
Journal of Computer Science 6 (3): 336-340, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: S. Muruganantham, Department of Information and Technology, Bharath University, Chennai, India
336

Object Based Middleware for Grid Computing

1S. Muruganantham, 2P.K. Srivastha and 3Khanaa

1Department of Information and Technology, Bharath University, Chennai, India
2Department of Electronics, Indian Institute of Technology, Chennai, India

3Department of Electronics, Bharath University, Chennai, India

Abstract: Problem statement: “Grid” computing has emerged as an important new field,
distinguished from conventional distributed computing by its focus on large-scale resource sharing,
innovative applications and, in some cases, high-performance orientation. The role of middleware is to
ease the task of designing, programming and managing distributed applications by providing a simple,
consistent and integrated distributed programming environment. Essentially, middleware is a
distributed software layer, which abstracts over the complexity and heterogeneity of the underlying
distributed environment with its multitude of network technologies, machine architectures, operating
systems and programming languages. Approach: This study brought out the development of
supportive middleware to manage resources and distributed workload across multiple administrative
boundaries is of central importance to Grid computing. Active middleware services that perform look-
up, scheduling and staging are being developed that allow users to identify and utilize appropriate
resources that provide sustainable system and user-level qualities of service. Results: Different
middleware platforms support different programming models. Perhaps the most popular model is
object-based middleware in which applications are structured into objects that interact via location
transparent method invocation. Conclusion: The Object Management Group’s CORBA platform offer
an Interface Definition Language (IDL) which is used to abstract over the fact that objects can be
implemented in any suitable programming language, an object request broker which is responsible for
transparently directing method invocations to the appropriate target object and a set of services such as
naming, time, transactions, replication which further enhance the programming environment.

Key words: Middleware, distributed, services, performance, object based, transparent, integration,

pervasive, collaborative visualization

INTRODUCTION

 The middleware refers to a distributed platform of
interfaces and services that reside ‘between’ the
application and the operating system and aim to
facilitate the development, deployment and
management of distributed applications. The main
function of this platform is to mask the inherent
heterogeneity of distributed systems and provide a
standard set of interfaces and services, which
distributed applications, can assume present in any
participating language, operating system or machine
environment. Note that these object-based platforms are
not the only referent of the term middleware in
common use. For example, platforms geared toward
database access in a heterogeneous environment are
also often referred to as middleware.
 The Open Grid Services Architecture (OGSA) has
recently emerged as a ‘second generation’ distributed

computing approach to Grid middleware that is taking
Grid support forward from an era of ad-hoc platforms
to a more architected approach built on service-
orientation and web services technologies. This new
approach promises a more unified and principled
approach to the support of Grid applications. It
augments generic web services standards by defining a
specific abstract notion of ‘Grid service’ and also
defines Grid-specific architectural elements such as,
service factories and registries, naming and referencing
conventions for service instances, support for stateful
services, soft-state-based garbage collection of service
instances, event notification from services and version
management (Coulson et al., 2002; 2004; Foster et al.,
2001; Parlavantzas et al., 2003). However, despite these
advances, OGSA and indeed the web services
technologies on which it is based, are still deficient in
many areas of distributed computing support which, we
believe, are key to the successful hosting of large-scale,
next generation, Grid applications.

J. Computer Sci., 6 (3): 336-340, 2010

337

MATERIALS AND METHODS

 We are particularly concerned with applications
that exhibit properties such as high levels of
heterogeneity in terms of both networking and end-
systems, real-time interactive collaboration employing
multiple media-types, large scale, complexity and
dynamic configuration, QoS-sensitivity and adaptability
to changes in environmental conditions. An illustrative
example of such an application is a world-wide
collaborative visualization session involving large
numbers of scientists who join and leave the session
dynamically and are connected by a variety of access
networks and end-systems and involving multiple
media such as visualization data, live sensor output,
vector graphics and video. We contend that such
applications fundamentally over-stretch the state-of-the-
art in existing Grid support. More specifically, our
analysis is that current platforms have three major areas
of deficiency in terms of advanced application support:

Integration with advanced network services: One of
the attractions of OGSA is its simple SOAP-based
model of interaction. However, advanced applications
often require more sophisticated communications
services in terms of, for example, QoS management
and, especially, different ‘interaction types’ RPC,
reliable/ unreliable messaging, publish-subscribe, tuple-
space-based interaction, peer to- peer based interaction,
media-streaming, reliable group interaction, workflow
interaction, distributed voting or auction protocols and
various transactional styles

Architectural framework: OGSA focuses on
interoperability through the use of ‘ubiquitous’ Web
protocols and associated abstractions. However, this
focus on interoperability needs to be complemented
with a strong internal platform architecture that
supports the integration of diverse system elements in
terms of both breadth and depth

