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Abstract: Problem statement: A fundamental building block for digital communication is the Public-
key cryptography systems. Public-Key Cryptography (PKC) systems can be used to provide secure 
communications over insecure channels without exchanging a secret key. Implementing Public-Key 
cryptography systems is a challenge for most application platforms when several factors have to be 
considered in selecting the implementation platform. Approach: The most popular public-key 
cryptography systems nowadays are RSA and Elliptic Curve Cryptography (ECC). ECC was 
considered much more suitable than other public-key algorithms. It used lower power consumption, 
has higher performance and can be implemented on small areas that can be achieved by using ECC. 
There is no sub exponential-time algorithm in solving the Elliptic curve discrete logarithm problem. 
Therefore, it offers smaller key size with equivalent security level compared with the other public key 
cryptosystems. Finite fields (or Galois fields) is considered as an important mathematical theory. 
Results: Thus, it plays an important role in cryptography. As a result of their carry free arithmetic 
property, they are suitable to be used in hardware implementation in ECC. In cryptography the most 
common finite field used is binary field GF (2m). Conclusion: Our design performs all basic binary 
polynomial operations in Galois Field (GF) using a microcode structure. It uses a bit-serial and 
pipeline structure for implementing GF operations. Due to its bit-serial architecture, it has a low gate 
count and a reduced number of I/O pins.  
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INTRODUCTION 
 

 Public-key cryptography and symmetric-key 
cryptography are two main categories of cryptography. 
The Well-known public-key cryptography algorithms 
are RSA (Rivest et al., 1978), El-Gamal and Elliptic 
Curve Cryptography. Presently, there are only three 
problems of public key cryptosystems that are 
considered to be both secured and effective. Table 1 
shows these mathematical problems and the 
cryptosystems that rely on such problems. Table 2 
shows the complexity of calculative for each of these 
problems where ‘n’ is the length of the keys used 
(Sandoval, 2008; Kumar, 2008).  
 Providing an equivalent level of security with 
smaller key size is an advantage of ECC compared to 
RSA. It is very efficient to implement ECC. ECC obtains 
lower  power  consumption  and   faster   computation.  

Table 1: Mathematical problem 
Mathematical problem  Detail  Cryptosystems  
Integer Factorization  Given an integer RSA 
Problem (IFP)  ‘n’, find its prime  
 factorization    
Discrete Logarithm  Given integer ‘g’ ELGemal, DSA 
Problem (DLS) and ‘h’, find ‘x’  Diffie-Hellman 
 such that h = g × mod n (DH) 
Elliptic Curve Discrete  Given points ‘P’ and ECDSA, EC- 
Logarithm Problem  ‘Q’ on curve, find ‘x’ Diffie-Hellman 
(ECDLP)  such that Q = xP  (DH) 

 
Table 2: Public-key 
 Best known methods  
 for solving mathematical  
Public-key system problem  Runing times  
Integer Factorization Number field sieve: Sub-exponential  
Problem (IFP) e1.923(log n)1/3 (log log n)2/3  
Discrete Logarithm Number field sieve: Sub-exponential  
Problem (DLS) e1.923(log n)1/3 (log log n)2/3 
Elliptic Curve Pollard-rhlgorithm: Fully exponential 

