
Journal of Computer Science 6 (11): 1237-1246, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Hero Modares, Department of Computer System and Technology, Faculty of Computer Science,
University of Malaya, 50603, Kuala Lumpur, Malaysia

1237

A Bit-Serial Multiplier Architecture for Finite Fields Over Galois Fields

1Hero Modares, 1Yasser Salem, 1Rosli Salleh and 2Majid Talebi Shahgoli

1Department of Computer System and Technology, Faculty of Computer Science,
University of Malaya, 50603, Kuala Lumpur, Malaysia

2Department of Security, University College of Technology and Innovation,
Kuala Lumpur, Malaysia

Abstract: Problem statement: A fundamental building block for digital communication is the Public-
key cryptography systems. Public-Key Cryptography (PKC) systems can be used to provide secure
communications over insecure channels without exchanging a secret key. Implementing Public-Key
cryptography systems is a challenge for most application platforms when several factors have to be
considered in selecting the implementation platform. Approach: The most popular public-key
cryptography systems nowadays are RSA and Elliptic Curve Cryptography (ECC). ECC was
considered much more suitable than other public-key algorithms. It used lower power consumption,
has higher performance and can be implemented on small areas that can be achieved by using ECC.
There is no sub exponential-time algorithm in solving the Elliptic curve discrete logarithm problem.
Therefore, it offers smaller key size with equivalent security level compared with the other public key
cryptosystems. Finite fields (or Galois fields) is considered as an important mathematical theory.
Results: Thus, it plays an important role in cryptography. As a result of their carry free arithmetic
property, they are suitable to be used in hardware implementation in ECC. In cryptography the most
common finite field used is binary field GF (2m). Conclusion: Our design performs all basic binary
polynomial operations in Galois Field (GF) using a microcode structure. It uses a bit-serial and
pipeline structure for implementing GF operations. Due to its bit-serial architecture, it has a low gate
count and a reduced number of I/O pins.

Key words: Public-key cryptography, elliptic curve cryptography, Galois field, scalar multiplication,

elliptic curve algorithms

INTRODUCTION

 Public-key cryptography and symmetric-key
cryptography are two main categories of cryptography.
The Well-known public-key cryptography algorithms
are RSA (Rivest et al., 1978), El-Gamal and Elliptic
Curve Cryptography. Presently, there are only three
problems of public key cryptosystems that are
considered to be both secured and effective. Table 1
shows these mathematical problems and the
cryptosystems that rely on such problems. Table 2
shows the complexity of calculative for each of these
problems where ‘n’ is the length of the keys used
(Sandoval, 2008; Kumar, 2008).
 Providing an equivalent level of security with
smaller key size is an advantage of ECC compared to
RSA. It is very efficient to implement ECC. ECC obtains
lower power consumption and faster computation.

Table 1: Mathematical problem
Mathematical problem Detail Cryptosystems
Integer Factorization Given an integer RSA
Problem (IFP) ‘n’, find its prime
 factorization
Discrete Logarithm Given integer ‘g’ ELGemal, DSA
Problem (DLS) and ‘h’, find ‘x’ Diffie-Hellman
 such that h = g × mod n (DH)
Elliptic Curve Discrete Given points ‘P’ and ECDSA, EC-
Logarithm Problem ‘Q’ on curve, find ‘x’ Diffie-Hellman
(ECDLP) such that Q = xP (DH)

Table 2: Public-key
 Best known methods
 for solving mathematical
Public-key system problem Runing times
Integer Factorization Number field sieve: Sub-exponential
Problem (IFP) e1.923(log n)1/3 (log log n)2/3
Discrete Logarithm Number field sieve: Sub-exponential
Problem (DLS) e1.923(log n)1/3 (log log n)2/3
Elliptic Curve Pollard-rhlgorithm: Fully exponential

Discrete Logarithm n
Problem (ECDLP)

