Journal of Computer Science 6 (12): 1505-1510, 2010
ISSN 1549-3636
© 2010 Science Publications

A Frame Study for Post-Processing Analysis on System Behavior:
A Case Study of Deadline Miss Detection

Junghee Lee and Jongman Kim
School of Electrical and Computer Engineering, @eomstitute of Technology,
777 Atlantic Drive NW, Atlanta, GA 30332, USA

Abgtract: Problem statement: A lot of data can be obtained by system simulatisimg transaction
level models without affecting the performance e system. Due to huge amount of the raw data, we
often need to post-process them to extract valuafiemation. Profiling capabilities of commerctabls
provide predefined functionalities and don't allavgers to add or modify for their own purpose.
Approach: This study proposed a general frame study fomtitemation of post-processing simulation
results using Boolean representation. The propdsaghe study consists of Boolean expresser,
manipulator and analyzeResults: The frame study was illustrated with a case swidgieadline miss
detectionConclusion: The frame study was practical as it provides [fidity, generality and ease of use.

Key words: Simulation result, post-processing, Boolean exqmessignal deadline, assertion checker,
manipulatoryising edge, raw data, temporal logic, frame studi§ization monitors

INTRODUCTION Figure 1 shows the proposed frame study that has

three components: Boolean expresser, manipulatbr an

System simulation using Transaction Level Modelsanalyzer. First, the Boolean expresser converts the
(TLMs) (Ghenassia, 2005) is gaining more popularitysimulation results into the Boolean representaticire

for analyzing and optimizing a system. A lot of raw manijpulator interprets the semantic of the Boolean

data can be obtained without affecting the perforrea representation and manipulates it to provide the

of the system. However, often we need to POSt-E®CE gnalyzer with inputs. Finally, the analyzer genesat
the raw data to extract valuable information frdrarh analysis results. The Boolean expresser and the

due to their huge amount. i analyzer can be reused as libraries and the manguul
To automate post-processing, we need to represept - jles the application specific features.
all the system events by a unified form. However, Typical situation of using our frame study is as

characteristics of eyents are not unl_form. For epiam follows. Simulation models of hardware and software
hardware events like bus transactions can be easq;(

. ave been built. Simulations are conducted mangdim
represented by Boolean but software behaviors aire n varying parameters of hardware and software or
They may be converted into linear temporal logic

. . , modifying a part of software. To analyze resultgath
(Pnueli, 1977) or computation tree logic (Clarke and

!) run of simulation, our frame study is used.
Emerson, 1981). Such logical representations aoel go
for formal verification but impose limitations on

expressiveness. —
Therefore, this study proposes a general frame

study for post-processing that adopts Boolean +
representation. All the system events are repredes (éoolm expressﬂ] .(Manipulator] .[Analyzer j ‘
Boolean along with manipulators, which is the main I
contribution of this study. The Boolean represéoitat e
itself traces only when and whether an event ocdtss M
semantics is interpreted by manipulators. The Buoole

representation is simple to use but expressive@ntu

represent the simulation results for analysis psepo Fig. 1: Proposed framework

Corresponding Author: Junghee Leeschool of Electrical and Computer Engineering, @eomstitute of Technology,
777 Atlantic Drive NW, Atlanta, GA 30332, USA
1505

J. Computer i, 6 (12): 1505-1510, 2010

=
—
[]

Therefore, system simulation using TLMs

(Ghenassia, 2005) is getting more attention. Tleeads
D D simulation results makes it possible to measure the

performance of a system non-intrusively without any
limitations on the precision and scope. We caninl#a
lot of raw data by the simulation. Because of huge
amount of simulation results, often we need post-
processing them to extract valuable information.

There are commercial simulation tools (SoC

e) @ I @

FuncB

FuncC

_-O

! .
! ! Designer, http://www.arm.com; Innovator.
http://www.synopsys.com; System Generator.
Fig. 2: Motivating example http://www.arm.com; CoMET.

http://www.vastsystems.com) providing analysis

Motivation and related studies. Figure 2 shows a cap_z_;\blllty. They provide preqlefined individual ayﬁid;_
motivating example, a Gannt chart of FuncA, Funcgfacilities. They dont provide a way to specify
and FuncC. The gray box indicates that the fundson application specific measurement. Practitionersroft
being executed. FuncA is executed periodically and'Se their ~own scripts for application specific
triggers FuncB on a certain condition. FuncC rugtr ~Measurement. In most cases, they are designecygase
after FuncB finishes. Suppose that we are to measuf@Se. There is no general frame study to our best
the execution time between T1 and T2. T1 is thet sta knowledge.
time of FuncA just before FuncB starts and T2 s th
end time of FuncC. MATERIALSAND METHODS