Discrete Logarithm n  
Problem (ECDLP) 
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It also gains small memory and bandwidth because of 
its key size length (De Dormale et al., 2004; Li et al., 
2008). Such attributes are mainly fascinating in security 
applications in which calculative power and integrated 
circuit space are limited. 
 A modular arithmetic performs a main role in 
public key cryptographic systems (De Dormale et al., 
2004). Some of these PKC are the Diffie-Hellman keys 
exchange algorithm (Kaabneh and Al-Bdour, 2005), the 
decipherment operation in the RSA algorithm 
(Quisquater and Couvreur, 1982), the US Government 
Digital Signature Standard (Kammer and Daley, 2000) 
and also elliptic curve cryptography (Koblitz, 1987).  
 Arithmetic in elliptic curves requires a number of 
modules to calculate ECC operations (modular 
multiplication, modular division and modular 
addition/subtraction operations) (Al-Somani et al., 
2006). The division modular is one of the most critical 
operations, which is expensive and computationally 
extensive. Many implementations are completed using 
projective coordinates in order to represent the points 
on the curve by reducing inversion/division to one. 
However, a final division is still needed to convert the 
projective coordinates into affine coordinates. In some 
other cases, modular division can be replaced by 
modular inversion followed by modular multiplication.  
 In this field, modular multiplication gets much 
attention and numerous algorithms have been 
published. The modular inversion can be performed 
using Fermat little theorem or the well-known extended 
Euclidian algorithm and Montgomery inverse as well 
(Kaliski, 1995; Savas and Koc, 2000).  
 In this research, the Double-and-Add alternative is 
used in our system as it is mainly necessary for our 
algorithms. Galois Field is a finite field that consists of 
a finite number of elements. It contains three operations 
which are Addition, Multiplication and division 
modular’s. Galois Field Modular division is replaced by 
modular inverse followed by modular multiplication. 
Montgomery modular inversion method is chosen as an 
inversion algorithm and Right-to-left shift method as a 
multiplication algorithm.  
 Most of the hardware implementations of ECC are 
based on bit-parallel but in this study bit-serial 
architecture is used. Bit-serial operators are noticeably 
smaller than those operators in bit-parallel. They do not 
depend on word width. A multiplier is said to be bit-
serial if it produces only one bit of the product at each 
clock cycle. Moreover, bit-serial architectures only 
demand an equally small amount of input and output 
pins. An implemented multiplication in every bit-serial 
type has to be directly fitted to the data-width. As a 
result, the area complexity is reduced to O(n) and 
parallel multiplier O(n2).  

 Bit-serial design makes it compulsory to operate 
with particular registers. These registers are able to 
store one bit for the period of a clock cycle. After this 
cycle the information is passed on to the output and the 
next information can enter the register. These registers 
offer the core functionality of shifting numbers.  
 
Mathematical of elliptic curve cryptography: There 
are many ways to calculate the points over the prime 
field elliptic curve. A direct method is by applying the 
next equation: 
  

y2
 = x3+ax+b where 4a3+27b2 ≠ 0 

 
 Different elliptic curve is produced by changing the 
values of ‘a’ and ‘b’. In elliptic curve cryptography, 
calculating the public-key can be done by multiplying 
the private key with the generator point ‘G’ in the 
curve. The generator point ‘G’ is the point on the curve. 
The private key is the random number in the interval [1, 
n-1],‘n’ is the curve’s order (Anoop, 2007).  
 The strength of ECC security comes from the 
difficulty of Elliptic Curve Discrete Logarithm 
Problem. If ‘P’ and ‘Q’ are points on the curve, then   
kP = Q where ‘k’ is a scalar. Thus, point multiplication 
is the basic operation in ECC. For example, the 
multiplication of a scalar ‘k’ with any point ‘P’ on the 
curve in order to obtain another point ‘Q’ on the curve.  
 
Point multiplication: Scalar point multiplication is a 
block of all elliptic curve cryptosystems. It is an 
operation of the form k.P. ‘P’ is a point on the elliptic 
curve and ‘k’ is a positive integer. Computing k.P 
means adding the point ‘P’ exactly d-1 times to itself, 
which results in another point ‘Q’ on the elliptic curve. 
Point multiplication uses two basic elliptic curve 
operations:  
 
• Point addition (add two point to find another point)  
• Point doubling (adding point p to itself to find 

another point)  
 
 For example to calculate kP = Q if ‘K’ is 23 then 
kP = 23P = 2(2(2(2P) + P) + P) + P so to get the result 
point addition and point doubling is used repeatedly 
(Anoop, 2007). 
  
