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Abstract:  Problem statement: Scientific modeling and simulations have been popularly used with 
experiments and theoretical analysis in science and engineering communities. Approach: Consequently, 
computational demands are growing exponentially to afford large scale modeling and simulations. 
Results: As a result, multicore computing architectures had been proposed and several products are 
already available. However, we do not have a proper study on the performance, power and thermal 
issues of real science and engineering problems because software, which takes advantage of multicore 
architecture, is not available. Conclusion/Recommendations: In this study, we explored the 
performance and power characteristics of scientific algorithms on multicore architectures using a 
multithreaded version of sparse iterative linear solver, named mtCG, with real scientific application 
problems.  
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INTRODUCTION 

 
 Computational modeling and simulations have been 
popularly used in science and engineering community to 
describe and understand complex phenomena instead of 
expensive or dangerous experiments such as drug design, 
global climate simulation, radiation simulation, crash 
testing aerodynamics and combustion (Heath, 2002). 
These modeling and simulations are usually represented 
as Partial Differential Equations (PDEs) which require 
meshes and sparse matrices. In these applications, we 
could not achieve the peak performance since those mesh 
and sparse matrix algorithms lack data reuse and locality. 
 At the same time, high performance computing 
community increases the number of transistors in a 
given area to improve performance. The latter meets 
physical limitation and generates new problems such as 
power consumption and thermal issues. To overcome 
these problems, multicourse architecture has been 
proposed and several products are already available in 
the market. However, we do not have a proper study on 
performance, power and thermal issues on multicore 
processors since the lack of scientific applications 
which benefits from multicore architectures. Several 
researches to characterize the performance of multicore 
architecture have been done with multiprogramming or 
loop level parallel benchmark programs (Jaleel et al., 
2006; Li et al., 2005; Manjikian, 2001). 
 In this study, we profile the performance of 
scientific applications using a cycle accurate simulator 
to further understand the characteristics of 

multithreaded program on multicore architecture. We 
also explore the scalability, power and thermal issues 
on multicore architectures with real scientific 
application codes. Finally, we provide one variant of 
scientific application benefits multicore architectures. 
The latter could be used as a benchmark program in 
computing architecture community. 
 This study consists of the followings. We introduce 
some background information about benchmark 
programs and related researches. Then, we describe our 
simulation environments and multithreaded iterative 
solver. Experimental results of multithreaded iterative 
solver on multicore architectures are following. Finally 
some concluding remarks and future plans are 
described. 
 
Background: SPEC Corporation (2000) has been used 
widely in computer architecture community to measure 
the performance of newly developed computing 
architectures. Several researches have been done with 
SPEC to measure the performance of multicore 
architecture (Li et al., 2005; Manjikian, 2001). 
However, these benchmark programs only support a 
single thread. Several single thread benchmark 
programs are used together in experiments. 
Consequently, the results are very close to 
multiprogramming characteristics rather than 
multithreaded program. Even with OpenMP version of 
SPEC supports loop level parallelism which is different 
with general multithreaded programs which have task 
level parallelism. 
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 At the same time, NAS (Bailey et al., 1992) has 
been used to represent the workloads of scientific and 
engineering problems. NAS supports various versions 
of benchmark programs such as serial, Message Passing 
Interface (MPI), OpenMP and High Performance 
Fortran (HPF). However, it does not support 
multithread version of benchmark programs. The 
reason based on the fact that NAS has been used 
heavily to measure the performance of clustered 
systems rather than a single processor machine. 
 Splash-2 (Woo et al., 1995) has been used to 
represent multithreaded workloads for Shared Memory 
Processor (SMP) computers. In addition, it has real 
scientific kernels, cholesky, fft and lu and real scientific 
applications such as barnes-hut, fmm and water. 
However, this benchmark programs use synthetic data 
rather than real scientific application data. The behavior 
and memory access patterns of the benchmark 
programs with synthetic data are different with that of 
the real scientific applications.  
 There are several other benchmarks or variants of 
the traditional benchmark   such  as  MinneSPEC (Klein 
Osowski and Lilja, 2002) which are developed to 
reduce  simulation  time and BioBench 
(Albayraktaroglu et al., 2005) which represents 
bioinformatics workloads and its parallel version using 
OpenMP (Jaleel et al., 2006) and MineBench 
(Narayanan et al., 2006) which represents data mining 
workloads on single and parallel machines. 
 On the other hand, many research on characterizing 
the performance, power and thermal of multicore 
architectures have been done. Jaleel et al. (2006) 
characterized the last level cache performance on Chip 
Multi Processor (CMP) using OpenMP version of 
Biobench. Li et al. (2005) characterized performance, 
energy and thermal of Simultaneous Multi Thread 
(SMT) and CMP with replicating single threaded 
applications. Monchiero et al. (2006) explores the 
design space for multicore architecture in performance, 
power and thermal view using Splash-2 (Woo et al., 
1995) benchmark programs. However, present study is 
the first contribution to characterize the multicore 
architecture with real multithreaded scientific 
applications in author’s awareness. 
 
