
Journal of Computer Science 6 (12): 1505-1510, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Junghee Lee, School of Electrical and Computer Engineering, Georgia Institute of Technology,
 777 Atlantic Drive NW, Atlanta, GA 30332, USA

1505

A Frame Study for Post-Processing Analysis on System Behavior:

A Case Study of Deadline Miss Detection

Junghee Lee and Jongman Kim
School of Electrical and Computer Engineering, Georgia Institute of Technology,

777 Atlantic Drive NW, Atlanta, GA 30332, USA

Abstract: Problem statement: A lot of data can be obtained by system simulation using transaction
level models without affecting the performance of the system. Due to huge amount of the raw data, we
often need to post-process them to extract valuable information. Profiling capabilities of commercial tools
provide predefined functionalities and don’t allow users to add or modify for their own purpose.
Approach: This study proposed a general frame study for the automation of post-processing simulation
results using Boolean representation. The proposed frame study consists of Boolean expresser,
manipulator and analyzer. Results: The frame study was illustrated with a case study of deadline miss
detection. Conclusion: The frame study was practical as it provides flexibility, generality and ease of use.

Key words: Simulation result, post-processing, Boolean expresser, signal deadline, assertion checker,

manipulator, rising edge, raw data, temporal logic, frame study, utilization monitors

INTRODUCTION

 System simulation using Transaction Level Models
(TLMs) (Ghenassia, 2005) is gaining more popularity
for analyzing and optimizing a system. A lot of raw
data can be obtained without affecting the performance
of the system. However, often we need to post-process
the raw data to extract valuable information from them
due to their huge amount.
 To automate post-processing, we need to represent
all the system events by a unified form. However,
characteristics of events are not uniform. For example,
hardware events like bus transactions can be easily
represented by Boolean but software behaviors are not.
They may be converted into linear temporal logic
(Pnueli, 1977) or computation tree logic (Clarke and
Emerson, 1981). Such logical representations are good
for formal verification but impose limitations on
expressiveness.
 Therefore, this study proposes a general frame
study for post-processing that adopts Boolean
representation. All the system events are represented as
Boolean along with manipulators, which is the main
contribution of this study. The Boolean representation
itself traces only when and whether an event occurs. Its
semantics is interpreted by manipulators. The Boolean
representation is simple to use but expressive enough to
represent the simulation results for analysis purpose.

 Figure 1 shows the proposed frame study that has
three components: Boolean expresser, manipulator and
analyzer. First, the Boolean expresser converts the
simulation results into the Boolean representation. The
manipulator interprets the semantic of the Boolean
representation and manipulates it to provide the
analyzer with inputs. Finally, the analyzer generates
analysis results. The Boolean expresser and the
analyzer can be reused as libraries and the manipulator
handles the application specific features.
 Typical situation of using our frame study is as
follows. Simulation models of hardware and software
have been built. Simulations are conducted many times
varying parameters of hardware and software or
modifying a part of software. To analyze results of each
run of simulation, our frame study is used.

Fig. 1: Proposed framework

J. Computer Sci., 6 (12): 1505-1510, 2010

1506

Fig. 2: Motivating example

Motivation and related studies: Figure 2 shows a
motivating example, a Gannt chart of FuncA, FuncB
and FuncC. The gray box indicates that the function is
being executed. FuncA is executed periodically and
triggers FuncB on a certain condition. FuncC runs right
after FuncB finishes. Suppose that we are to measure
the execution time between T1 and T2. T1 is the start
time of FuncA just before FuncB starts and T2 is the
end time of FuncC.
 To automate measuring such a point, a
specification method is necessary. Conventional
software profilers provide execution time of each
function or statement (Stewart and Arora, 2003). Since
functions and statements have regular structure, they
don’t need to be specified explicitly. However, in this
example, we need a specification method because the
point to be measured is application specific.
 Instrumentation can be used for measuring
application specific points. The instrumentation code is
inserted into the target program to be measured either
statically at compile-time (Stewart and Arora, 2003) or
dynamically at run-time (Corliss et al., 2005).
Measurement can be done by post-processing the raw
data or by the executable assertion (Pinter and Majzik,
2005; Drusinsky et al., 2005) implemented in the
instrumentation code.
 The drawbacks of the instrumentation are that it
can be applied only for the software and that it may
cause distortions because it should be inserted into and
executed with the target program. Even small overheads
of the instrumentation code may result in a distortion of
the operating sequences of the system. More
instrumentation codes can facilitate debugging and
optimizing, but they result in additional distortions,
which inhibit the insertion of as many instrumentation
codes as required. Thus, there have been studies to
reduce the overhead of the instrumentation (Metz et al.,
2003). Hardware-assisted measurement does not cause
distortion, but its precision and scope are limited
(Stewart and Arora, 2003).