To automate measuring such a point, a
specification method is necessary. Conventional This study describes two examples of the Boolean
software profilers provide execution time of eachrepresentation: function call trace of software &g
function or statement (Stewart and Arora, 2003)c8i transactions. The way to convert the call trace launsl
functions and statements have regular structumy th transactions into the Boolean representation dmedri
don't need to be specified explicitly. However,this in this section is not the only way. The frame gtud
example, we need a specification method because ttalows for the users to add their own Boolean esgee
point to be measured is application specific. Hardware traces of registers and signals don't rieed

Instrumentation can be used for measuringoe converted as they are already generated in Boole
application specific points. The instrumentationledgs form. However, sometimes we don't need every trace
inserted into the target program to be measurdwreit of registers and signals. The example of bus
statically at compile-time (Stewart and Arora, 208 transactions is provided as an example of abstgcti
dynamically at run-time (Corlisset al.,, 2005). the simulation results.
Measurement can be done by post-processing the raw The Boolean expresser converts simulation results
data or by the executable assertion (Pinter ancziklaj into Boolean representation. Details of how to ehv
2005; Drusinskyet al., 2005) implemented in the depend on the format of simulation results but the
instrumentation code. principle is same. The Boolean representation ¢osita

The drawbacks of the instrumentation are that itonly when and whether events occur.
can be applied only for the software and that ityma We found the Boolean expression is enough to
cause distortions because it should be insertedaintl express all the events for analysis purpose. Thexg
executed with the target program. Even small ovathe Dbe a simulation result that is not intuitively cented to
of the instrumentation code may result in a digtarbf ~ the Boolean representation. A typical example is
the operating sequences of the system. Moresoftware trace. It is usually represented as atcate.
instrumentation codes can facilitate debugging andVe often don’t need all the information contained i
optimizing, but they result in additional distorimy the call trace. For an example of Fig. 2, what wechis
which inhibit the insertion of as many instrumeiatat when and which function is being executed, not Whic
codes as required. Thus, there have been studies fianction calls which function. For that purpose, meay
reduce the overhead of the instrumentation (Me&., convert the call trace into the Boolean represridiy
2003). Hardware-assisted measurement does not causpresenting which function is being executed as a
distortion, but its precision and scope are limitedsignal whose value is true. More precisely, stdrt o
(Stewart and Arora, 2003). function is represented as a rising edge and end of

1506

J. Computer i, 6 (12): 1505-1510, 2010

function is represented as a falling edge. In tames exchange between a master and a slave (Ghenassia,
manner, other events can also be converted into thH2005). The converted form has a higher abstraction

Boolean representation.

level than the TLM in that it does not trace thdada

An example of converting the function call trace t being exchanged. It is sometimes sufficient todrte

the Boolean representation is as follows. In ortder
convert the function call trace

kind of transactions that are taking place with
to a Booleantimestamps. In this casg,i$ ‘S’ or ‘E’, where ‘S’ and

representation, a set of call traces C and a set O’ indicate the start and end of the transaction,
function names N should be provided from therespectively. The procedure is defined as follows:

simulation. Three kinds of information are containe

the i-th element;cthe name of the function,ra flag f 1.
to indicate whether the function is called or read

and a timestamp. fThe name jrshould be an element of

N and the flag;fshould be either ‘C’ or ‘R’, where ‘C’ 2.
and ‘R’ indicate call and return, respectively. ihthe
procedure for converting the function call traceao 3.
Boolean representation is given as follows:

1. For the given set of call traces C =,{c;, ¢ -..,
cn} and the given set of function names N
where ¢=(n, fi, t), n €N, f € {'C’, 'R}
2. Make a set of signals S
Forvne N, add a signal with name ninto S
3. ForvgeC
If f;is ‘C’
Make a rising edge of the signal s namedtn
t; where € S
If fiis ‘R’
Make a falling edge of the signal s namedtn
t; where € S

procedure. The software in this example include
FuncA, FuncB, FuncC and FuncD. FuncA calls FuncB
and FuncC consecutively and FuncC calls Func
Then, the set of function names N would be {'FuncA’
‘FuncB’, ‘FuncC’, ‘FuncD’}. Function call traces dm
the execution of the software are shown on the uppe
right-hand side of Fig. 3. Each line corresponds;to
and each column corresponds tg, i, and f
respectively. For example, the first three rows are
interpreted as follows: FuncA is called at T1, HBiris
called at T2 and then at T3, the function call ¢rac
returns to FuncA as FuncB is completed. The functio
call trace is represented as Boolean values like th
waveform shown in Fig. 3. The function call of FAnc
at T1 is represented as a rising edge of the skumatA
at T1, the function call of FuncB at T2 is a risiedge
of the signal FuncB at T2 and a return to FuncAnfro
FuncB at T3 is represented as a falling edge of the
signal FuncB at T3.