J. Computer Sci., 6 (11): 1237-1246, 2010

1238

It also gains small memory and bandwidth because of
its key size length (De Dormale et al., 2004; Li et al.,
2008). Such attributes are mainly fascinating in security
applications in which calculative power and integrated
circuit space are limited.
 A modular arithmetic performs a main role in
public key cryptographic systems (De Dormale et al.,
2004). Some of these PKC are the Diffie-Hellman keys
exchange algorithm (Kaabneh and Al-Bdour, 2005), the
decipherment operation in the RSA algorithm
(Quisquater and Couvreur, 1982), the US Government
Digital Signature Standard (Kammer and Daley, 2000)
and also elliptic curve cryptography (Koblitz, 1987).
 Arithmetic in elliptic curves requires a number of
modules to calculate ECC operations (modular
multiplication, modular division and modular
addition/subtraction operations) (Al-Somani et al.,
2006). The division modular is one of the most critical
operations, which is expensive and computationally
extensive. Many implementations are completed using
projective coordinates in order to represent the points
on the curve by reducing inversion/division to one.
However, a final division is still needed to convert the
projective coordinates into affine coordinates. In some
other cases, modular division can be replaced by
modular inversion followed by modular multiplication.
 In this field, modular multiplication gets much
attention and numerous algorithms have been
published. The modular inversion can be performed
using Fermat little theorem or the well-known extended
Euclidian algorithm and Montgomery inverse as well
(Kaliski, 1995; Savas and Koc, 2000).
 In this research, the Double-and-Add alternative is
used in our system as it is mainly necessary for our
algorithms. Galois Field is a finite field that consists of
a finite number of elements. It contains three operations
which are Addition, Multiplication and division
modular’s. Galois Field Modular division is replaced by
modular inverse followed by modular multiplication.
Montgomery modular inversion method is chosen as an
inversion algorithm and Right-to-left shift method as a
multiplication algorithm.
 Most of the hardware implementations of ECC are
based on bit-parallel but in this study bit-serial
architecture is used. Bit-serial operators are noticeably
smaller than those operators in bit-parallel. They do not
depend on word width. A multiplier is said to be bit-
serial if it produces only one bit of the product at each
clock cycle. Moreover, bit-serial architectures only
demand an equally small amount of input and output
pins. An implemented multiplication in every bit-serial
type has to be directly fitted to the data-width. As a
result, the area complexity is reduced to O(n) and
parallel multiplier O(n2).

 Bit-serial design makes it compulsory to operate
with particular registers. These registers are able to
store one bit for the period of a clock cycle. After this
cycle the information is passed on to the output and the
next information can enter the register. These registers
offer the core functionality of shifting numbers.

Mathematical of elliptic curve cryptography: There
are many ways to calculate the points over the prime
field elliptic curve. A direct method is by applying the
next equation:

y2
 = x3+ax+b where 4a3+27b2 ≠ 0

 Different elliptic curve is produced by changing the
values of ‘a’ and ‘b’. In elliptic curve cryptography,
calculating the public-key can be done by multiplying
the private key with the generator point ‘G’ in the
curve. The generator point ‘G’ is the point on the curve.
The private key is the random number in the interval [1,
n-1],‘n’ is the curve’s order (Anoop, 2007).
 The strength of ECC security comes from the
difficulty of Elliptic Curve Discrete Logarithm
Problem. If ‘P’ and ‘Q’ are points on the curve, then
kP = Q where ‘k’ is a scalar. Thus, point multiplication
is the basic operation in ECC. For example, the
multiplication of a scalar ‘k’ with any point ‘P’ on the
curve in order to obtain another point ‘Q’ on the curve.

Point multiplication: Scalar point multiplication is a
block of all elliptic curve cryptosystems. It is an
operation of the form k.P. ‘P’ is a point on the elliptic
curve and ‘k’ is a positive integer. Computing k.P
means adding the point ‘P’ exactly d-1 times to itself,
which results in another point ‘Q’ on the elliptic curve.
Point multiplication uses two basic elliptic curve
operations:

• Point addition (add two point to find another point)
• Point doubling (adding point p to itself to find

another point)

 For example to calculate kP = Q if ‘K’ is 23 then
kP = 23P = 2(2(2(2P) + P) + P) + P so to get the result
point addition and point doubling is used repeatedly
(Anoop, 2007).

Point addition: Let ‘J’ and ‘K’ be two points on the
elliptic curve. To achieve another point like ‘L’ point
addition, it is shown in the Fig. 1.
 According to the Fig. 1a ‘K’ and ‘J’ are two points
on the EC and K≠-J. The line through the points ‘J’ and
‘K’ intersect the elliptic curve at one more point -L.

J. Computer Sci., 6 (11): 1237-1246, 2010

1239

The result of adding point ‘J’ to ‘K’ is point ‘L’, which
is -L reflection with respect to x-axis (Anoop, 2007).
 If K = -J then there is a line through the points. ‘J’
and ‘K’ intersect the elliptic curve at a point at infinity
‘0’ because J + (-J) = 0 as shown in Fig. 1b.
 To analyze point addition, let assume J = (xj,yj), K
= (xk,yk), L = J+K where L = (Xl,Yl) and s is the incline
of the line through ‘J’ and ‘K’ then:

S = (yj‐yk)/(xj‐xk)
X l = s2

‐xj‐xk
Y l = ‐yj+s(xj‐xl)

 So if K= -J then J+K = O, where ‘O’ is the point at
infinity. And if K = J then J+K = 2J and needs to use
point doubling equation.