Multithreaded iterative solver: mtCG: The most 
common algorithm in scientific modeling and 
simulation is a sparse iterative solve such as Conjugate 
Gradient (CG). Fig. 1 contains an outline of a generic 
CG algorithm used in many applications. This CG 
scheme uses standard data structures for storing the 
sparse matrix A and vectors p,q,r. Only the nonzero of 
sparse matrix A and its corresponding indices are 

explicitly stored using a standard sparse format. The 
vectors p, q and r are stored as one-dimensional arrays 
in contiguous locations in memory. A single iteration 
of CG requires one matrix-vector multiplication, two 
vector inner products, three vector additions and two 
floating point divisions.   Among these operations, the 
matrix-vector multiplication dominates the 
computational cost accounting for more than 90% of 
the overall execution time. Due to the sparse nature of 
the matrix A, the number of floating point operations 
per access to the main memory is relatively low 
during matrix vector multiplication. Additionally, the 
access pattern of the elements in the vector p depends 
on the sparse structure of A. 
 To provide a multithreaded version of CG 
algorithm, we divided the matrix by row-wise as 
shown in Fig. 2. Each thread multiplies row block of 
matrix with the specific source vector members and 
stores at the destination vector members. Since we do 
not share the destination vector, this module has a 
perfect parallelism. However, sparse matrix algorithm 
could not benefit from cache as does in dense matrix 
since it lacks data reuse and locality. 
 The total operation time required for sparse 
matrix multiplication is represented as: 
 
Tsmv = (m*Tmul + (m1)*Tadd)*N/N thread + Tmem  (1) 
 
N = Size of the matrix 
Nthread = Number of threads 
m = Average nonzero values in a row 
Tmem = Memory accessing time 
Tmul and Tadd = Floating point operations  
 

 
 
Fig. 1: The Conjugate Gradient (CG) scheme 
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 Memory access time, Tmem is determined by the 
cache architecture inside a system. Assume we have 
multicore architecture which has two levels of cache, 
L1 and L2. L1 cache is dedicated cache for each core 
and L2 cache is shared by all cores. Then, using formula 
from (Jaleel et al., 2006, Hennessy and Patterson, 2003), 
the memory access time is represented as: 
  
Tmem = hitrateL1* TL1+missrateL1* penaltyL1  (2) 
 
penaltyL1 = hitrateL2* TL2 + missrateL2* penaltyL2     (3) 
 
hitrateL1 and hitrateL2 = Cache hit ratio 
missrateL1 and missrateL2 = Cache miss ratio  