Complexity management: As Grid applications
become increasingly large, complex and long-lived,
there emerges a strong need for their sophisticated
management. It is becoming recognized that the scale
and complexity of such systems demand a self-
managing or autonomic approach. Linking back to the
previous two points, it is crucial that such self-
management is applicable to the architecture of the
whole system including communication services. We
argue that this implies an open and programmable
approach to system construction. In our current research
we are addressing these deficiencies through a

pervasive component-based approach that integrates
middleware and networking functionality. Component
technologies have already been adopted successfully in
Grid research to promote structure and re-use at the
application level. But here we propose the use of
component technology not only for applications but
also throughout the platform architecture in terms of
both breadth and depth as outlined above. The aim of
the research is to develop and apply a lightweight
component model that imposes minimal overhead and
can be used to build even low-level, system-oriented,
functionality. The component model should also be
system and language independent and API-neutral, so
that it can be used to construct arbitrary application-
level distributed programming environments as
required. A particular goal is to apply lightweight
component based technology to construct an extensible
family of open and programmable overlay networks,
thus providing an approach that is network-centric,
offers a strong architecture for the system infrastructure
and facilitates self-management through the inherent
openness of component-based structures. This approach
also promises other important benefits: i) a extensible
range of interaction types, such as those listed above,
can be made available and selected according to the
application domain and ii) it facilitates dynamic
reconfiguration of communications as context changes.
To validate our approach and provide focus for
practical experimentation we are using selected
collaborative visualization-based applications and
scenarios. Collaborative visualization is highly
appropriate for this purpose because of its inherent
properties as outlined above. It is also data and compute
intensive which makes it an ideal case study for an
infrastructure that aspires to manage both network and
end-system resources in an integrated manner.

RESULTS AND DISCUSSION

Grid toolkit components: The aim of Grid toolkit is to
provide support in each of four ‘domains’ that we
identify as key in underlying the provision of Grid
services. These domains are as follows:

• Service binding: This area provides sophisticated

communication services beyond SOAP: i.e.,
support for QoS management and for different
interaction types

• Resource discovery: This provides service and
more generally, resource, discovery services,
allowing for the use of multiple discovery
technologies to maximize the flexibility available
to applications. Examples of alternative

J. Computer Sci., 6 (3): 336-340, 2010

338

technologies are SLP or UPnP for more traditional
service discovery, GRAM for CPU discovery in a
Grid context and P2P protocols for more general
resource discovery

• Resource management: This comprises both coarse
grained distributed resource management as
currently provided by services such as GRAM and
fine-grained local resource management that is
required to build end-to-end QoS

• Grid security: This supports secure communication
between participating nodes orthogonally to the
interaction types in use.

 These four domains of middleware functionality
are implemented in Grid toolkit as independent,
horizontal, frameworks each of which is highly
configurable and reconfigurable (Fig. 1). As such, they
are directly available to application services and can
also be combined to provide more complex middleware
capabilities. For example, service bindings can integrate
with Grid security to produce secure communication
channels. In the remainder of this study, we examine in
detail the service binding and resource discovery
frameworks.

The ancestry of grid toolkit: The Grid Toolkit is an
instantiation of the generic OpenORB middleware
platform and hence follows the philosophy of building
systems using components, component frameworks and
reflection. The generic architecture of Grid Toolkit is
also strongly influenced an Open ORB-based, web
services-based, mobile computing framework called
ReMMoC. ReMMoC provides inspiration and a code
base for specific aspects of Grid Toolkit.
 In particular, the four domains discussed above are
each implemented in terms of Component Frameworks
(CFs) that are configurable and dynamically
reconfigurable by means of ‘plug-in’ components. The
generic architecture of Grid Toolkit is also strongly
influenced an OpenORB-based, web services-based
provides inspiration and a code base for specific aspects
of Grid Toolkit. In particular, it contributes a prototype
service binding CF.

Fig. 1: The grid toolkit vision

The grid toolkit architecture: Grid toolkit is built in
terms of OpenCOM derived CFs, the architecture of
which is shown in Fig. 2.
 The CFs behave as standard OpenCOM
components; but, in addition, each implements the
ICFMetaArchitecture interface which provides
operations to inspect and dynamically reconfigure the
CF’s internal structure. To ensure that dynamic
changes to the framework are ‘valid’, each CF exports
a receptacle named IAccept; from here different
validation strategies can be plugged into the
framework so that once a change is made, the plug-in
checking strategy is executed and if invalid the
framework rolls back to its previous state. By default,
the local graph is checked against a set of XML-based
architectural descriptions of valid component
configurations. Alternatively, more or less complex
strategies can be plugged in architectural style rules.
Turning now to the wider picture, the subset of the
Grid Toolkit architecture that deals with service
binding and resource discovery is illustrated in Fig. 3.