Point addition: Let ‘J’ and ‘K’ be two points on the 
elliptic curve. To achieve another point like ‘L’ point 
addition, it is shown in the Fig. 1.  
 According to the Fig. 1a ‘K’ and ‘J’ are two points 
on the EC and K≠-J. The line through the points ‘J’ and 
‘K’ intersect the elliptic curve at one more point -L. 
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The result of adding point ‘J’ to ‘K’ is point ‘L’, which 
is -L reflection with respect to x-axis (Anoop, 2007).  
 If K = -J then there is a line through the points. ‘J’ 
and ‘K’ intersect the elliptic curve at a point at infinity 
‘0’ because J + (-J) = 0 as shown in Fig. 1b.  
 To analyze point addition, let assume J = (xj,yj), K 
= (xk,yk), L = J+K where L = (Xl,Yl) and s is the incline 
of the line through ‘J’ and ‘K’ then: 
  
S = (yj‐yk)/(xj‐xk)  
X l = s2

‐xj‐xk  
Y l = ‐yj+s(xj‐xl)  
 
 So if K= -J then J+K = O, where ‘O’ is the point at 
infinity. And if K = J then J+K = 2J and needs to use 
point doubling equation.  
 
Point doubling: Let ‘J’ be a point on the elliptic curve. 
Then addition of the point ‘J’ to itself return another 
point like ‘L’ on the same curve as shown in the Fig. 2.  
 According to the Fig. 2a, ‘J’ is a point on the EC and 
to get ‘L’ which is equal to 2J, the tangent line at ‘J’ will 
intersect the EC at exactly point -L only if the value of 
‘y’ axis of the point ‘J’ not equal to zero. However, the 
result of doubling is the point ‘L’ the reflection of the 
point -L with respect to x-axis (Anoop, 2007). 
 

 
 (a)  (b) 
 
Fig. 1: Point addition 
 

 
 (a)  (b) 

 
Fig. 2: Point doubling 

 As shown in the Fig. 2b, if ‘y’ coordinates of the 
point ‘J’ is zero. So the tangent at this point intersects at 
a point at infinity ‘O’ that means when yj = 0, 2 J = O.  
 To analyze point addition let assume J= (xj,yj) 
where yj ≠ 0, L = 2J where L = (xl,yl) and ‘S’ is the 
tangent at point ‘J’ then:  
 
S = (3xj

2+a)/(2yj) (‘a’ is one of the parameters which 
is chosen by EC)  

X l = s2
‐2xj  

Y l = ‐yj+s(xj‐xl)  
 
and ‘O’ is the point at infinity if yj = 0 then 2J = O.  
 
Elliptic curve domain parameters: 
Domain parameters for EC over field Fp: Elliptic 
curve over Fp has list of domain parameters which 
includes ‘p’, ‘a’,’ b’,’ G’, ‘n’ and ‘h’ parameters: 
  
‘a’ and ‘b’: Define the curve y2 mod p = x3 + ax + b 

mod p  
‘p’: Prime number defined for finite field Fp  
‘G’: Generator point (XG,YG) on the EC that 

selected for cryptography operations  
‘n’: The Elliptic curve order  
‘h’: If #E(Fp) is the number of points on an 

elliptic curve then ‘h’ is cofactor where 
h=#E(Fp)/n  

 
Domain parameters for EC binary fields: Elliptic 
curve over F2m has a list of domain parameters which 
includes ‘m’, f(x), ‘a’, ‘b’, ‘G’, ‘n’ and ‘h’ parameters: 
  
‘m’: An integer to finite field F2m  
F(x): The irreducible polynomial of degree m 

that it used for elliptic curve operations  
‘a’ and ‘b’: Define the curves y2 + xy = x3 + ax2 + b  
‘G’: The generator point (xG, yG) on the EC 

that selected for cryptography operations  
‘n’: The ore elliptic curve  
‘h’: if #E(F2

m) is the number of points on an 
elliptic curve then ‘h’ is cofactor where 
h=#E(F2

m)/n  
 
Field arithmetic: Modular arithmetic and polynomial 
arithmetic are two different types applied in ECC 
operations depending on the chosen field. In Modular 
arithmetic, over a number ‘p’ arithmetic covers the 
number in the interval [0 and p-1]. Modular Arithmetic 
contains Addition, Subtraction, Multiplication, 
Division, Multiplication Inverse and Finding x mod y 
operations. Polynomial Arithmetic contains Addition, 
Subtraction, Multiplication, Division, Multiplicative 
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Inverse and Irreducible Polynomial (Anoop, 2007). 
This research relies on polynomial arithmetic. 
Therefore, this part gives an overview of polynomial 
arithmetic.  
 EC over field F2m includes arithmetic of integer 
with length m bits. The binary string can be declared as 
polynomial:  

 
Binary string: (am‐1 ... a1 a0)  
Polynomial: am‐1 x

m‐1 + am‐2 x
m‐2 + ... + a2 x

2 + a1 x + a0  

 
where ai = 0.  
 For example: x3 + x2 + 1 is polynomial for a four 
bit number 11012.  