Point doubling: Let ‘J’ be a point on the elliptic curve.
Then addition of the point ‘J’ to itself return another
point like ‘L’ on the same curve as shown in the Fig. 2.
 According to the Fig. 2a, ‘J’ is a point on the EC and
to get ‘L’ which is equal to 2J, the tangent line at ‘J’ will
intersect the EC at exactly point -L only if the value of
‘y’ axis of the point ‘J’ not equal to zero. However, the
result of doubling is the point ‘L’ the reflection of the
point -L with respect to x-axis (Anoop, 2007).

 (a) (b)

Fig. 1: Point addition

 (a) (b)

Fig. 2: Point doubling

 As shown in the Fig. 2b, if ‘y’ coordinates of the
point ‘J’ is zero. So the tangent at this point intersects at
a point at infinity ‘O’ that means when yj = 0, 2 J = O.
 To analyze point addition let assume J= (xj,yj)
where yj ≠ 0, L = 2J where L = (xl,yl) and ‘S’ is the
tangent at point ‘J’ then:

S = (3xj

2+a)/(2yj) (‘a’ is one of the parameters which
is chosen by EC)

X l = s2
‐2xj

Y l = ‐yj+s(xj‐xl)

and ‘O’ is the point at infinity if yj = 0 then 2J = O.

Elliptic curve domain parameters:
Domain parameters for EC over field Fp: Elliptic
curve over Fp has list of domain parameters which
includes ‘p’, ‘a’,’ b’,’ G’, ‘n’ and ‘h’ parameters:

‘a’ and ‘b’: Define the curve y2 mod p = x3 + ax + b

mod p
‘p’: Prime number defined for finite field Fp
‘G’: Generator point (XG,YG) on the EC that

selected for cryptography operations
‘n’: The Elliptic curve order
‘h’: If #E(Fp) is the number of points on an

elliptic curve then ‘h’ is cofactor where
h=#E(Fp)/n

Domain parameters for EC binary fields: Elliptic
curve over F2m has a list of domain parameters which
includes ‘m’, f(x), ‘a’, ‘b’, ‘G’, ‘n’ and ‘h’ parameters:

‘m’: An integer to finite field F2m
F(x): The irreducible polynomial of degree m

that it used for elliptic curve operations
‘a’ and ‘b’: Define the curves y2 + xy = x3 + ax2 + b
‘G’: The generator point (xG, yG) on the EC

that selected for cryptography operations
‘n’: The ore elliptic curve
‘h’: if #E(F2

m) is the number of points on an
elliptic curve then ‘h’ is cofactor where
h=#E(F2

m)/n

Field arithmetic: Modular arithmetic and polynomial
arithmetic are two different types applied in ECC
operations depending on the chosen field. In Modular
arithmetic, over a number ‘p’ arithmetic covers the
number in the interval [0 and p-1]. Modular Arithmetic
contains Addition, Subtraction, Multiplication,
Division, Multiplication Inverse and Finding x mod y
operations. Polynomial Arithmetic contains Addition,
Subtraction, Multiplication, Division, Multiplicative

J. Computer Sci., 6 (11): 1237-1246, 2010

1240

Inverse and Irreducible Polynomial (Anoop, 2007).
This research relies on polynomial arithmetic.
Therefore, this part gives an overview of polynomial
arithmetic.
 EC over field F2m includes arithmetic of integer
with length m bits. The binary string can be declared as
polynomial:

Binary string: (am‐1 ... a1 a0)
Polynomial: am‐1 x

m‐1 + am‐2 x
m‐2 + ... + a2 x

2 + a1 x + a0

where ai = 0.
 For example: x3 + x2 + 1 is polynomial for a four
bit number 11012.

Addition: If A = x3+x2 + 1 and B = x2 + x are two
polynomial then A+B called polynomial addition that
returns x3 + 2x2 + x + 1 after taking mod 2 over
coefficients A + B = x3 + x + 1 (Ali, 2009).
 On binary representation, polynomial addition can
be achieved by simple XOR of two numbers. For
example, over GF(24) there are 16 elements where
f(x)=x4 +x+1 as follow:

g0 = (0001) g1 = (0010) g2 = (0100) g3 = (1000)
g4 = (0011) g5 = (0110) g6 = (1100) g7 = (1011)
g8 = (0101) g9 = (1010) g10 = (0111) g12 = (1110)
g12 = (1111) g13 = (1101) g14 = (1001) g15 = (0001)

