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Abstract: Problem statement: Edge detection is an important field in image pssing. Edges
characterize object boundaries and are therefoefulufor segmentation, registration, feature
extraction, and identification of objects in a seekpproach: This study presented a novel method for
edge detection using 2D Gamma distribution. Edgéedtien is traditionally implemented by
convolving the image with masks. These masks anstnacted using a first derivative, called gradient
or second derivative called Laplacien. Thus, thebjgm of edge detection is therefore related to the
problem of mask construction. We propose a novehatketo construct different gradient masks from
2D Gamma distributionResults: The different constructed masks from 2D Gammariligion are
applied on images and we obtained very good resuttsmparing with the well-known Sobel gradient
and Canny gradient resulSonclusion: The experiment showed that the proposed methtalneol
very good results but with a big time complexityedao the big number of constructed masks.
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INTRODUCTION The rest of the study is organized as follows:
material and methods, results, discussion, and
Edge detection is an important field in imageconclusion.
processing. It can be used in many applicationh sisc
segmentation, registration, feature extraction, and MATERIALSAND METHODS
identification of objects in a scene. Edge detectio
refers to the process of locating sharp discortigsiin 2D Gamma distribution: The probability density
an image. These discontinuities originate fromedéht  function for Gamma distribution, as in (Papoulig91),
scene features such as discontinuities in depths;
discontinuities in surface orientation, and changes
material properties and variations in scene illuation. X%l x/8
Many operators have been introduced in the liteeatu G1Db(x)= F ()"
for example Roberts, Sobel and Prewifthu, 1996;

Siuzdak, 1998; Basu, 1994; Aurich and Weule, 1995;
Deng and Cahill, 1993; Kang and Wang, 2007). where,a>0 and6>0 are the parameters for shape and

Edges are mostly detected using either the firsBcale, respectively. Where x>0 and)is the Gamma
derivatives, called gradient, or the second dekieat  function, as in (Papoulis, 1991).

called Laplacien. Laplacien is more sensitive tis@o So the 2D Gamma distribution will be:

since it uses more information because of the aatfir

the second derivatives. G2D(x,y) = G1D( ¥ .G1{ y

. In_this sftudy,hwe p[jqposefaGnoveI n:jgth(_)gi f&medge (xetg e\ ypig e
etection using the gradient of Gamma distribut r@e )| F()e°

constructed many masks with different values of
Gamma parameters and took the maximum result from :(X“_ly“'le('x'”/ej
the convolution of these masks with the input image (M (0)8%)?

reduce the sensitivity to noise and produce thinner

edges. The results were very good compared with the  The following Fig. 1-4 illustrate the 1D Gamma
well-known Sobel gradient (Gonzalez and Woodsdistribution with different values of the paramster
2008) and Canny (1986) gradient results. notice that the curve is not symmetrical.
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Fig. 1: G1D(x) whera =6 =2
Fig. 4: G1D(x) wherx =5 andd = 50
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Fig. 2: G1D(x) wheru = 2 and@ = 5 Fig. 5: G1D(X) wherat = 10 and® = 50
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x
Fig. 3: G1D(x) wherx = 2 andd = 50
Notice that from Fig. 3-6 the peak is shifting be t
Notice that in Fig. 2¢ is the same as in Fig. 1 but right asa gets larger (it gets more symmetrical). Thus,
9 is larger, the shape resulted is almost the samé b Whena gets larger the Gamma distribution will take the
symmetric shape.

is larger (expanded a larger area).
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Table 1: New Gamma gradient masks

My

7] d 7]
—G2D(x-d,y-d) —G2D(x-d,y) —G2D(x-d,y+d)
o0x ox o0x

7] 7] 7]
—G2D(x,y-d) —G2D(x,Y) —G2D(x,y+d)
o0x ox o0x

] 9 ]

&GZD(X+ d,y-d) &GZD(X+ d,y) &GZD(X+ d,y+ d)
MV

a 9 i)

a—yGZD(x—d,y— d) a—yGZD(x—d,y) a—yGZD(x—d,y+ d)
9 G2D(x,y- d) 9 G2p(x.y) 9 G2D(x, y+ d)
ay ' ay ' ay '
B%GZD(H d,y-d) a%GZD(Hd,y) %GZD(x+d,y+ d)

o In this study, we developed a new formula to
construct gradient masks Mx and My using 2D Gamma
distribution. The 1D Gamma distribution is a densit

probability function, thus:

jelDoodle

and therefore:

HGZD(X,y)dXdyz 1

Fig. 8: G2D(x,y) whena = 12 and® = 50 (almost The first derivatives fox andy of the 2D Gamma

symmetric) distribution contain negative and positive valudge
know that the sum of elements in each gradient mask
M, and M, is equal to zero, thus our new idea in this
study is to build masks from the first derivativafs2D
Gamma distribution. The first derivatives are cotapu

Figure 7-8 view the 2D Gamma distribution with
different values of the parameters.