Bus transactions can be converted in a similar way
for the given set of traces B and the set of tretitsa
names N. A transaction means an explicit data

1507

Figure 3 shows an example of the conversiojF

For the given set of bus traces B =,{b;, by, ...,
b,} and the given set of transaction names N
where b= (n, f, t), n €N, fi € {'S’, ‘E’}
Make a set of signals S
Forvne N, add a signal with name ninto S
Forvb,e B
If fis ‘S’
Make a rising edge of the signal s namedtn
t; where € S
If fiis ‘E’
Make a falling edge of the signal s named n
attwhere € S

Figure 4 shows an example of converting bus

transactions to Boolean values. The bus trace i; th
example abstracts bus activities as three tramsecti
Request, Read and Write. In a Request transadtien,
master requests bus access to the arbiter, whilagdu
the Read and Write transactions, the master pesform
data transfers on the bus. An example of bus tciiosa
traces is shown in Fig. 4. The bus transactions are
nterpreted and converted in a similar manner a&s th
unction call trace. The waveform in the lower paft

ig. 4 shows the converted values of the bus
Df[ransactions.

FuncA() Name Flag Time
{ FuncA C T
FuncB(); FuncB C T2
FuncC(); FuncB R T3
} FuncC C T5
FuncD (o} T10
FuncC() FuncD R T
{ FuncC R T13
FuncD();
} N
T1 T2 T3 T5 T10T11 T13
L
FuncA J P
T
I
Fnee L[] P
R 1 - H
FuncC y T
R =
Funed | 4 0 1
o i Vo

Fig. 3: An example of converting function call teato

Boolean values

J. Computer i, 6 (12): 1505-1510, 2010

Name Fisg Time order for a s_pecific purpose. It should be notea_i the
Request S - formal definition of a tuple is a set that can eomtan
Request E T4 element more than once and the elements appear in a
Road : iy certain order. If a system comprises multiple study
Request S T9 loads, every study load needs its own assertionkene
\'fvfg;'es‘ g I]g so that its deadline can be verified.

Write E Ti2 Figure 5 illustrates the operations of an assertio
checker. The inputs to the assertion checker age th
signals Study load, Enable and Deadline. The signal

@ study load indicates whether the study load to be
checked is active or not. A rising edge indicates t
T1 1273 T4 75 T6 TOT10 T11 712 start and a falling edge indicates the end of theys
b P R load. The signal Enable indicates whether the study
Request 3 b l—l P load occupies all the necessary resources of tstersy

R

b or not. When its value is false, the study loathishe
— state of waiting for resources. For example, ity

| load consisting of software tasks is preempted by a
- Interrupt Service Routine (ISR), the study load nzn
Fig. 4: An example of converting bus transactions t P& performed while the ISR is performed even thatigh

Boolean values is incomplete. This case would be representedfalsa

value of the signal Enable while the signal Stuabdlis
true. A rising edge of the signal Deadline indisatiee
deadline of the study load. The assertion checker
determines a deadline miss by comparing a fallohgee
of the signal Study load and a rising edge of igaad
Deadline. The signal Enable is not used for det&ingi
a deadline miss, but it is used for calculating tied
processing time by the measurer described in thé ne

Read

Write

i
\\'orkload-—i

Inputs of the
assertion checker Enable

|

-]

I
Deadline—4
I 1

I

1

I I 1

ingti lg—1 1

Measurer —Process1n?tnnfe | | 1
Net processing timej-= I

1

1

1

il

Slack [:
i paragraph.
RRRRRIA] The measurer calculates the statistics of the
:’Gg;jniBg‘gi GresiitBiat E iRedeSf processing time, net prc_)ces.sing.time gnd slackhef t
study load. The processing time is the intervaivieen
— ' a rising edge and a falling edge of the signal $tadd.
Q = |

The net processing time is the processing time only
when the signal Enable is true. Slack is the imterv
between a falling edge of the signal Study load and
rising edge of the signal Deadline. If a deadlinessm
occurs, the slack is calculated to be zero inghidy.

