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Abstract: Problem statement: A fundamental building block for digital communiim is the Public-
key cryptography systems. Public-Key CryptograpBiKC) systems can be used to provide secure
communications over insecure channels without exging a secret key. Implementing Public-Key
cryptography systems is a challenge for most apfptio platforms when several factors have to be
considered in selecting the implementation platfopproach: The most popular public-key
cryptography systems nowadays are RSA and Elligticve Cryptography (ECC). ECC was
considered much more suitable than other publicédggrithms. It used lower power consumption,
has higher performance and can be implemented afi aneas that can be achieved by using ECC.
There is no sub exponential-time algorithm in swdvihe Elliptic curve discrete logarithm problem.
Therefore, it offers smaller key size with equivdleecurity level compared with the other publig ke
cryptosystems. Finite fields (or Galois fields)dsnsidered as an important mathematical theory.
Results: Thus, it plays an important role in cryptograp®g. a result of their carry free arithmetic
property, they are suitable to be used in hardwapementation in ECC. In cryptography the most
common finite field used is binary field GF™]2 Conclusion: Our design performs all basic binary
polynomial operations in Galois Field (GF) usingmécrocode structure. It uses a bit-serial and
pipeline structure for implementing GF operatioDse to its bit-serial architecture, it has a lowega
count and a reduced number of 1/O pins.

Key words: Public-key cryptography, elliptic curve cryptograpi@Galois field, scalar multiplication,
elliptic curve algorithms

INTRODUCTION Table 1: Mathematical problem
Mathematical problem Detail Cryptosystems
. . Integer Factorization Given an integer RSA
Public-key ~ cryptography and  symmetric-key problem (IFP) ‘n, find its prime
cryptography are two main categories of cryptogyaph _ factorization
The Well-known public-key cryptography algorithms Ei‘éﬁiﬁ '(‘Igfasr)'thm fn'gefﬂ,y'?itﬁg?;,g Dlithe(iangﬁ‘rlhe?nSA
are RSA (Rivestt al., 1978), El-Gamal and Elliptic suchthath=gxmodn (DH)

Curve Cryptography. Presently, there are only thre%"ipti{: hCur;e Dbiscrete %iven points ‘f_P’dand Dl_EffC_Dﬁﬁ-
- ogarithm Problem ‘Q’ on curve, find ‘X’ iffie- an

probl_ems of public key cryptosystems_ that are ecpyp) such that Q = xP (DH)

considered to be both secured and effective. Table

shows these mathematical problems and th&apie 2: Public-key

cryptosystems that rely on such problems. Table 2 Best known methods
shows the complexity of calculative for each ofstne _ for solving mathematical .

e [Public-key system problem Runing times
problems where ‘n’ is the Iength of the keys useuInteger Factorization Number field sieve: Sub-exqrdral
(Sandoval, 2008; Kumar, 2008). Problem (IFP) £"3log n)** (log log n¥"

;s : : .1 Discrete Logarithm Number field sieve: Sub-expoiznt
Prowdmg_ an equivalent level of security with g ° (DLS) E%jog n (Iog log nf?
smaller key size is an advantage of ECC compared tBiliptic Curve Pollard-rhigorithm: Fully exponentia

RSA. It is very efficient to implement ECC. ECC ails  Discrete Logarithm ~ +/n
lower power consumption and faster compatati Problem (ECDLP)
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It also gains small memory and bandwidth because of Bit-serial design makes it compulsory to operate
its key size length (De Dormakt al., 2004; Liet al.,  with particular registers. These registers are dble
2008). Such attributes are mainly fascinating icuséy  store one bit for the period of a clock cycle. Afthis
applications in which calculative power and inteégda cycle the information is passed on to the output the
circuit space are limited. next information can enter the register. Thesestegs

A modular arithmetic performs a main role in offer the core functionality of shifting numbers.
public key cryptographic systems (De Dormateal.,
2004). Some of these PKC are the Diffie-Hellmanskey Mathematical of elliptic curve cryptography: There
exchange algorithm (Kaabneh and Al-Bdour, 200%), th are many ways to calculate the points over the grim

decipherment operation in the RSA algorithmfie|d elliptic curve. A direct method is by applgrthe
(Quisquater and Couvreur, 1982), the US Governmenjext equation:

Digital Signature Standard (Kammer and Daley, 2000)

and al_so elliptiq curve pryptography (I_<ob|itz, 1987 y2= 3+ax+b where 44 271F # 0
Arithmetic in elliptic curves requires a number of

modules to calculate ECC operations (modular

multiplication, modular division and modular

addition/subtraction operations) (Al-Somamt al.,

Different elliptic curve is produced by changirg t
values of ‘a’ and ‘b’. In elliptic curve cryptograp,

2006). The division modular is one of the mosticait calculating the public-key can be done by multiply

operations, which is expensive and computationall)}he private key with th_e Qef‘_efato'r point G’ in the
extensive. Many implementations are completed usingUrve- The generator point ‘G is the point on teve.
projective coordinates in order to represent thiatpo | N€ private key is t'he random number in the inteflia
on the curve by reducing inversion/division to one.n-1],n"is the curve’s order (Anoofz007).
However, a final division is still needed to cortviire ~ The strength of ECC security comes from the
projective coordinates into affine coordinatesstme  difficulty of Elliptic Curve Discrete Logarithm
other cases, modular division can be replaced bfroblem. If ‘P’ and ‘Q" are points on the curveeth
modular inversion followed by modular multiplicatio kP = Q where 'k’ is a scalar. Thus, point multiglion

In this field, modular multiplication gets much is the basic operation in ECC. For example, the
attention and numerous algorithms have beernultiplication of a scalar ‘k’ with any point ‘P'rothe
published. The modular inversion can be performedurve in order to obtain another point ‘Q’ on thewe.
using Fermat little theorem or the well-known exted
Euclidian algorithm and Montgomery inverse as wellPoint multiplication: Scalar point multiplication is a
(Kaliski, 1995; Savas and Koc, 2000). block of all elliptic curve cryptosystems. It is an

In this research, the Double-and-Add alternatsse i operation of the form k.P. ‘P’ is a point on théiptic
used in our system as it is mainly necessary for oucurve and ‘K’ is a positive integer. Computing k.P
algorithms. Galois Field is a finite field that @ists of means adding the point ‘P’ exactly d-1 times telfts
a finite number of elements. It contains three afjens  which results in another point ‘Q’ on the elliptarve.
which are Addition, Multiplication and division Point multiplication uses two basic elliptic curve
modular’s. Galois Field Modular division is replddey ~ operations:
modular inverse followed by modular multiplication.
Montgomery modular inversion method is chosen as am  Point addition (add two point to find another pdint
inversion algorithm and Right-to-left shift methad a « Point doubling (adding point p to itself to find
multiplication algorithm. another point)

Most of the hardware implementations of ECC are
based on bit-parallel but in this study bit-serial For example to calculate kP = Q if ‘K’ is 23 then
architecture is used. Bit-serial operators areceatilly kP = 23P = 2(2(2(2P) + P) + P) + P so to get tlselte
smaller than those operators in bit-parallel. THeynot  point addition and point doubling is used repeated|
depend on word width. A multiplier is said to be-bi (Anoop, 2007).
serial if it produces only one bit of the produtteach
clock cycle. Moreover, bit-serial architectures yonl Point addition: Let ‘J’ and ‘K’ be two points on the
demand an equally small amount of input and outpuelliptic curve. To achieve another point like ‘Lbimt
pins. An implemented multiplication in every bitigé¢  addition, it is shown in the Fig. 1.

type has to be directly fitted to the data-widths A According to the Fig. 1a ‘K’ and ‘J’ are two pasnt
result, the area complexity is reduced to O(n) andn the EC and ¥-J. The line through the points ‘J’ and
parallel multiplier O(A). ‘K’ intersect the elliptic curve at one more poiit.
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The result of adding point ‘J’ to ‘K’ is point ‘L'which
is -L reflection with respect to x-axis (Anoop, 200

If K = -J then there is a line through the poinds.
and ‘K’ intersect the elliptic curve at a pointiafinity
‘0’ because J + (-J) = 0 as shown in Fig. 1b.