 Therefore, system simulation using TLMs
(Ghenassia, 2005) is getting more attention. The use of
simulation results makes it possible to measure the
performance of a system non-intrusively without any
limitations on the precision and scope. We can obtain a
lot of raw data by the simulation. Because of huge
amount of simulation results, often we need post-
processing them to extract valuable information.
 There are commercial simulation tools (SoC
Designer, http://www.arm.com; Innovator.
http://www.synopsys.com; System Generator.
http://www.arm.com; CoMET.
http://www.vastsystems.com) providing analysis
capability. They provide predefined individual analysis
facilities. They don’t provide a way to specify
application specific measurement. Practitioners often
use their own scripts for application specific
measurement. In most cases, they are designed case by
case. There is no general frame study to our best
knowledge.

MATERIALS AND METHODS

 This study describes two examples of the Boolean
representation: function call trace of software and bus
transactions. The way to convert the call trace and bus
transactions into the Boolean representation described
in this section is not the only way. The frame study
allows for the users to add their own Boolean expresser.
Hardware traces of registers and signals don’t need to
be converted as they are already generated in Boolean
form. However, sometimes we don’t need every trace
of registers and signals. The example of bus
transactions is provided as an example of abstracting
the simulation results.
 The Boolean expresser converts simulation results
into Boolean representation. Details of how to convert
depend on the format of simulation results but the
principle is same. The Boolean representation contains
only when and whether events occur.
 We found the Boolean expression is enough to
express all the events for analysis purpose. There may
be a simulation result that is not intuitively converted to
the Boolean representation. A typical example is
software trace. It is usually represented as a call trace.
We often don’t need all the information contained in
the call trace. For an example of Fig. 2, what we need is
when and which function is being executed, not which
function calls which function. For that purpose, we may
convert the call trace into the Boolean representation by
representing which function is being executed as a
signal whose value is true. More precisely, start of
function is represented as a rising edge and end of

J. Computer Sci., 6 (12): 1505-1510, 2010

1507

function is represented as a falling edge. In the same
manner, other events can also be converted into the
Boolean representation.
 An example of converting the function call trace to
the Boolean representation is as follows. In order to
convert the function call trace to a Boolean
representation, a set of call traces C and a set of
function names N should be provided from the
simulation. Three kinds of information are contained in
the i-th element ci: the name of the function ni, a flag fi
to indicate whether the function is called or returned
and a timestamp ti. The name ni should be an element of
N and the flag fi should be either ‘C’ or ‘R’, where ‘C’
and ‘R’ indicate call and return, respectively. Then, the
procedure for converting the function call trace to a
Boolean representation is given as follows:

1. For the given set of call traces C = {c0, c1, c2, …,

cn} and the given set of function names N
 where ci = (ni, fi, ti), ni ∈ N, fi ∈ {‘C’, ‘R’}
2. Make a set of signals S
 For ∀n∈ N, add a signal with name n into S
3. For ∀ci∈ C
 If f i is ‘C’
 Make a rising edge of the signal s named ni at