The graphical displayer displays the status of the

system graphically. A green bar indicates thatualyst

Two examples of the analyzer are described: th?oad is actually performed, while a blue bar int
assertion checker and the utilization monitor. The, '

analyzer described in this section can be reusedrfy that the study load waits for resources. If botk th

application. The inputs to the analyzer should beS|gnals Study load and Enable are true, a greensbar

provided by the user according to the applicatibe displayed. A blue bar is displayed if the signahBle is

inputs to the analyzer are explained in the sutmequ 2/S€ and the signal Study load is true. If thenaig
section Study load is false, nothing is displayed. A risedge

The assertion checker is designed for detecting’ the signal Deadline is displayed as a red pulse.
deadline misses. In this study, measurer and graphi The utilization monitor is used for monitoring the
displayer are also implemented. The assertion aheck variation of utilization with time. Generally, it iused
automatically detects whether a study load meegs thfor monitoring resources such as the CPU or bus.
deadline or not. A study load denotes a tuple offigure 6 illustrates the operations of the utilizat
hardware and software tasks that have to be exaute monitor.

1508

Ready

Fig. 5: Assertion checker

J. Computer i, 6 (12): 1505-1510, 2010

Inputs of the ; : : 4 ! ! From function
utilization monitor | Utilization ﬂ—l_,_:)) call trace 2
= | \ H | H DataRxIsr { | C belml)mesdwue fat the |~
1 | I | |) B tisingedge of Ay Workload
—— | | !] Layerl C] C becomes false at the
! i ! ! ! ! e falling edge of B
[Resolutiont 1 ! 1 1 Layer2 S eC8 Enable
| I I I |]
I | G -]] i .
1 1 . -] 1 Pemetalsr Deadline
Utilization monitor _____ & i . DmaFinishls %
50 110 : TimeTicklsr
! ! ! | ! rom hardware trace! Afssmm checker
for the modem
L Rxlrg workload

File Miew Help
D aq « 2

I
1
1
Screen shot
a- PADizpiay DEK
1
]
1
i
]

Fig. 7: Manipulator for the modem workload

[

I

|

||aa,m
i

Fig. 6: Utilization monitor

The input to the utilization monitor is the signal
Utilization. If the signal is true, it indicates ah a
resource is being used. The timeline is split into
intervals whose duration is Resolution given by the
user. In each interval, a bar is displayed; itgheis the
percentage of the summation of time when the signal
Utilization is true within the interval over Restbn.

RESULTS

The results presents the case study of the deadlirFig. 8: Screenshot of the graphical displayer
miss detection with the manipulator being illustcht
We consider a system that comprises the ARM926Note that the sub module can be triggered at hisithgr
Vectored Interrupt Controller (VIC), Personal and falling edges at the same time as it is like a
Computer Memory Card International Associationbehavioral model. The input Enable is made by
(PCMCIA), memory controller, modem and timer. The logically OR-ing and inverting the ISR signals frahe
main function of the system is to transfer the datgunction call trace since the modem study load loan
received from the modem to a host via PCMCIA. Theregreempted by ISRs. The interrupt request signahfro
are two study loads in the system. The modem studthe modem to the VIC is directly used for the input
load receives data from the modem and moves hido t Deadline. As for the PCMCIA study load, its asgerti
system memory. Rx interrupt is generated every onean be designed in a similar manner. Utilization
Millisecond (Ms) from the modem. The ISR monitors are added for the bus masters: the irt&ruc
(DataRxlsr), task Layerland task Layer2 should béus of ARM926 (I-bus), the data bus of ARM926 (D-
executed sequentially and completed before theRext bus) and the DMA controller of the PCMCIA (DMA).
interrupt is generated. In addition to the modeudgt If deadline misses are detected, utilization manito
load, the PCMCIA study load runs concurrently. Whenmay provide helpful information to investigate thei
the host requests data, the Direct Memory Accessauses.
(DMA) controller of the PCMCIA receives data from Using the proposed technique, we could analyze
the system memory. simulation results of size 320 MB in a few mintdbk

Figure 7 shows the manipulator for the modem438 sec to analyze 24001001 cycles with the traldess.
study load. The manipulator can be considered as analysis speed was measured on an Intel 1.7 GHz
behavioral hardware model. To provide thePentium M processor with 1.5 GB memory and
assertion checker with the input Study load, a sutwindows XP. Figure 8 shows a screenshot of the
module is designed. The rising edge of Study loadyraphical displayer.
should be identical to the rising edge of Data Rxls The inputs to the assertion checker are provided b
and its falling edge is the falling edge of Layer2 logical operations of the Boolean representation. |