2
2

2

So if :| A 1101
A B AXOR B A B 1011

B 0110

=  + = → + == 

Subtraction: If A = x3+x2+1 and B = x2+x are two
polynomials, then A‐B is called polynomial subtraction
that returns x3‐x+1 after taking mod 2 over coefficients
A‐B = x3+x+1.
 On binary representation, polynomial addition can
be achieved by a simple XOR of two numbers same as
Addition operation in f2M:

2
2

2

A 1101
A B A XOR B A B 1011

B 0110

=  − = → + == 

Multiplication: If A = x3+x2+1 and B = x2+x are two
polynomials then A-B is called polynomial
multiplication that returns x5+x3+x2+x, m = 4. The
result should be reduced to a degree less than 4 by
irreducible polynomial x4+x+1:

x5+x3+x2+x (mod f(x)) = (x4+x+1)x+x5+x3+x2+x =
2x5+x3+2x2+2x = x3(after reducing the coefficient on
mod 2)
A = 11012
B = 01102
A*B = 10002

Division: a * b‐1 (mod f(x)) has the same result of a/b
(mod f(x)).So in order to find a/b(mod f(x)), a * b‐1
(mod f(x)) can be used. Instead of it, b‐1 is the
multiplicative inverse of ‘b’:

0(0000) 1(0001) x(0010)
X+1(0011) x2(0100) x2+1(0101)
X2+x(0110) x2+x+1(0111) x2(0100)
X2+1(1001) x2+x(1010) x2+x+1(1011)
X2+x2(1100) x3+x2+1(1101) x3+x2+x(1110)
X3+x2+x+1(1111)

Multiplicative inversion: There are 10 powers for g
where the element g = (0010) is a generator.
 The multiplicative identity g0 = (0001) and the
multiplicative inverse for g9 = (1010) is:

g9 = (1010) is g-9 mod 15 = g6 mod 15

 To assure that multiplicative inverse of g9 their
multiplicative result should be one:

Proofing that g6×g9 = 1mod f(x)
g6.g9= (1010).(1100)
(x3+x).(x3+x2) mod f(x)
(x6+x5+x4+x3) mod f(x) = 1(which is the multiplicative
identity)
This means g-9=g6 mod f(x)

MATERIALS AND METHODS

Elliptic curve algorithms: According to the hierarchy
of Elliptic curve, three operations are needed by the
ECC operations which are (addition, multiplication and
inversion). Addition operation in binary field is an
XOR operation. This part describes the basic arithmetic
modular multiplication and inversion which are used in
elliptic curve over Galois Fields.

Right-to-left shift-and-add field multiplication in
F2

m: The shift-and-add for field multiplication is based
on the:

X(z).y(z) = xm-1 z

m-1 y(z)+…x2 z
2 y(z)+x1zy(z)+x0y(z)

J. Computer Sci., 6 (11): 1237-1246, 2010

1241

 Repetition ‘i’ in the algorithm 1 compute ziy(x)
mod f(z) and if xi=1 the result will be add accumulator
c’. if y(z)= ym-1 z

m-1+…y2 z
2+y1 z+y0 then:

y(z).z = ym-1 z

m-1+ym-2 z
m-1+…y2 z

3+y1 z
2+y0z

y(z).z = ym-1 r(z)+(y-2 z
m-1+…y2 z

3+y1 z
2+y0 z) (mod f(z))

 So y(z).z mod f(z) can be calculated by a left-shift
of the vector representation of y(z), followed by
addition of r(z) to y(z) if the high order bit ym-1 is 1.

Algorithm 1: Right-to-left shift-and-add field
multiplication in F2m:

Input: Binary polynomials x(z) and y(z) of degree at
most m-1
Output: c(z)=x(z).y(z) mod f(z)
1. If x0 = 1 then ← y else c←0
2. For i from 1 to m-1 do

2.1y←y.z mod f(z)
2.2 if ai = 1 then c←c+y

3. Return (c)

 x’ vector shift in hardware can be performed in one
clock cycle, by making Right-to-left shift-and-add field
multiplication algorithm that is suitable for the
hardware.

Montgomery modular inverse algorithm: Kaliski
(1995) introduced the Montgomery modular inverse. It
definite as the Montgomery demonstration of the
modular inverse, A-1 (mod P) in which ‘m’ is the bit-
length of ‘P’. Montgomery Modular Inverse Algorithm
is based on the extended binary GCD algorithm. This
algorithm contains two phases as shown in algorithm
4.8. The result of the second phase can be obtained
either by iterative half modulo ‘P’ or multiplication
modulo ‘P’. At the end of the loop, the values of g1 =
1and g2 = 0 allow to check G = -A-1 2i(mod P) which
then bring the result back in the range [1, P-1]. The
following algorithm rewrites the Kaliski Montgomery
inverse algorithm with combination of the two phases
in one algorithm.