Fig. 2: The component framework model

Fig. 3: The grid toolkit architecture

J. Computer Sci., 6 (3): 336-340, 2010

339

This depicts a three-layer architecture that is composed
of: (i) abstract middleware, (ii) abstract to concrete
mappings and (iii) concrete middleware. Each of these
layers in turn consists of multiple CFs. This renders the
architecture inherently configurable and extensible so
that components implementing specific functions can
be plugged in when and where required. In addition,
applications requiring only minimal middleware
functionality need only utilize parts of Grid Toolkit.
This is especially important for execution on devices
with limited resources.
 The abstract middleware layer consists of a “Grid
Service API” CF that is built in terms of web services
abstractions. In particular, abstract service interactions
are described in terms of WSDL so that services can be
invoked irrespective of the interaction type underlying
the service. This is achieved by exploiting WSDL’s
approach of breaking interactions down into individual
messages: any conceivable service operation, from the
user’s perspective, can be described abstractly in terms
of input or output messages. Discovery of both services
and resources also forms part of the abstract
middleware layer. Again, WSDL is used to abstract
over different modes of interaction with service and
resource discovery mechanisms. This is relatively
straightforward for service discovery protocols
because all of these tend to be based on advertisement
of service types with service attributes. The abstract to
concrete mapping layer then takes the abstract
information submitted through the abstract
middleware layer and maps it to the interfaces of the
currently exposed concrete middleware
implementation(s) in the layer below. This mapping is
based on ReMMoC principles. Unlike ReMMoC, the
Grid API framework allows multiple mapping
components to be maintained in order for different
services to be simultaneously hosted, each of which
can use multiple service bindings. This was not
necessary in ReMMoC as it was exclusively a client
side framework that did not itself support remotely
accessible services. Finally, the concrete middleware
layer is composed of three CFs, organized in two
layers. The top layer is composed of CFs to support
concrete service binding and resource discovery. The
service binding CF provides a set of available
interaction type implementations. These are
implemented as component personalities and plugged
into the framework. Multiple personalities can operate
in parallel to support the required level of persistence

in hosting services. That is, when a service is hosted
over one binding type it need not be shut down if an
alternative binding must be used by another service.
The binding framework exposes its network
requirements to the underlying overlay framework
using the exposed receptacle technique illustrated in
Fig. 2. The discovery CF similarly allows multiple
discovery technologies to be plugged into the
framework at any one time. Resource discovery
requests and advertisement of resources can be
executed in parallel over each of the plugged-in
personalities so that Grid applications can maximize
the number of resources that are found, find them
more quickly and can distribute their resources to a
greater audience. The discovery framework utilizes
the underlying overlay framework to enhance
discovery and we intend to investigate the addition of
alternative resource discovery technologies into the
framework. Underpinning the Service Binding and
Discovery CFs, the role of the Overlay CF is to
provide overlay network services to the higher-level
CFs: to route packets through virtual networks that are
tailored to support the various service interaction
types.

CONCLUSION

 The existing Grid middleware does not provide the
necessary level of support for complex Grid
applications such as distributed collaborative
visualization. We believe that an open component-
based platform, which integrates middleware and
networking functionality, is needed to support the
sophisticated communication requirements of
applications of this type. For this purpose, the service
binding and resource discovery architectures of Grid
Toolkit allow multiple interaction and discovery types
to be simultaneously hosted over multiple overlay
network configurations. Our ReMMoC-derived Grid
Toolkit implementation initially provided us with a
base of three binding protocols and two discovery
technologies.

REFERENCES

Coulson, G., G.S. Blair, M. Clark and N. Parlavantzas,

2002. The design of a highly configurable and
reconfigurable middleware platform. ACM
Distribut. Comput. J., 15: 109-126.

J. Computer Sci., 6 (3): 336-340, 2010

340

Coulson, G., P. Grace, G.S. Blair, L. Mathy and
D. Duce et al., 2004. Towards a component-based
middleware framework for configurable and
reconfigurable grid computing. Proceeding of the
13th IEEE International Workshop on Emerging
Technologies Infrastructure for Collaborative
Enterprises, June 14-16, IEEE Computer Society,
Washington DC., USA., pp: 291-296.
http://portal.acm.org/citation.cfm?id=1034650

Foster, I., C. Kesselman and S. Tuecke, 2001. The
anatomy of the grid: Enabling virtual
organizations. Int. J. High Perform. Comput.
Appli., 15: 200-222. DOI:
10.1177/109434200101500302

Parlavantzas, N., G. Coulson and G.S. Blair, 2003. An
extensible binding framework for component-
based middleware. Proceeding of the 7th
International Conference on Enterprise Distributed
Object Computing, Sept. 16-19, IEEE Computer
Society, Washington DC., USA., pp: 252. DOI:
10.1109/EDOC.2003.1233854