1509

J. Computer i, 6 (12): 1505-1510, 2010

order to implement logical operations, a logic REFERENCES

simulation engine was implemented using C++ in this

study. The logical operations should be specifipdie Clarke, E.M. and E.A. Emerson, 1981. Design and
user using the Application Programming Interfaces synthesis of synchronization skeletons using
(APIs) provided by the logic simulation engine in a branching time temporal logic. Lecture Notes
manner similar to System C (Open SystemC Initiative Comput. Sci., 5000: 196-215. DOI: 10.1007/978-3-
2005). The Boolean expresser, assertion checker and 540-69850-0_12

utilization monitor were also implemented using theCorliss, M.L., E.C. Lewis and A. Roth, 2005. Low-

APIs and they can be used in a unified environment. overhead interactive debugging via dynamic

It should be noticed again that commercial instrumentation with DISE. Proceeding of the 11th
simulation tools (SoC Designer, http://www.arm.com; International Symposium on High-Performance
Innovator. http://www.synopsys.com; System Computer Architecture, Feb. 12-16, IEEE Xplore
Generator. http://www.arm.com; COMET. Press, San Francisco, pp: 303-314. DOI:

http://www.vastsystems.com.) provide only predealine 10.1109/HPCA.2005.18

individual analysis facilities. They don’t provideway Drusinsky, D., M. Shing and K. Demir, 2005. Test-

to specify application specific measurement, which time, run-time and simulation-time temporal

should be done manually. To automate the applicatio assertions in RSP. Proceeding of the International

specific measurement, practitioners often use thein Workshop on Rapid System Prototyping. June 8-10,
scripts, but they are designed case by case. There IEEE Xplore Press, Montreal, pp: 105-110. DOI:
general frame study to our best knowledge. 10.1109/RSP.2005.50
Ghenassia, F., 2005. Transaction-Level Modelind wit
DISCUSSION SystemC: TLM Concepts and Applications for

Embedded Systems. 1st Edn., Springer, USA.,
In this study, a general frame study for autonmatio ISBN: 0387262326, pp: 271
of post-processing simulation results is propoSdte Metz, E., R. Lencevicius and T.F. Gonzalez, 2003.
proposed frame study is practical as it provides Performance data collection using a hybrid
flexibility, generality and ease of use. approach. ACM SIGSOFT Software Eng. Notes,
It is flexible in that it can be easily extendes t 30: 126-135.
various purposes of analysis. There are commercidDpen SystemC Initiative, 2005. Draft Standard
tools providing some of individual components ifsth SystemC Language reference manual version 2.1.
frame study. For example, SOC Designer Open SystemC Initiative (OSsCl).
(http://www.arm.com) provides a facility to monitor http://www.cse.iitd.ernet.in/~panda/SYSTEMC/La
bus utilizations. However, it does not provide any ngDocs/LRM_version2.1.pdf

facility for detecting deadline misses. Pnueli, A., 1977. The temporal logic of programs. |
The proposed frame study can be generally applied Proceeding of the IEEE Symposium on the
for any features of any applications. Some practérs Foundations of Computer Science, Oct. 31 -Nov. 2,

are using their own scripts that play like the IEEE Xplore Press, Providence, RI., USA., pp: 46-57
manipulator. In most cases, the scripts are dedigne DOI: 10.1109/SFCS.1977.32

case by case. Pinter, G. and I. Majzik, 2005. Automatic generataf
The Boolean representation is simple to use but executable assertions for runtime checking
expressive enough to represent simulation resiuite s temporal requirements. Proceeding of the 9th
complex semantics are handled by the manipulator no International Symposium on High-Assurance
by the Boolean representation. Systems Engineering, Oct. 12-14EEE Xplore
Press Heidelberg, pp: 111-120. DOI:
CONCLUSION 10.1109/HASE.2005.6

Stewart, D.B. and G. Arora, 2003. A tool for anatgy
This study proposes a general framework of post- and fine tuning the real-time properties of an
processing analysis on system behavior. By empipyin embedded system. |IEEE Trans. Software Eng.,
Boolean representation, the proposed technique can 29:311-326. DOI: 10.1109/TSE.2003.1191796
achieve flexibility, generality and ease of usejchtare
demonstrated with a case study.

1510