Algorithm 2: Montgomery modular inverse algorithm:

Input: A and P, where a ∈GF (2m) and P is the
modulus P.
Output: G, where G ≡ A-1 (mod P)
1. Set U = P, V = A, G = 0 and K =1
2. Set i = 0, where I is an integer with m≤i<2m
3. While V >0 do

 3.1: If U is even, then set U
U ,K 2K.

2
= =

 3.2: Else if V is even, then set V
V ,G 2G.

2
= =

 3.3: Else if U<V, then set
U V

U ,G G K,K 2K.
2

−= = + =

 3.4: Else if V≥U, then set
U V

V ,K G K,G 2G.
2

−= = + =

4. For j from 1 to I do

 4.1: If G is even, then set G
G .

2
=

 4.2: Else set G P
G .

2

+=

5. If G≥P, then set G = 2P-G, else set G = P-G.
6. Output G.

Modular multiplication: Finite field multiplier over F2
m always plays a major role in determining the
performance of hardware accelerators of cryptography
applications. It is necessary to design the multipliers
with high efficiency. Bit-parallel and Bit-serial are two
options to design a modular. Bit-parallel multiplier can
get high operation speed by completing one
multiplication in one clock cycle. On the other hand, it
has maximum circuit complexity in which a large
operand size makes it unsuitable. Bit-serial operators
are noticeably smaller than those operators in bit-
parallel. They are independent of word width.

Fig. 3: Flowchart for right-to-left algorithm

J. Computer Sci., 6 (11): 1237-1246, 2010

1242

A multiplier is said to be bit-serial if it produces only
one bit of the product at each clock cycle. Demanding
only on an equal small amount of input and output pins
is an advantage of bit-serial. An implemented
multiplication in every bit-serial type has to be directly
fitted to the data-width. As a result, the area of
complexity is reduced to O(n) than in parallel multiplier
O(n2). Based on the bit-serial advantages, bit-serial is
chosen for our design. This research is continued with
the efficient designs for polynomial multiplier
operation. Right-to-left algorithm is introduces based
on the bit-serial architecture (Fig. 3).

RESULTS AND DISCUSSION

Bit-serial multiplier structure: The following flowchart
shows the bit-serial multiplier steps. When the multiplier
bits shifted, the result is stored in ‘R’. When R(n) is a 1,
it indicates that the recent partial result overflows the n-
bit register. It also reduces one copy of the irreducible
polynomial. The reduction is XOR operation. It
completes the overall “modulo an irreducible
polynomial” correction operation (Modares, 2009).
 Figure 4 is depicts a multiplier ‘X’ and a
multiplicand ‘Y’ when X,Y ∈ F2

m. It processes the bits
of ‘x’ from left to right. The multiplier is called a Most
Significant Bit (MSB) multiplier. The MSB multiplier
can present a multiplication in F2m in ‘m’ clock cycles.
 Table 3 via f4(x) = x4 + x + for two different ‘x’
and ‘y’ as input summarizes the behavior where ∧
symbolize “AND” gate and ⊕ symbolized an XOR
gate.
 It is also for 79 bits, our bit- serial multiplier needs
79 ANDs, 79 XORs and less than 400 FFs (Flip-Flops).
A 79 bits multiplication is computed within 79 clocks,
which is not including data input and output. In this
implementation, control and memory access overheads
go to a total time of execution less than 280 clocks. It
starts from the processor by sending memory addresses
of ‘X’, ‘Y’ and ‘R’ to the last result which is stored in
‘R’. The multiplier is also used for squaring by loading
X = Y.
 The first partial result is 1101, which shift left
(zero fill), then is XORed with 1101. It returns the
value 11010, which goes over the 4-bit register limit. It
and needs reduction using XOR with the “irreducible
polynomial” which is appeared by 10011 in binary for

f4(x) = x4 + x + 1. So, in this stage the most significant
bit is zeroed and 1001 is as an adjusted result. Yet, it
needs to be shifted to left and it returns 10010 as a
second line result which XORed to 0 ∧ (1101) in third
line. As shown in Table 3, MS Bit is one. The Final
Result is again 5 bits again. The partial result makes the
same situation. In order to get the bit alignment, another
reduction (XOR with 10011) is needed. The result of
shifting in the third step is 0010. It is used in the last
step. As shown in the last step, there is no overflow and
the exact 4-bit is a final result.
 The following block diagram shows a basic
multiplier structure which gets the multiplier data
serially. ‘X’ participates as multiplier and resides in n-
bit shift register ‘Y’ participates as multiplicand in n-bit
register. ‘R’ is used to show the result and ‘P’ is put as
an irreducible polynomial which is used when any
overflow happens. External data input connections and
Clocks are not shown in Fig. 5 noticed that the
polynomial does not need to represent the leftmost bit
of the polynomial.