ti where s∈ S
 If f i is ‘R’
 Make a falling edge of the signal s named ni at

ti where s∈ S

 Figure 3 shows an example of the conversion
procedure. The software in this example includes
FuncA, FuncB, FuncC and FuncD. FuncA calls FuncB
and FuncC consecutively and FuncC calls FuncD.
Then, the set of function names N would be {‘FuncA’,
‘FuncB’, ‘FuncC’, ‘FuncD’}. Function call traces from
the execution of the software are shown on the upper
right-hand side of Fig. 3. Each line corresponds to ci
and each column corresponds to ni, fi and ti,
respectively. For example, the first three rows are
interpreted as follows: FuncA is called at T1, FuncB is
called at T2 and then at T3, the function call trace
returns to FuncA as FuncB is completed. The function
call trace is represented as Boolean values like the
waveform shown in Fig. 3. The function call of FuncA
at T1 is represented as a rising edge of the signal FuncA
at T1, the function call of FuncB at T2 is a rising edge
of the signal FuncB at T2 and a return to FuncA from
FuncB at T3 is represented as a falling edge of the
signal FuncB at T3.
 Bus transactions can be converted in a similar way
for the given set of traces B and the set of transaction
names N. A transaction means an explicit data

exchange between a master and a slave (Ghenassia,
2005). The converted form has a higher abstraction
level than the TLM in that it does not trace the data
being exchanged. It is sometimes sufficient to trace the
kind of transactions that are taking place with
timestamps. In this case, fi is ‘S’ or ‘E’, where ‘S’ and
‘E’ indicate the start and end of the transaction,
respectively. The procedure is defined as follows:

1. For the given set of bus traces B = {b0, b1, b2, …,

bn} and the given set of transaction names N
 where bi = (ni, fi, ti), ni ∈ N, fi ∈ {‘S’, ‘E’}
2. Make a set of signals S
 For ∀n∈ N, add a signal with name n into S
3. For ∀bi∈ B
 If f i is ‘S’
 Make a rising edge of the signal s named ni at

ti where s∈ S
 If f i is ‘E’
 Make a falling edge of the signal s named ni

at ti where s∈ S

 Figure 4 shows an example of converting bus
transactions to Boolean values. The bus trace in this
example abstracts bus activities as three transactions:
Request, Read and Write. In a Request transaction, the
master requests bus access to the arbiter, while during
the Read and Write transactions, the master performs
data transfers on the bus. An example of bus transaction
traces is shown in Fig. 4. The bus transactions are
interpreted and converted in a similar manner as the
function call trace. The waveform in the lower part of
Fig. 4 shows the converted values of the bus
transactions.

Fig. 3: An example of converting function call trace to

Boolean values

J. Computer Sci., 6 (12): 1505-1510, 2010

1508

Fig. 4: An example of converting bus transactions to

Boolean values

Fig. 5: Assertion checker

 Two examples of the analyzer are described: the
assertion checker and the utilization monitor. The
analyzer described in this section can be reused for any
application. The inputs to the analyzer should be
provided by the user according to the application. The
inputs to the analyzer are explained in the subsequent
section.
 The assertion checker is designed for detecting
deadline misses. In this study, measurer and graphical
displayer are also implemented. The assertion checker
automatically detects whether a study load meets the
deadline or not. A study load denotes a tuple of
hardware and software tasks that have to be executed in

