4 4t

e -

ar 3f —

(a) (b)



J. Computer <ci., 6 (4): 406-412, 2010

451

] I
' [ | ‘

Fig. 4: Multicore floor plans: (a) spread, (b) lipeand (c) centered

Tempearture for meg on 4 cores processar with besstk16

Tempeartura for meg on 4 cores processor with bessti16

Tempearture for meg on 4 cores processar with besstk16
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Fig. 5: Temperature for mtC@enchmark program on different floor plans: (ajesgt, (b) lineup and (c) centered

The latter causes the temperature of right sideooé  our lineup displacement. The centered displacemast
has higher temperature than that of left side sédn  the coupling thermal effect which two hotspots hed
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high temperatures and affects each other. Theuch as cache sharing policy and thread schedtding
temperature difference between spread, lineup an@wer temperature.

centered layout is not noticeable in our experim&he
centered layout has slightly higher temperature in
overall chip area.
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