 (a)

 (b)

Fig. 4: Most Significant Bit first (MSB) multiplier for

F2m

Table 3: XOR (⊕) and (^)
Result XOR (xi AND y) Initial Result Check MS bit Reduction Shift result

Result XOR (x1 AND y) 0000⊕1∧(1101) 1101 0 - 11010
Result XOR (x2 AND y) 11010⊕0∧(1101) 11010 1 11010⊕10011=1001 10010
Result XOR (x3 AND y) 10010⊕0∧(1101) 10010 1 10010⊕10011=0001 0010
Result XOR (x4 AND y) 0010⊕1∧(1101) 1111 0 - 1111

J. Computer Sci., 6 (11): 1237-1246, 2010

1243

Fig. 5: The n-bit multiplier

Fig. 6: Flowchart for Montgomery inversion algorithm,

contain phase 1 and 2

Modular inversion: Inversion is the most difficult
finite field operation to be implemented in hardware.
The division in GF (2m) x/y is implemented as two
sequential operations, which are the inversion y−1 and
then the multiplication xy−1. Based on the Algorithm 2
Fig. 6 summarizes the Montgomery inversion algorithm
that has been chosen to compute inversion in
polynomial representations.
 Based on this structure, the diagram will never
reach n+1 bit length. It deals with the correction
subtraction. By observing the ‘n’ bit result with the
leftmost bit equals to 1, the multiplication mode is set.
It can be done by reducing the current result registered
by the irreducible polynomials.

Bit-serial inversion structure: We already discussed
about the original Montgomery modular inverse. For
the given advantages, the bit-parallel design is modified
into a bit-serial structure. The modified structure is
presented which is based on bit-serial architecture for
the most computationally inversion algorithm over
Galois field.
 The previous block diagram shows the inversion
architecture which loads the inputs serially. All the next
steps are following algorithm 2 including the variables
(U, V, K and G) to get the inversion result. If ‘U’ is
even, then the new value of ‘U’ and ‘K’ is cleared. In
order to use bit-serial, it depends on the Less
Significant Bit (LSB). Then ‘U’ will be known either
even or not. If LSB is ‘0’, it means ‘U’ is even, then, it
needs one shift to the right to find U = U/2 and one shift
to left ‘K’ to find K = 2*K. There is the same row for
find ‘V’ and ‘G’.
 In the architecture block diagram, there are a
Multiplexer and a De-multiplexer which are controlled
by using selector. They are used to pass the correct
result to the output. In the De-multiplexer, if ‘C0’ and
‘C3’ are equals to ‘0’, the output is placed in ‘U’.
Otherwise the value is placed in ‘V’.
 If (U<V) then (U+V)/2 is the exact result for ‘V’.
Otherwise it appears as a result for ‘U’. The reminding
steps are excluded from this dialog in order to not
complicate the diagram.
 Caused by its architecture which is based on bit-
serial, it has low power consumption, regular structure,
low cost in term of area occupied and a reduced number
of pins. Thus, it is appropriate for embedded
applications.
 There are two phases depicted in Fig. 7. Both
phases require shift left and shift right registers. When
shifting to right, the number needs to be divided by two.
When shifting to the left, the number needs to be
multiplied by two.
 In this research, this aim is achieved by using shift-
left and shift-right which work in serial-in parallel-out.
The two following algorithms are used.

Algorithm 3-shift_Right:

Input: C, SI [0, m].
Output: PO [0, m].
Variable tmp[m:0], PO [m:0].
1: If (posedge C)
 Begin
2: Tmp = {1'b0,SI[m:1]}
 End
3: PO = tmp;
End

J. Computer Sci., 6 (11): 1237-1246, 2010

1244

Fig. 7: Bit-serial inversion block diagram

Algorithm 4-Shift_Left

Input: C, SI [0, m].
Output: PO [0, m].
Variable tmp[m:0], PO [m:0].
1: If (posedge C)
 Begin
2: Tmp = {SI[m:1,1'b0]}
 End
3: PO = tmp;
End

Scalar multiplication: The most important arithmetic on
elliptic curve applications is the scalar multiplication that
computes ‘dP’. ‘d’ is an arbitrary integer and ‘P’ is a
point on elliptic curve. The scalar multiplication ‘dP’ can
simply be clear by adding the (d-1) copies of ‘P’ to itself.
 If the bit check starts from left to right, it is called
Most Significant Bit (MSB) or double-and-add.
However, if it starts from right to left, it uses Less
Significant Bit (LSB) to obtain scalar multiplication.