 
Addition: If A = x3+x2 + 1 and B = x2 + x are two 
polynomial then A+B called polynomial addition that 
returns x3 + 2x2 + x + 1 after taking mod 2 over 
coefficients A + B = x3 + x + 1 (Ali, 2009).  
 On binary representation, polynomial addition can 
be achieved by simple XOR of two numbers. For 
example, over GF(24) there are 16 elements where 
f(x)=x4 +x+1 as follow:  

 
g0 = (0001) g1 = (0010) g2 = (0100) g3 = (1000)  
g4 = (0011) g5 = (0110) g6 = (1100) g7 = (1011) 
g8 = (0101) g9 = (1010) g10 = (0111) g12 = (1110) 
g12 = (1111) g13 = (1101) g14 = (1001) g15 = (0001) 

 

2
2

2

So if :| A 1101
A B AXOR B A B 1011

B 0110

=  + = → + == 
 

 
Subtraction: If A = x3+x2+1 and B = x2+x are two 
polynomials, then A‐B is called polynomial subtraction 
that returns x3‐x+1 after taking mod 2 over coefficients 
A‐B = x3+x+1.  
 On binary representation, polynomial addition can 
be achieved by a simple XOR of two numbers same as 
Addition operation in f2M:  
 

2
2

2

A 1101
A B A XOR B A B 1011

B 0110

=  − = → + == 
 

 
Multiplication: If A = x3+x2+1 and B = x2+x are two 
polynomials then A-B is called polynomial 
multiplication that returns x5+x3+x2+x, m = 4. The 
result should be reduced to a degree less than 4 by 
irreducible polynomial x4+x+1: 

x5+x3+x2+x (mod f(x)) = (x4+x+1)x+x5+x3+x2+x = 
2x5+x3+2x2+2x = x3(after reducing the coefficient on 
mod 2)  
A = 11012  
B = 01102  
A*B = 10002  

 
Division: a * b‐1 (mod f(x)) has the same result of a/b 
(mod f(x)).So in order to find a/b(mod f(x)), a * b‐1 
(mod f(x)) can be used. Instead of it, b‐1 is the 
multiplicative inverse of ‘b’:  

 

0(0000) 1(0001) x(0010) 
X+1(0011) x2(0100) x2+1(0101) 
X2+x(0110) x2+x+1(0111) x2(0100) 
X2+1(1001) x2+x(1010) x2+x+1(1011) 
X2+x2(1100) x3+x2+1(1101) x3+x2+x(1110) 
X3+x2+x+1(1111) 

 
Multiplicative inversion: There are 10 powers for g 
where the element g = (0010) is a generator.  
 The multiplicative identity g0 = (0001) and the 
multiplicative inverse for g9 = (1010) is: 
  

g9 = (1010) is g-9 mod 15 = g6 mod 15 
 
 To assure that multiplicative inverse of g9 their 
multiplicative result should be one: 
 
Proofing that g6×g9 = 1mod f(x) 
g6.g9= (1010).(1100) 
(x3+x).(x3+x2) mod f(x) 
(x6+x5+x4+x3) mod f(x) = 1(which is the multiplicative 
identity)  
This means g-9=g6 mod f(x) 

 
MATERIALS AND METHODS 

 
Elliptic curve algorithms: According to the hierarchy 
of Elliptic curve, three operations are needed by the 
ECC operations which are (addition, multiplication and 
inversion). Addition operation in binary field is an 
XOR operation. This part describes the basic arithmetic 
modular multiplication and inversion which are used in 
elliptic curve over Galois Fields. 