To analyze point addition, let assume J 7y K
= (X Yk), L = J+K where L = (XY)) and s is the incline
of the line through ‘J’ and ‘K’ then:

S = (Y-Y/(X%0)
X| = SZ-Xj-Xk
MERASESY)

So if K= -J then J+K = O, where ‘O’ is the poirt a
infinity. And if K = J then J+K = 2J and needs tseu
point doubling equation.

Point doubling: Let ‘J’ be a point on the elliptic curve.
Then addition of the point ‘J’ to itself return aher
point like ‘L’ on the same curve as shown in thg.H.

According to the Fig. 2a, ‘J’ is a point on the &
to get ‘L’ which is equal to 2J, the tangent lineJawill
intersect the EC at exactly point -L only if thelue of
'y’ axis of the point ‘J’ not equal to zero. Howey¢he
result of doubling is the point ‘L’ the reflectionf the
point -L with respect to x-axis (Anoop, 2007).

¥

(.,

J+i-h=0 L
Where Oisthe | /f
point at infinity

rf \\ /
| =1\1 J/ — '\a
=1 \\

/ ¥; = 0 hence
2J=0
Where O is the pomt al
wnfinity

@)

Fig. 2: Point doubling

As shown in the Fig. 2b, if 'y’ coordinates of the
point 'J’ is zero. So the tangent at this poineisects at
a point at infinity ‘O’ that means wheny0, 2J = O.

To analyze point addition let assume JTyfx
where y# 0, L = 2J where L = () and ‘S’ is the
tangent at point ‘J’ then:

S = (3>g2+a)/(2y) (‘a’ is one of the parameters which
is chosen by EC)

X = 52-2)(j

Y1 = -yrs(x-x)

and ‘O’ is the point at infinity if y= 0 then 2J = O.

Elliptic curve domain parameters:

Domain parameters for EC over field Fp: Elliptic
curve over Fp has list of domain parameters which
includes ‘p’, ‘a’,’ b’,” G’, ‘'n’ and ‘h’ parameters

‘a’ and ‘b’: Define the curve ymod p = X + ax + b

mod p

Prime number defined for finite field Fp

Generator point (XG,YG) on the EC that

selected for cryptography operations

n" The Elliptic curve order

‘h’: If #E(Fp) is the number of points on an
elliptic curve then ‘h’ is cofactor where
h=#E(Fp)/n

‘o'
‘G’

Domain parameters for EC binary fields: Elliptic

curve over Bm has a list of domain parameters which

includes ‘m’, f(x), ‘a’, ‘b’, ‘G’, ‘n’ and ‘h’ parameters:

‘m’”: An integer to finite field Bm

F(x): The irreducible polynomial of degree m
that it used for elliptic curve operations

‘a’and ‘b’:  Define the curves®y+ xy = X + aX+b

‘G" The generator point ¢ ys) on the EC
that selected for cryptography operations

‘n’: The ore elliptic curve

‘h’; if #E(F,™) is the number of points on an

elliptic curve then ‘h’ is cofactor where
h=#E(R")/n

Field arithmetic: Modular arithmetic and polynomial
arithmetic are two different types applied in ECC
operations depending on the chosen field. In Madula
arithmetic, over a number ‘p’ arithmetic covers the
number in the interval [0 and p-1]. Modular Arithtice
contains  Addition,  Subtraction,  Multiplication,
Division, Multiplication Inverse and Finding x mod
operations. Polynomial Arithmetic contains Additjon
Subtraction, Multiplication, Division, Multiplicate
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Inverse and Irreducible Polynomial (Anoop, 2007).x°+x*+x*+x (mod f(x)) = (R+x+1)x+X+X>+x*+x =
This research relies on polynomial arithmetic. 2X°+x*+2x%+2x = x3(after reducing the coefficient on
Therefore, this part gives an overview of polyndmia mod 2)
arithmetic. A =110%

EC over field Bm includes arithmetic of integer B =011Q
with length m bits. The binary string can be demthas A*B = 1000,
polynomial:
Division: a * b* (mod f(x)) has the same result of a/b
(mod f(x)).So in order to find a/b(mod f(x)), a *1b
(mod f(x)) can be used. Instead of it;1bis the
multiplicative inverse of ‘b’:

Binary string: (@1 ... a &)
Polynomial: @1 X™ + an X"+ ... +a Xt +ax+a

where a= 0. . . 0(0000) 1(0001) x(0010)
. Forbexa}LTgllez. %+ x* + 1 is polynomial for a four X+1(0011) £(0100) £+1(0101)
it numboer : X2+x(0110) ®+x+1(0111)  %(0100)
X2+1(1001) %+x(1010) #+x+1(1011)
Addition: If A = x*x*+ 1 and B = X+ x are two  X*+x%(1100) X+x*+1(1101)  X+x%+x(1110)

polynomial then A+B called polynomial addition that X*+x*x+1(1111)
returns X + 2¢ + x + 1 after taking mod 2 over

coefficients A + B = X+ x + 1 (Ali, 2009). Multiplicative inversion: There are 10 powers for g
On binary representation, polynomial addition canwhere the element g = (0010) is a generator.
be achieved by simple XOR of two numbers. For The multiplicative identityg® = (0001) and the
example, over GF(} there are 16 elements where multiplicative inverse for §= (1010) is:
f(x)=x* +x+1 as follow:
g’ = (1010) is § mod 15 = §mod 15

g°=(0001) ¢=(0010) §=(0100) d= (1000) o .
g*=(0011) §=(0110) §=(1100) d=(1011) To assure that multiplicative inverse of their
¢®= (0101) §=(1010) ¢°=(0111) &= (1110) multiplicative result should be one:

g?=(1111) ¢°=(1101) d*=(1001) g°= (0001)

Proofing that xg’= 1mod f(x)

g°g’= (1010).(1100)

(C+x).0C+x%) mod f(x)

(CH+x*+x%) mod f(x) = 1(which is the multiplicative
identity)

This means g=g° mod f(x)

Soif ;| A=1101

A+B=AXORB - A +B =1011,
B=0110,

Subtraction: If A = x*+x*+1 and B = %+x are two
polynomials, then A is called polynomial subtraction
that returns %x+1 after taking mod 2 over coefficients
A-B = XC+x+1. o _ _ _
On binary representation, polynomial addition canElliptic curve algorithms: According to the hierarchy

be achieved by a simple XOR of two numbers same a&f Elliptic curve, three operations are needed Iy t
Addition operation in: ECC operations which are (addition, multiplicatimd

inversion). Addition operation in binary field isna

XOR operation. This part describes the basic agtion

A =110%, }A_B =AXORB - A +B =1011, modular multiplication and inversion which are used
B =0110, elliptic curve over Galois Fields.

MATERIALSAND METHODS

Multiplication: If A = x3+x°+1 and B = %+x are two  Right-to-left shift-and-add field multiplication in

p0|yn0mia|s then A-B is called p0|yn0mia| Fzm: The shift-and-add for field mUltipliC&tion is based

multiplication that returns %x°+x%+x, m = 4. The oOnthe:

result should be reduced to a degree less than 4 by

irreducible polynomial %x+1: X(2).Y(2) = %1 2" Y (@) +... % 2 Y(2)+xazy(2) +X%0y(2)
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Repetition ' in the algorithm 1 computeygx)
mod f(z) and ifxi=1 the result will be add accumulator

C. if Y(2)= Ym1 27 ...y, Z+y! z+y, then:

V(2)-Z = Y1 2" Yo 2Ly, Py ZHyoz

Y(2).Z = Yot 1(2)+(Y2 27y, Z+y1 4y, 2) (Mod f(2)) U=

So y(z).z mod f(z) can be calculated by a lefftshi
of the vector representation of y(z), followed by V=
addition of r(z) to y(z) if the high order bity is 1.

Algorithm 1: Right-to-left  shift-and-add

multiplication in bm:

field

3.1: If U is even, then seat :%,K =2K.

3.2: Else if V is even, then sm:%,e =2G.

3.3: Else if u<v, then set
Uu-Vv

,G=G+K,K=2K.

3.4: Else if \EU, then set

U_Vx=G+KG=26

4. Forjfrom1ltoldo
4.1: If G is even, then seizg.

4.2: Else set = G; P.