order for a specific purpose. It should be noted that the
formal definition of a tuple is a set that can contain an
element more than once and the elements appear in a
certain order. If a system comprises multiple study
loads, every study load needs its own assertion checker
so that its deadline can be verified.
 Figure 5 illustrates the operations of an assertion
checker. The inputs to the assertion checker are the
signals Study load, Enable and Deadline. The signal
study load indicates whether the study load to be
checked is active or not. A rising edge indicates the
start and a falling edge indicates the end of the study
load. The signal Enable indicates whether the study
load occupies all the necessary resources of the system
or not. When its value is false, the study load is in the
state of waiting for resources. For example, if a study
load consisting of software tasks is preempted by an
Interrupt Service Routine (ISR), the study load cannot
be performed while the ISR is performed even though it
is incomplete. This case would be represented as a false
value of the signal Enable while the signal Study load is
true. A rising edge of the signal Deadline indicates the
deadline of the study load. The assertion checker
determines a deadline miss by comparing a falling edge
of the signal Study load and a rising edge of the signal
Deadline. The signal Enable is not used for determining
a deadline miss, but it is used for calculating the net
processing time by the measurer described in the next
paragraph.
 The measurer calculates the statistics of the
processing time, net processing time and slack of the
study load. The processing time is the interval between
a rising edge and a falling edge of the signal Study load.
The net processing time is the processing time only
when the signal Enable is true. Slack is the interval
between a falling edge of the signal Study load and a
rising edge of the signal Deadline. If a deadline miss
occurs, the slack is calculated to be zero in this study.
 The graphical displayer displays the status of the
system graphically. A green bar indicates that a study
load is actually performed, while a blue bar indicates
that the study load waits for resources. If both the
signals Study load and Enable are true, a green bar is
displayed. A blue bar is displayed if the signal Enable is
false and the signal Study load is true. If the signal
Study load is false, nothing is displayed. A rising edge
of the signal Deadline is displayed as a red pulse.
 The utilization monitor is used for monitoring the
variation of utilization with time. Generally, it is used
for monitoring resources such as the CPU or bus.
Figure 6 illustrates the operations of the utilization
monitor.

J. Computer Sci., 6 (12): 1505-1510, 2010

1509

Fig. 6: Utilization monitor

 The input to the utilization monitor is the signal
Utilization. If the signal is true, it indicates that a
resource is being used. The timeline is split into
intervals whose duration is Resolution given by the
user. In each interval, a bar is displayed; its height is the
percentage of the summation of time when the signal
Utilization is true within the interval over Resolution.

RESULTS

 The results presents the case study of the deadline
miss detection with the manipulator being illustrated.
We consider a system that comprises the ARM926,
Vectored Interrupt Controller (VIC), Personal
Computer Memory Card International Association
(PCMCIA), memory controller, modem and timer. The
main function of the system is to transfer the data
received from the modem to a host via PCMCIA. There
are two study loads in the system. The modem study
load receives data from the modem and moves it to the
system memory. Rx interrupt is generated every one
Millisecond (Ms) from the modem. The ISR
(DataRxIsr), task Layer1and task Layer2 should be
executed sequentially and completed before the next Rx
interrupt is generated. In addition to the modem study
load, the PCMCIA study load runs concurrently. When
the host requests data, the Direct Memory Access
(DMA) controller of the PCMCIA receives data from
the system memory.
 Figure 7 shows the manipulator for the modem
study load. The manipulator can be considered as a
behavioral hardware model. To provide the
assertion checker with the input Study load, a sub
module is designed. The rising edge of Study load
should be identical to the rising edge of Data RxIsr
and its falling edge is the falling edge of Layer2.

Fig. 7: Manipulator for the modem workload

Fig. 8: Screenshot of the graphical displayer

Note that the sub module can be triggered at both rising
and falling edges at the same time as it is like a
behavioral model. The input Enable is made by
logically OR-ing and inverting the ISR signals from the
function call trace since the modem study load can be
preempted by ISRs. The interrupt request signal from
the modem to the VIC is directly used for the input
Deadline. As for the PCMCIA study load, its assertion
can be designed in a similar manner. Utilization
monitors are added for the bus masters: the instruction
bus of ARM926 (I-bus), the data bus of ARM926 (D-
bus) and the DMA controller of the PCMCIA (DMA).
If deadline misses are detected, utilization monitors
may provide helpful information to investigate their
causes.
 Using the proposed technique, we could analyze
simulation results of size 320 MB in a few min. It took
438 sec to analyze 24001001 cycles with the traces. The
analysis speed was measured on an Intel 1.7 GHz
Pentium M processor with 1.5 GB memory and
Windows XP. Figure 8 shows a screenshot of the
graphical displayer.
 The inputs to the assertion checker are provided by
logical operations of the Boolean representation. In