 
Right-to-left shift-and-add field multiplication in 
F2

m: The shift-and-add for field multiplication is based 
on the: 

 
X(z).y(z) = xm-1 z

m-1 y(z)+…x2 z
2 y(z)+x1zy(z)+x0y(z) 
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 Repetition ‘i’ in the algorithm 1 compute ziy(x) 
mod f(z) and if xi=1 the result will be add accumulator 
c’. if y(z)= ym-1 z

m-1+…y2 z
2+y1 z+y0 then: 

 
y(z).z = ym-1 z

m-1+ym-2 z
m-1+…y2 z

3+y1 z
2+y0z 

y(z).z = ym-1 r(z)+(y-2 z
m-1+…y2 z

3+y1 z
2+y0 z) (mod f(z)) 

 
 So y(z).z mod f(z) can be calculated by a left-shift 
of the vector representation of y(z), followed by 
addition of r(z) to y(z) if the high order bit ym-1 is 1.  

 
Algorithm 1: Right-to-left shift-and-add field 
multiplication in F2m: 
  
Input: Binary polynomials x(z) and y(z) of degree at 
most m-1  
Output: c(z)=x(z).y(z) mod f(z) 
1. If x0 = 1 then ← y else c←0 
2. For i from 1 to m-1 do 

2.1y←y.z mod f(z) 
2.2 if ai = 1 then c←c+y 

3. Return (c) 
 
 x’ vector shift in hardware can be performed in one 
clock cycle, by making Right-to-left shift-and-add field 
multiplication algorithm that is suitable for the 
hardware.  
 
Montgomery modular inverse algorithm: Kaliski 
(1995) introduced the Montgomery modular inverse. It 
definite as the Montgomery demonstration of the 
modular inverse, A-1 (mod P) in which ‘m’ is the bit-
length of ‘P’. Montgomery Modular Inverse Algorithm 
is based on the extended binary GCD algorithm. This 
algorithm contains two phases as shown in algorithm 
4.8. The result of the second phase can be obtained 
either by iterative half modulo ‘P’ or multiplication 
modulo ‘P’. At the end of the loop, the values of g1 = 
1and g2 = 0 allow to check G = -A-1 2i(mod P) which 
then bring the result back in the range [1, P-1]. The 
following algorithm rewrites the Kaliski Montgomery 
inverse algorithm with combination of the two phases 
in one algorithm.  
 
Algorithm 2: Montgomery modular inverse algorithm:  
 
Input: A and P, where a ∈GF (2m) and P is the 
modulus P. 
Output: G, where G ≡ A-1 (mod P) 
1. Set U = P, V = A, G = 0 and K =1 
2. Set i = 0, where I is an integer with m≤i<2m 
3. While V >0 do 

 3.1: If U is even, then set U
U ,K 2K.

2
= =   

 3.2: Else if V is even, then set V
V ,G 2G.

2
= =  

 3.3: Else if U<V, then set 
U V

U ,G G K,K 2K.
2

−= = + =  

 3.4: Else if V≥U, then set 
U V

V ,K G K,G 2G.
2

−= = + =  

4. For j from 1 to I do 

 4.1: If G is even, then set G
G .

2
=  

 4.2: Else set G P
G .

2

+=  

5. If G≥P, then set G = 2P-G, else set G = P-G. 
6. Output G. 
 
Modular multiplication: Finite field multiplier over F2 
m always plays a major role in determining the 
performance of hardware accelerators of cryptography 
applications. It is necessary to design the multipliers 
with high efficiency. Bit-parallel and Bit-serial are two 
options to design a modular. Bit-parallel multiplier can 
get high operation speed by completing one 
multiplication in one clock cycle. On the other hand, it 
has maximum circuit complexity in which a large 
operand size makes it unsuitable. Bit-serial operators 
are noticeably smaller than those operators in bit-
parallel. They are independent of word width. 
 

 
 
Fig. 3: Flowchart for right-to-left algorithm 
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A multiplier is said to be bit-serial if it produces only 
one bit of the product at each clock cycle. Demanding 
only on an equal small amount of input and output pins 
is an advantage of bit-serial. An implemented 
multiplication in every bit-serial type has to be directly 
fitted to the data-width. As a result, the area of 
complexity is reduced to O(n) than in parallel multiplier 
O(n2). Based on the bit-serial advantages, bit-serial is 
chosen for our design. This research is continued with 
the efficient designs for polynomial multiplier 
operation. Right-to-left algorithm is introduces based 
on the bit-serial architecture (Fig. 3).  
 