MSB (double-and-add): To calculate MSB, two
parameters are required (d,P) to get the resulted point
Q. The next steps are used to calculate MSB.

Require d= (di-1, di-2… d0)2, di=1 //’d’ is Input
 Compute Q=dP
Q=P
For j=i-2 to 0
 Q=2Q // it start with Doubling
 If dj=1 then
 Q=Q+P // Addition
 End if
 End for
 Return Q

Scalar multiplication: LSB first: As in MSB, LSB
needs the same input arguments (d,P) to calculate the
point Q. The next steps are used to calculate LSB.

Require d= (di-1, di-2… d0)2, di=1//’d’ is Input
Compute Q=dP
Q=0, R=P
For j=0 to i-1
 If ki=1 then
 Q=Q+R
 End if
 R=2R
End for
Return Q

J. Computer Sci., 6 (11): 1237-1246, 2010

1245

Table 4: Scalar multiplication
Addition (where x1<>x2) Doubling (where x1<>0)
(x3,y3) = (x1,y1)+(x2,y2) (x3, y3) = (x1,y1)+(x1,y1)
GF(p)
S = (y2-y1)/(x2-x1) S = (3(x1)2+a)/(2y1)
X3 = S2-x1-x2 X3 = S-2x1
Y3 = S(x1-x3)-y1 Y3 = S(x1-x3)-y1
GF(2m)
S = (y2+y1)/(x2+x1) S = x1+(y1)/(x1)
X3 = S2+S+x1+x2+a X3 = S2+S+a
Y3 = S(x1+x3)+y1+x3 Y3 = (x1)2+(S+1)x3

Fig. 8: Point addition in GF(2m)

Fig. 9: Point doubling in GF(2m)

 There are many advanced researches on modular
arithmetic operations over finite fields. For example,
Right-to-left shift field multiplication in F2m and
Montgomery inversion method. These algorithms are
used in our bit-serial hardware architecture to calculate
scalar multiplication.
 Double-and-add algorithm is chosen as it is
dictated in ANSI (Greenlee, 1999) for scalar
multiplication (Vijayalakshmi and Palanivelu, 2007).
The double-and-add algorithm is a fundamental
technique in calculating scalar multiplication. It
performs by repeating point addition and point doubling
operations which is discussed earlier. In this
explanation, all equations for point addition and point
doubling in GF(p) and GF(2m) are summarized.
 The numbers of ones in the binary representation
of ‘k’ are expected to be m/2. ‘m’ represents the length
of the integer number ‘k’. The number of ones in ‘k’
shows how many times the point addition will be
performed.

 The number of times for point doubling operation
performed is approximately equal to ‘m’. Therefore,
double-and-add algorithm averagely takes ‘m’ times point
doubling. m/2 times point is added addition to perform m-
bit elliptic curve scalar multiplication at one time.
 Data flow for ECC point doubling and point
addition is based on the Table 4 in GF(2m)which is
presented in Fig. 8 and 9.
 A Montgomery bit-serial modular inversion
algorithm and Right-to-left shift multiplication bit-
serial are developed in this research to reduce the
number of Input/output pins for scalar multiplication on
elliptic curves by using double-and-add algorithm.
 Therefore, in this research the scalar multiplication
on elliptic curves in GF(2m) can be used to deal with
various binary polynomials in GF(2m). The arithmetic
which are introduced in GF(2m) fields are suitable to be
implemented in hardware, since they are binary
arithmetic.

CONCLUSION

 Nowadays, RSA generally is used as public key
cryptosystem in most applications that use PKC.
However, recently ECC has a trend which makes it
become the convenient cryptography system. ECC is
also becomes substitute for RSA in efficacious
applications caused by its efficiency in software as well
as in hardware realizations. ECC provides a better
security with shorter bit sizes than in RSA. Shorter key
length saves bandwidth, power and it enhances the
performance. In contrast with the experts because it can
be used to build a number of cryptographic schemes
that cannot be constructed in any other way. The
research starts with survey of cryptography, Elliptic
Curve arithmetic and Elliptic Curve operations
hierarchy algorithms. Our approach is begun with
competent design for finite field arithmetic, mostly
focusing on inversion and multipliers. The design of
efficient arithmetic algorithm in bit-serial structure for
Right-to-left shift multiplication and Montgomery
inversion is shown. Montgomery inversion plays a
consequential task in elliptic curve scalar
multiplication. A bit-serial approach minimizes the
number of Input/outputs which has a direct effect on
power consumption. Three macrocells per bit are
exploited for the multiplicand, multiplier and the
product. Eventually, Area saving can be achieved
because it does not need to store reduction polynomial
in a register. The result of proposed bit-serial
architecture for the multiplication and inversion on
finite field arithmetic appears to be an important
consumption of area in comparison with others.