Input: Binary polynomials x(z) and y(z) of degree at5. If G=P, then set G 2P-G, else set G = P-G.

most m-1

Output: c(z)=x(2).y(z) mod f(z)

1. Ifxg=1then— yelsec0

2. Forifrom1tom-1do
2.1ly~y.z mod f(z)
2.2ifg=1thenc-ct+y

6. Output G.

Modular multiplication: Finite field multiplier over &
m always plays a major role in determining the
performance of hardware accelerators of cryptograph
applications. It is necessary to design the mudipl

3. Return(c) with high efficiency. Bit-parallel and Bit-seriatetwo
options to design a modular. Bit-parallel multiplEan

X' vector shift in hardware can be performed iron get high operation speed by completing one
clock cycle, by making Right-to-left shift-and-atield multiplication in one clock cycle. On the other Hait
multiplication algorithm that is suitable for the has maximum circuit complexity in which a large
hardware. operand size makes it unsuitable. Bit-serial ojpesat

are noticeably smaller than those operators in bit-

Montgomery modular inverse algorithm: Kaliski parallel. They are independent of word width.
(1995) introduced the Montgomery modular inverse. | )
definite as the Montgomery demonstration of the Result=0,
modular inverse, A (mod P) in which ‘m’ is the bit- sl
length of ‘P’. Montgomery Modular Inverse Algorithm
is based on the extended binary GCD algorithm. This

L y

algorithm contains two phases as shown in algorithm ) pr
4.8. The result of the second phase can be obtained BN ‘\{TE‘
either by iterative half modulo ‘P’ or multiplicat Yes

v

modulo ‘P’. At the end of the loop, the values @f=g
land g = 0 allow to check G = -A 2(mod P) which
then bring the result back in the range [1, P-He T
following algorithm rewrites the Kaliski Montgomery y l
inverse algorithm with combination of the two plase

in one algorithm. {

{ Right-to-left shift (result) J

Result = Result XOR (x; and y) ‘

No—*

Algorithm 2: Montgomery modular inverse algorithm: /(1»15
~pit=—=
Yes

Input: A and P, wh dIGF (2" d P is th
npu an where (2" an is the /

modulus P. o
Output: G, where G= A™* (mod P) &,
1.SetU=P,V:A,G:OandK:1 ‘

2. Seti =0, where | is an integer withkkr2m
3. While V >0 do

Fig. 3: Flowchart for right-to-left algorithm
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A multiplier is said to be bit-serial if it produsenly  f4(x) = X* + x + 1. So, in this stage the most significant
one bit of the product at each clock cycle. Demagdi bit is zeroed and 1001 is as an adjusted result. itYe
only on an equal small amount of input and outpns p needs to be shifted to left and it returns 10010aas
is an advantage of bit-serial. An implementedsecond line result which XORed to[0(1101) in third
multiplication in every bit-serial type has to beedtly  line. As shown in Table 3, MS Bit is one. The Final
fitted to the data-width. As a result, the area ofResultis again 5 bits again. The partial resulkesahe
complexity is reduced to O(n) than in parallel riplikr same situation. In order to get the bit alignmantther
O(rf). Based on the bit-serial advantages, bit-sesial ireduction (XOR with 10011) is needed. The result of
chosen for our design. This research is continuigd w shifting in the third step is 0010. It is used he tlast
the efficient designs for polynomial multiplier step. As shown in the last step, there is no owarfind
operation. Right-to-left algorithm is introducessbd the exact 4-bit is a final result.

on the bit-serial architecture (Fig. 3). The following block diagram shows a basic
multiplier structure which gets the multiplier data
RESULTSAND DISCUSSION serially. ‘X’ participates as multiplier and res&dm n-

bit shift register 'Y’ participates as multiplicaal n-bit
Bit-serial multiplier structure: The following flowchart ~ register. ‘R’ is used to show the result and ‘Ppig as
shows the bit-serial multiplier steps. When thetipligr ~ an irreducible polynomial which is used when any
bits shifted, the result is stored in ‘R’. When Rigja 1, overflow happens. External data input connectiams$ a
it indicates that the recent partial result ovevahe n- Clocks are not shown in Fig. 5 noticed that the
bit register. It also reduces one copy of the ing#le  polynomial does not need to represent the leftrbist
polynomial. The reduction is XOR operation. It of the polynomial.
completes the overall “modulo an irreducible

polynomial” correction operation (Modares, 2009). Yid) m) wz) vm wm

Figure 4 is depicts a multiplier ‘X’ and a
multiplicand Y’ when X,Y O F,". It processes the bits |’
of ‘X’ from left to right. The multiplier is called Most o) -—w (@) ’k" u .\ \» ‘o) Jj
Significant Bit (MSB) multiplier. The MSB multiplie L:’
can present a multiplication i in ‘m’ clock cycles. ( 3 [