RESULTS AND DISCUSSION 
 
Bit-serial multiplier structure: The following flowchart 
shows the bit-serial multiplier steps. When the multiplier 
bits shifted, the result is stored in ‘R’. When R(n) is a 1, 
it indicates that the recent partial result overflows the n-
bit register. It also reduces one copy of the irreducible 
polynomial. The reduction is XOR operation. It 
completes the overall “modulo an irreducible 
polynomial” correction operation (Modares, 2009).  
 Figure 4 is depicts a multiplier ‘X’ and a 
multiplicand ‘Y’ when X,Y ∈ F2

m. It processes the bits 
of ‘x’ from left to right. The multiplier is called a Most 
Significant Bit (MSB) multiplier. The MSB multiplier 
can present a multiplication in F2m in ‘m’ clock cycles.  
 Table 3 via f4(x) = x4 + x + for two different ‘x’ 
and ‘y’ as input summarizes the behavior where ∧ 
symbolize “AND” gate and ⊕ symbolized an XOR 
gate.  
 It is also for 79 bits, our bit- serial multiplier needs 
79 ANDs, 79 XORs and less than 400 FFs (Flip-Flops). 
A 79 bits multiplication is computed within 79 clocks, 
which is not including data input and output. In this 
implementation, control and memory access overheads 
go to a total time of execution less than 280 clocks. It 
starts from the processor by sending memory addresses 
of ‘X’, ‘Y’ and ‘R’ to the last result which is stored in 
‘R’. The multiplier is also used for squaring by loading 
X = Y.  
 The first partial result is 1101, which shift left 
(zero fill), then is XORed with 1101. It returns the 
value 11010, which goes over the 4-bit register limit. It 
and needs reduction using XOR with the “irreducible 
polynomial”  which  is  appeared by 10011 in binary for 

f4(x) = x4 + x + 1. So, in this stage the most significant 
bit is zeroed and 1001 is as an adjusted result. Yet, it 
needs to be shifted to left and it returns 10010 as a 
second line result which XORed to 0 ∧ (1101) in third 
line. As shown in Table 3, MS Bit is one. The Final 
Result is again 5 bits again. The partial result makes the 
same situation. In order to get the bit alignment, another 
reduction (XOR with 10011) is needed. The result of 
shifting in the third step is 0010. It is used in the last 
step. As shown in the last step, there is no overflow and 
the exact 4-bit is a final result.  
 The following block diagram shows a basic 
multiplier structure which gets the multiplier data 
serially. ‘X’ participates as multiplier and resides in n-
bit shift register ‘Y’ participates as multiplicand in n-bit 
register. ‘R’ is used to show the result and ‘P’ is put as 
an irreducible polynomial which is used when any 
overflow happens. External data input connections and 
Clocks are not shown in Fig. 5 noticed that the 
polynomial does not need to represent the leftmost bit 
of the polynomial. 
 

 
 (a) 

 

 
 (b) 

 
Fig. 4: Most Significant Bit first (MSB) multiplier for 

F2m  

 
Table 3: XOR (⊕) and (^) 
Result XOR (xi AND y)  Initial  Result Check MS bit  Reduction  Shift result 

Result XOR (x1 AND y)  0000⊕1∧(1101)  1101  0  -  11010 
Result XOR (x2 AND y)  11010⊕0∧(1101)  11010  1  11010⊕10011=1001  10010 
Result XOR (x3 AND y)  10010⊕0∧(1101)  10010  1  10010⊕10011=0001  0010 
Result XOR (x4 AND y)  0010⊕1∧(1101)  1111  0  -  1111 
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Fig. 5: The n-bit multiplier 

 

 
 
Fig. 6: Flowchart for Montgomery inversion algorithm, 

contain phase 1 and 2 
 
Modular inversion: Inversion is the most difficult 
finite field operation to be implemented in hardware. 
The division in GF (2m) x/y is implemented as two 
sequential operations, which are the inversion y−1 and 
then the multiplication xy−1. Based on the Algorithm 2 
Fig. 6 summarizes the Montgomery inversion algorithm 
that has been chosen to compute inversion in 
polynomial representations.  
 Based on this structure, the diagram will never 
reach n+1 bit length. It deals with the correction 
subtraction. By observing the ‘n’ bit result with the 
leftmost bit equals to 1, the multiplication mode is set. 
It can be done by reducing the current result registered 
by the irreducible polynomials.  