J. Computer Sci., 6 (11): 1237-1246, 2010

1246

REFERENCES

Al-Somani, T.F., M.K. Ibrahim and A. Gutub, 2006.

Highly efficient elliptic curve crypto-processor
with parallel GF(2m) field multipliers. J. Comput.
Sci., 2: 395-400.
http://www.scipub.org/fulltext/jcs/jcs25395-400.pdf

Ali, Y.S.M., 2009. Implementation of elliptic curve
cryptography using biometric features to enhance
security services. M.Sc. Thesis, University of
Malaya.
http://dspace.fsktm.um.edu.my/handle/1812/911

Anoop, M.S., 2007. Elliptic curve cryptography-an
implementation guide. TATAELXSI.
http://www.tataelxsi.com/whitepapers/ECC_Tut_v
1_0.pdf?pdf_id=public_key_TEL.pdf

De Dormale, G.M., P. Bulens and J.J. Quisquater, 2004.
An improved Montgomery modular inversion
targeted for efficient implementation on FPGA.
Proceeding of the IEEE International Conference
on Field-Programmable Technology, Dec. 6-8,
IEEE Xplore Press, USA., pp: 441-444. DOI:
10.1109/FPT.2004.1393320

Greenlee, M.B., 1999. ANSI X9.62:2005 public key
cryptography for the financial services industry:
The Elliptic Curve Digital Signature Algorithm
(ECDSA). American National Standards Institute.
http://webstore.ansi.org/RecordDetail.aspx?sku=A
NSI+X9.62%3A2005

Kaabneh, K. and H. Al-Bdour, 2005. Key exchange
protocol in elliptic curve cryptography with no
public point. Am. J. Applied Sci., 2: 1232-1235.

http://www.scipub.org/fulltext/ajas/ajas281232-1235.pdf
Kaliski, Jr., J.B., 1995. The Montgomery inverse and its

applications. IEEE Trans. Comput., 44: 1064-1065.
DOI: 10.1109/12.403725

Kammer, R.G. and W.M. Daley, 2000. Digital
Signature Standard (DSS). National Institute for
Standards and Technology.
http://csrc.nist.gov/publications/fips/archive/fips18
6-2/fips186-2.pdf

Koblitz, N., 1987. Elliptic curve cryptosystems. Math.
Comput., 48: 203-209.
http://www.jstor.org/pss/2007884

Kumar, S.S., 2008. Elliptic Curve Cryptography for
Constrained Devices: Algorithms, Architectures,
and Practical Implementations. 1st Edn., VDM
Verlag, New York, ISBN: 3639068599, pp: 160.

Li, H., J. Huang, P. Sweany and D. Huang, 2008.
FPGA implementations of elliptic curve
cryptography and Tate pairing over binary field.
EUROMICRO, 54: 1077-1088. DOI:
10.1016/j.sysarc.2008.04.012

Modares, H., 2009. A scalar multiplication in elliptic
curve cryptography with binary polynomial
operations in Galois Field. M.Sc. Thesis,
University of Malaya.
http://dspace.fsktm.um.edu.my/bitstream/1812/913
/1/Hero_Modares_thesis_11_11_09.pdf

Quisquater, J.J. and C. Couvreur, 1982. Fast
decipherment algorithm for RSA public-key
cryptosystem. Elect. Lett., 18: 905-907. DOI:
10.1049/el:19820617

Rivest, R.L., A. Shamir and L. Adleman, 1978. A
method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM, 21: 120-126.
DOI: 10.1145/359340.359342

Sandoval, M.M., 2008. A reconfigurable and
interoperable hardware architecture for elliptic
curve cryptography. Ph.D. Thesis, National
Institute for Astrophysics, Optics and Electronics.
http://ccc.inaoep.mx/~mmorales/documents/Thesis
PhD.pdf

Savas, E. and C. Koc, 2000. The Montgomery modular
inverse-revisited. IEEE Trans. Comput., 49: 763-766.
DOI: 10.1109/12.863048

Vijayalakshmi, V. and T.G. Palanivelu, 2007. Secure
antnet routing algorithm for scalable adhoc
networks using elliptic curve cryptography. J.
Comput. Sci., 3: 939-943.
http://www.scipub.org/fulltext/jcs/jcs312939-943.pdf