TL1 and TL2 = Cache access time 
penaltyL1 and penaltyL2 = Cache miss penalty 
 
 Algorithm Fig. 2 shows that we need two vectors 
which have length N and two other vectors which have 
length nonzero. Then, without considering memory 
prefetcher or cache replacing scheme, average 
missrateL1 and missrateL2 is defined as: 
 
missrateL1 = 2*(N + nonzero) / CacheLineL1  (4) 
 
missrateL2 = 2*(N+nonzero)/(CacheLineL2/Nthread) (5) 
 
CacheLineL1 and CacheLineL2 = Entries in cache 
nonzero  = Nonzero elements in 

the matrix  
 

 
 
Fig. 2: Multithread matrix vector multiplication 

 Finally, hitrateL1 and hitrateL2 can be computed 
from missrateL1 and missrateL2. Computing the exact 
value of penaltyL2 is difficult in real computing 
environment. However, even with a simple memory 
prefetcher, the value is negligibly small in our 
algorithm since it accesses memory in sequential 
direction (Malkowski et al., 2005a; 2005b). 
 Since, sparse matrix multiplication is one of those 
embarrassingly parallel algorithm, we can define the 
speed up as: 
 
SpeedUp = Ts / Tp (6) 
 
Ts = Single processor execution time 
Tp = Execution time with p processors 
 
 Considering, Tp for sparse matrix vector 
multiplication is Ts/Nthread, we can achieve Nthread times 
speed up in theory (Grama et al., 2002). 
 

MATERIALS AND METHODS 
 
 We used SESC (Renau et al., 2005), a cycle 
accurate architecture simulator, which supports Chip 
Multi Processor (CMP) and Simultaneous Multi 
Threading (SMT) architecture. Each core is an out-of-
order superscalar processor with private L1 caches 
(separated instruction and data cache) and a shared L2 
cache (hybrid instruction and data cache).  The details 
of the parameters we used for SESC simulator are 
described in Table 1. We used Wattch (Brooks et al., 
2000) to measure power usage on processor core and 
Orion (Wang et al., 2002) to measure shared bus power 
usage. Then, we applied Hotspot (Skadron et al., 2003) 
to get thermal characteristics based on the results of 
power consumption trace of SESC simulator. Since the 
memory access pattern of artificially generated data set 
is different with that of a real application, we used 
bcsstk16 from MatrixMarket (Boisvert, 1997). The 
latter is a sparse matrix generated from a real structure 
analysis application and popularly used in a scientific 
computation community.   
 
Table 1: Simulation parameters 
Parameters Description 
Frequency 2 GHz 
Machine 32 bits, 4/4/6 fetch/issues/retire 
  ROB (126), intRegs (90), fpRegs (68) 
L1 Icache 16*1024, 64, 2-way associative, hit latency (2) 
L1 dcache 16*1024, 64, 4-way associative, hit latency (2) 
L2 cache 1024*1024, 64, 8-way associative, hit latency (10) 
 10 cycle hit latency 
BTB 2048 entry, LRU policy 
TLB 512 entry (D), 256 entry (I), LRU policy 
Functional units 3 integer and 3 FP units 
Cores 4 (0-3) 
Shared bus width (64) 
Memory BW 6G bytes/sec 
Memory latency LRU, 64, 490 cycles 
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RESULTS 
 
 Figure 3 shows our experimental results of mtCG 
benchmark program using bcsstk16 as an input matrix. 
Since the input matrix has regular nonzero pattern, 
mtCG has good balance between cores by assigning the 
same junk of rows to each thread. As a result, 
Instruction Per Cycle (IPC) numbers are similar even 
with different number of cores. In addition, we can 
achieve linearly increasing speed up with an increasing 
number of cores. Especially, L2 cache miss rates are 
decreasing by adding more cores up to four cores. We 
conjecture that the number of L2 accesses dramatically 
decreases with eight cores since the data per core is 
small enough to fit in L1 cache. Consequently, each 
core uses a similar amount of power as shown in Fig. 3. 
  In addition to the performance and power, the 
temperature becomes an important factor in advanced 
computing architectures. To better understand the 
thermal characteristics, we traced the changes of 
temperature during benchmark program executions 
using Hotspot 3.0 (Skadron et al., 2003) based on the 
floor plan as shown in Fig. 4a-c. The detail experimental 
parameters related to thermal are shown in (Renau et al., 