Bit-serial inversion structure: We already discussed 
about the original Montgomery modular inverse. For 
the given advantages, the bit-parallel design is modified 
into a bit-serial structure. The modified structure is 
presented which is based on bit-serial architecture for 
the most computationally inversion algorithm over 
Galois field.  
 The previous block diagram shows the inversion 
architecture which loads the inputs serially. All the next 
steps are following algorithm 2 including the variables 
(U, V, K and G) to get the inversion result. If ‘U’ is 
even, then the new value of ‘U’ and ‘K’ is cleared. In 
order to use bit-serial, it depends on the Less 
Significant Bit (LSB). Then ‘U’ will be known either 
even or not. If LSB is ‘0’, it means ‘U’ is even, then, it 
needs one shift to the right to find U = U/2 and one shift 
to left ‘K’ to find K = 2*K. There is the same row for 
find ‘V’ and ‘G’.  
 In the architecture block diagram, there are a 
Multiplexer and a De-multiplexer which are controlled 
by using selector. They are used to pass the correct 
result to the output. In the De-multiplexer, if ‘C0’ and 
‘C3’ are equals to ‘0’, the output is placed in ‘U’. 
Otherwise the value is placed in ‘V’.  
 If (U<V) then (U+V)/2 is the exact result for ‘V’. 
Otherwise it appears as a result for ‘U’. The reminding 
steps are excluded from this dialog in order to not 
complicate the diagram.  
 Caused by its architecture which is based on bit-
serial, it has low power consumption, regular structure, 
low cost in term of area occupied and a reduced number 
of pins. Thus, it is appropriate for embedded 
applications.  
 There are two phases depicted in Fig. 7. Both 
phases require shift left and shift right registers. When 
shifting to right, the number needs to be divided by two. 
When shifting to the left, the number needs to be 
multiplied by two.  
 In this research, this aim is achieved by using shift-
left and shift-right which work in serial-in parallel-out. 
The two following algorithms are used.  
 
Algorithm 3-shift_Right:  
 
Input: C, SI [0, m]. 
Output: PO [0, m].  
Variable tmp[m:0], PO [m:0].  
1: If (posedge C)  
  Begin  
2: Tmp = {1'b0,SI[m:1]}  
 End  
3: PO = tmp;  
End 
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Fig. 7: Bit-serial inversion block diagram 
 

Algorithm 4-Shift_Left 
 
Input: C, SI [0, m]. 
Output: PO [0, m].  
Variable tmp[m:0], PO [m:0].  
1: If (posedge C)  
 Begin  
2: Tmp = {SI[m:1,1'b0]}  
 End  
3: PO = tmp;  
End  
 
Scalar multiplication: The most important arithmetic on 
elliptic curve applications is the scalar multiplication that 
computes ‘dP’. ‘d’ is an arbitrary integer and ‘P’ is a 
point on elliptic curve. The scalar multiplication ‘dP’ can 
simply be clear by adding the (d-1) copies of ‘P’ to itself.  
 If the bit check starts from left to right, it is called 
Most Significant Bit (MSB) or double-and-add. 
However, if it starts from right to left, it uses Less 
Significant Bit (LSB) to obtain scalar multiplication. 
 
MSB (double-and-add): To calculate MSB, two 
parameters are required (d,P) to get the resulted point 
Q. The next steps are used to calculate MSB.  

Require d= (di-1, di-2… d0)2, di=1 //’d’ is Input  
 Compute Q=dP  
Q=P  
For j=i-2 to 0  
 Q=2Q // it start with Doubling  
 If dj=1 then  
 Q=Q+P // Addition  
 End if  
 End for  
 Return Q  
 
Scalar multiplication: LSB first: As in MSB, LSB 
needs the same input arguments (d,P) to calculate the 
point Q. The next steps are used to calculate LSB.  
 