New Gradient Masks from 2D Gamma distribution:

To detect the edges in an image f(x,y), we usdithe as follows:

derivatives-the gradient. First, the two gradierssks, (x910y a2 L g — 1 X

M, and M, are constructed. Then the result of 9 GaD(y)= )Y - 1-0)

convolving these two masks with the image f is used X Y I (a)6°

compute the gradient of the image f as expresséikin

following equation: 5 ) (€012 ) _1_%)
—G2D(x,y)=

|0f B+ F ay ()6

] Table 1 shows the new gradient masksavid M,
where, k and F; are the result of the convolution of the ,55ks.

two masks, expressed in the following equations: Where d is the distance, which is a user defined
value. And these mask values need to be normalized
Fu(X,y) = (F*M,)(x,y) before it is used because the summation of theiegriad
F(xy) = (F*My)(xy) mask must be zero. One way to achieve this, isvided
the positive values by the summation of all theitpas
Where: values in the mask, also dividing the negative eslby
* = The convolution symbol the summation of all the negative values in the kmas
f = The input image after multiplying it by -1 so they remain negative.
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Table 2: Masks Mand M, when d = 19 =50, andx = 2
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My

-0.360513 0.0928590 0.2676540
-0.332793 0.0857192 0.2470740
-0.306694 0.0789965 0.2276970
My

-0.360513 -0.3327930 -0.3066940
0.092859 0.0857192 0.0789965
0.267654 0.2470740 0.2276970

Table 3: Masks Mand M, when d = 19 = 50, andx = 8

M

X
-0.00149872 7.12911e-007 0.001498000
-0.00143174 6.81055e-007 0.001431060
-0.99707 0.0004742880 0.996595000 (b)
M,
-0.00149872 -0.001431740 -0.997070000
7.12911e-007 6.81055e-007 0.000474288
0.001498 0.001431060 0.996595000
Table 4: Masks Mand M, when d =19 = 80, andx = 2
My
-0.350203 0.0892027 0.261001
-0.333123 0.0848521 0.248271
-0.316673 0.0806620 0.236011
M,
-0.350203 -0.3331230 -0.316673
0.0892027 0.0848521 0.080662
0.261001 0.2482710 0.236011

When d = 1,6 = 50 anda = 2, we get the ]
normalized masks in Table 2. While if d =@ = 50 (d)
anda = 8, we get the normalized masks in Table 3
When d = 18 = 80 anda = 2, we get the normalized
masks in Table 4.

For each pair ofof, 0), we can construct one set of
gradient masks (M M,). Therefore, from different Figure 9-11 illustrate the Sobel, Canny and Gamma
values of ¢, 0), we can construct different masks sets.gradients of the different images. For each gradian
This way, the method becomes less sensitive toenoissegmented image was obtained using a suitable
and produces thinner edges because it takes fdr eagreshold. We notice that the Gamma gradients are
pixel the largest gradient value from the mostadl@  much better than Sobel gradients and the lines are
mask for that pixel. thinner and better than Canny gradients.

Fig. 9: Gradients of rice image. (a) original imad®
sobel gradient; (c) canny gradient; (d) gamma
gradient

RESULTS DISCUSSION

The novel method of edge detection using 2D From Fig. 9-11, we can remark the following
Gamma distribution was implemented and tested ORoints: (i) Sobel gave thick gradient and then ¢dge
three images. We constructed masks with differengietect by Sobel is also thick. The results areinbth
values of the parameters: fran¥ 2 toa = 12, and from  ysing only two masks. (i) Canny gave good graidien
6 = 50 tob = 80, yielding 300 different mask sets (M and thin edges. Note that the Canny edge detestar i
and M) are constructed. Then after the convolution ofpost-processing of a gradient. (i) Our method eyav
one set of masks, the gradient is calculated. Tthen good gradient and thin edges without post_procggmn
final gradient is assigned to the maximum gradieniCanny case. Our results are obtained using 300
value calculated from these different mask sets Thdiﬁ‘erent masks. The time Comp|exity is very tmg
Gamma and Sobel gradients for the images wer@omparison with Sobel and Canny. Our method gave

obtained by our implementation, while Canny thinner edges than the Canny result without doimg a
gradients were obtained online from (Canny,8)98 post-processing.
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Fig. 10: Gradients of blood cells image. (a) orddiimage; (b) sobel gradient; (c) canny gradied), gamma
gradient

Fig. 11: Gradients of an image of square with &h@) original image; (b) sobel gradient; (c) gagradient; (d)
gamma gradient

CONCLUSION Further research can be using the Laplacien of the
Gamma distribution or improving the efficiency diet
In this study, we presented a new method foimethod used to calculate the Gamma gradient.
detecting edges of an image. We used the gradfent o
2D_ Gamma distribution. Many masks were constructed ACKNOWL EDGMENT
using different values of Gamma parameters. Then fo
each pixel, the maximum result was taken as the
gradient for this pixeL The proposed method water | would like to thank Hessah Alsaaran for her help
on different types of images. The results were veryn preparation of this study. This work was supedrt
good compared with Sobel and Canny gradient result®y the Research Center of the College of Computér a
They were less sensitive to noise and the edgee weknformation Sciences, King Saud University, Riyadh,
thinner. Saudi Arabia.
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