J. Computer Sci., 6 (12): 1505-1510, 2010

1510

order to implement logical operations, a logic
simulation engine was implemented using C++ in this
study. The logical operations should be specified by the
user using the Application Programming Interfaces
(APIs) provided by the logic simulation engine in a
manner similar to System C (Open SystemC Initiative,
2005). The Boolean expresser, assertion checker and
utilization monitor were also implemented using the
APIs and they can be used in a unified environment.
 It should be noticed again that commercial
simulation tools (SoC Designer, http://www.arm.com;
Innovator. http://www.synopsys.com; System
Generator. http://www.arm.com; CoMET.
http://www.vastsystems.com.) provide only predefined
individual analysis facilities. They don’t provide a way
to specify application specific measurement, which
should be done manually. To automate the application
specific measurement, practitioners often use their own
scripts, but they are designed case by case. There is no
general frame study to our best knowledge.

DISCUSSION

 In this study, a general frame study for automation
of post-processing simulation results is proposed. The
proposed frame study is practical as it provides
flexibility, generality and ease of use.
 It is flexible in that it can be easily extended to
various purposes of analysis. There are commercial
tools providing some of individual components in this
frame study. For example, SOC Designer
(http://www.arm.com) provides a facility to monitor
bus utilizations. However, it does not provide any
facility for detecting deadline misses.
 The proposed frame study can be generally applied
for any features of any applications. Some practitioners
are using their own scripts that play like the
manipulator. In most cases, the scripts are designed
case by case.
 The Boolean representation is simple to use but
expressive enough to represent simulation results since
complex semantics are handled by the manipulator not
by the Boolean representation.

CONCLUSION

 This study proposes a general framework of post-
processing analysis on system behavior. By employing
Boolean representation, the proposed technique can
achieve flexibility, generality and ease of use, which are
demonstrated with a case study.

REFERENCES

Clarke, E.M. and E.A. Emerson, 1981. Design and

synthesis of synchronization skeletons using
branching time temporal logic. Lecture Notes
Comput. Sci., 5000: 196-215. DOI: 10.1007/978-3-
540-69850-0_12

Corliss, M.L., E.C. Lewis and A. Roth, 2005. Low-
overhead interactive debugging via dynamic
instrumentation with DISE. Proceeding of the 11th
International Symposium on High-Performance
Computer Architecture, Feb. 12-16, IEEE Xplore
Press, San Francisco, pp: 303-314. DOI:
10.1109/HPCA.2005.18

Drusinsky, D., M. Shing and K. Demir, 2005. Test-
time, run-time and simulation-time temporal
assertions in RSP. Proceeding of the International
Workshop on Rapid System Prototyping. June 8-10,
IEEE Xplore Press, Montreal, pp: 105-110. DOI:
10.1109/RSP.2005.50

Ghenassia, F., 2005. Transaction-Level Modeling with
SystemC: TLM Concepts and Applications for
Embedded Systems. 1st Edn., Springer, USA.,
ISBN: 0387262326, pp: 271

Metz, E., R. Lencevicius and T.F. Gonzalez, 2003.
Performance data collection using a hybrid
approach. ACM SIGSOFT Software Eng. Notes,
30: 126-135.

Open SystemC Initiative, 2005. Draft Standard
SystemC Language reference manual version 2.1.
Open SystemC Initiative (OSCI).
http://www.cse.iitd.ernet.in/~panda/SYSTEMC/La
ngDocs/LRM_version2.1.pdf

Pnueli, A., 1977. The temporal logic of programs. In:
Proceeding of the IEEE Symposium on the
Foundations of Computer Science, Oct. 31 -Nov. 2,
IEEE Xplore Press, Providence, RI., USA., pp: 46-57.
DOI: 10.1109/SFCS.1977.32

Pinter, G. and I. Majzik, 2005. Automatic generation of
executable assertions for runtime checking
temporal requirements. Proceeding of the 9th
International Symposium on High-Assurance
Systems Engineering, Oct. 12-14, IEEE Xplore
Press, Heidelberg, pp: 111-120. DOI:
10.1109/HASE.2005.6

Stewart, D.B. and G. Arora, 2003. A tool for analyzing
and fine tuning the real-time properties of an
embedded system. IEEE Trans. Software Eng.,
29: 311-326. DOI: 10.1109/TSE.2003.1191796