2005). We investigated three multicore floorplans.  The 
first layout is spreading hot areas around the corner 
and keeping L2 cache at the center. The second layout 
is lining up cores to arrange functional units at the 
center. The last layout is clustering functional units at 
the center to improve the performance by having 
functional units nearby each others. Based on the floor 
plan in (Renau et al., 2005), we scale down four cores 
into a single processor. As a result, every units are 1/4 
scale of the floor plan. In addition, we locate shared 
bus at the center to keep cache consistency using 
MESI protocol. 
 Figure 5 shows the temperature difference between 
different floor plans of four cores architectures: Spread 
(Fig. 5a), Lineup (Fig. 5b) and Centered (Fig. 5c). All 
floor plans have hotspots on issue related units and 
floating point units. The hottest unit is load/store queue 
with this benchmark program. The multithreaded 
version of algorithm mtCG has several synchronization 
stops between threads during executions. The latter 
raises the temperature of load/storequeues. In addition, 
store queue is also suffering from corner effects; the 
inside chip has plenty area to spread energy but corner 
area  cannot  dissipate  energy  as  does  in  center  area.  

 

 
 

Fig. 3: Performance and power usage of mtCG benchmark program 
 

 
  (a)  (b) 
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(c) 
 

Fig. 4: Multicore floor plans: (a) spread, (b) lineup and (c) centered 
 

  
  (a)  (b) 

 

 
(c) 

 
Fig. 5: Temperature for mtCG benchmark program on different floor plans: (a) spread, (b) lineup and (c) centered 
 
The latter causes the temperature of right side of core 
has higher temperature than that of left side of core in 

our lineup displacement. The centered displacement has 
the coupling thermal effect which two hotspots held up 
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high temperatures and affects each other. The 
temperature difference between spread, lineup and 
centered layout is not noticeable in our experiment. The 
centered layout has slightly higher temperature in 
overall chip area. 
 

DISCUSSION 
 
 In our experiments, sparse iterative solver shows 
linearly increasing performance with an increasing 
number of cores. Considering the sparse matrix vector 
multiplication, which is scalable, dominates the cost of 
sparse iterative solver, the observation is not surprising. 
Accordingly, each core uses similar amount of power 
during the computation since each core executes 
approximately similar number of floating point 
operations in our scheme. Consequently, theoretical 
Nthread speed up with using N thread as in our analysis is 
possible with a multicore computing architecture if the 
algorithm is designed to take benefits from multicore 
architecture. 
 Multithreaded sparse iterative solver raises 
temperature on issue related units and floating point units 
since the algorithm requires synchronization between 
threads and also executes huge number of floating point 
multiplications and additions. The latter raise the 
temperature of the related units including load/store 
queue and floating point units. To relieve the temperature 
in the related units, we could arrange the related units to 
locate far apart or use L2 cache as a coolant to surround 
the hot units. 
 

CONCLUSION 
 
 In this study, we explore performance, power and 
thermal issues on modern computing architectures 
with using real scientific applications. We investigate 
multicore architectures with multithreaded benchmark 
programs mtCG with real scientific application data. 
Multicore architectures could provide an incredible 
speed up with the given power and thermal constraints 
as long as the algorithms are scalable. Finally, we 
provide a multithreaded version of CG benchmark 
program, named mtCG, which can be used to measure 
the performance of multicore architectures. 
 We are planning to develop more multithreaded 
benchmark programs based on real scientific and 
engineering applications. In the near future, we could 
provide multithreaded NAS benchmark programs to 
evaluate multicore architectures. In addition, we are 
studying on additional computing architecture issues 

such as cache sharing policy and thread scheduling to 
lower temperature. 
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