Require d= (di-1, di-2… d0)2, di=1//’d’ is Input  
Compute Q=dP  
Q=0, R=P  
For j=0 to i-1  
 If ki=1 then  
 Q=Q+R  
 End if  
 R=2R  
End for  
Return Q  
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Table 4: Scalar multiplication 
Addition (where x1<>x2)  Doubling (where x1<>0) 
(x3,y3) = (x1,y1)+(x2,y2)  (x3, y3) = (x1,y1)+(x1,y1) 
GF(p)  
S = (y2-y1)/(x2-x1)  S = (3(x1)2+a)/(2y1) 
X3 = S2-x1-x2  X3 = S-2x1 
Y3 = S(x1-x3)-y1  Y3 = S(x1-x3)-y1 
GF(2m)  
S = (y2+y1)/(x2+x1)  S = x1+(y1)/(x1) 
X3 = S2+S+x1+x2+a  X3 = S2+S+a  
Y3 = S(x1+x3)+y1+x3  Y3 = (x1)2+(S+1)x3 

 

 
 
Fig. 8: Point addition in GF(2m) 
 

 
 
Fig. 9: Point doubling in GF(2m) 
 
 There are many advanced researches on modular 
arithmetic operations over finite fields. For example, 
Right-to-left shift field multiplication in F2m and 
Montgomery inversion method. These algorithms are 
used in our bit-serial hardware architecture to calculate 
scalar multiplication.  
 Double-and-add algorithm is chosen as it is 
dictated in ANSI (Greenlee, 1999) for scalar 
multiplication (Vijayalakshmi and Palanivelu, 2007). 
The double-and-add algorithm is a fundamental 
technique in calculating scalar multiplication. It 
performs by repeating point addition and point doubling 
operations which is discussed earlier. In this 
explanation, all equations for point addition and point 
doubling in GF(p) and GF(2m) are summarized.  
 The numbers of ones in the binary representation 
of ‘k’ are expected to be m/2. ‘m’ represents the length 
of the integer number ‘k’. The number of ones in ‘k’ 
shows how many times the point addition will be 
performed.  

 The number of times for point doubling operation 
performed is approximately equal to ‘m’. Therefore, 
double-and-add algorithm averagely takes ‘m’ times point 
doubling. m/2 times point is added addition to perform m-
bit elliptic curve scalar multiplication at one time.  
 Data flow for ECC point doubling and point 
addition is based on the Table 4 in GF(2m)which is 
presented in Fig. 8 and 9.  
 A Montgomery bit-serial modular inversion 
algorithm and Right-to-left shift multiplication bit-
serial are developed in this research to reduce the 
number of Input/output pins for scalar multiplication on 
elliptic curves by using double-and-add algorithm.  
 Therefore, in this research the scalar multiplication 
on elliptic curves in GF(2m) can be used to deal with 
various binary polynomials in GF(2m). The arithmetic 
which are introduced in GF(2m) fields are suitable to be 
implemented in hardware, since they are binary 
arithmetic. 
  

CONCLUSION 
 
 Nowadays, RSA generally is used as public key 
cryptosystem in most applications that use PKC. 
However, recently ECC has a trend which makes it 
become the convenient cryptography system. ECC is 
also becomes substitute for RSA in efficacious 
applications caused by its efficiency in software as well 
as in hardware realizations. ECC provides a better 
security with shorter bit sizes than in RSA. Shorter key 
length saves bandwidth, power and it enhances the 
performance. In contrast with the experts because it can 
be used to build a number of cryptographic schemes 
that cannot be constructed in any other way. The 
research starts with survey of cryptography, Elliptic 
Curve arithmetic and Elliptic Curve operations 
hierarchy algorithms. Our approach is begun with 
competent design for finite field arithmetic, mostly 
focusing on inversion and multipliers. The design of 
efficient arithmetic algorithm in bit-serial structure for 
Right-to-left shift multiplication and Montgomery 
inversion is shown. Montgomery inversion plays a 
consequential task in elliptic curve scalar 
multiplication. A bit-serial approach minimizes the 
number of Input/outputs which has a direct effect on 
power consumption. Three macrocells per bit are 
exploited for the multiplicand, multiplier and the 
product. Eventually, Area saving can be achieved 
because it does not need to store reduction polynomial 
in a register. The result of proposed bit-serial 
architecture for the multiplication and inversion on 
finite field arithmetic appears to be an important 
consumption of area in comparison with others.  
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