Table 3 via f4(x) = %+ x + for two different ‘x’ o} {Ba) {50 & e
and 'y’ as input summarizes the behavior whéte
symbolize “AND” gate andd symbolized an XOR (o), /o)ﬁ (o\ (o, (e

kﬁ J]

gate. J
It is also for 79 bits, our bit- serial multiplieeeds s e
79 ANDs, 79 XORs and less than 400 FFs (Flip-Flops) | P& | |re | [P2) [P0 | PO *0
A 79 bits multiplication is computed within 79 cls; - @ i
which is not including data input and output. Insth

implementation, control and memory access overheads
go to a total time of execution less than 280 ciodk Where [ v | ISR‘R@(XAY)
‘_‘/ N\

X(4)

2

ﬂ
=

starts from the processor by sending memory adesess

of ‘X', 'Y’ and ‘R’ to the last result which is sted in o)<

‘R’. The multiplier is also used for squaring bytting T
X=Y. J—]

The first partial result is 1101, which shift left LR
(zero fill), then is XORed with 1101. It returnseth (b)

value 11010, which goes over the 4-bit registeitlifh _ o o o
and needs reduction using XOR with the “irreducibleFig. 4: Most Significant Bit first (MSB) multipliefor

polynomial” which is appeared by 10011 in binfoy Fam

Table 3: XOR [0) and (V)

Result XOR (xAND y) Initial Result Check MS bit Reduction hig result
Result XOR (x AND y) 000071[(1101) 1101 0 - 11010
Result XOR (x AND y) 1101QJ00J(1101) 11010 1 1101010011=1001 10010
Result XOR (¥ AND y) 1001QJ00J(1101) 10010 1 1001010011=0001 0010
Result XOR (x AND y) 0010710%(1101) 1111 0 - 1111
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v |

ETl [

Fig. 5: The n-bit multiplier

v

—
v

/‘éh)l\'o- T mody 1, /‘Db N VUXOR v

Y \/ _ve=l

| Kektl e

Y'es Y;es Y‘es
u=u>>1 V=vEsT T=aXOR V| (G1=¢1 XOR 2
1=t | L52<<1 Lizl,,i — =
No

Phase 1

G2—g2 %{OR 5 =D

gl<<1 J
______________________ e
l . 0 No—»Result (g2)
e .
es +G2=(g2 XOR P)>>1
™ y No - 5
2 /g2 mod
2 2—0
m
Yes K=kl j
g2=<1
Lily

Fig. 6: Flowchart for Montgomery inversion algorith
contain phase 1 and 2

Modular inversion: Inversion is the most difficult
finite field operation to be implemented in hardear
The division in GF (2) x/y is implemented as two
sequential operations, which are the inversiohayd

then the multiplication xy. Based on the Algorithm 2
Fig. 6 summarizes the Montgomery inversion algamith

Bit-serial inversion structure: We already discussed
aboutthe original Montgomery modular inverse. For
the given advantages, the bit-parallel design idifieul
into a bit-serial structure. The modified structuse
presented which is based on bit-serial architectore
the most computationally inversion algorithm over
Galois field.

The previous block diagram shows the inversion
architecture which loads the inputs serially. Alkthext
steps are following algorithm 2 including the vaies
(U, V, K and G) to get the inversion result. If ‘U8
even, then the new value of ‘U’ and ‘K’ is clearéd.
order to use bit-serial, it depends on the Less
Significant Bit (LSB). Then ‘U’ will be known eithe
even or not. If LSB is ‘0", it means ‘U’ is everhan, it
needs one shift to the right to find U = U/2 ane shift
to left ‘K’ to find K = 2*K. There is the same rofor
find 'V’ and ‘G’

In the architecture block diagram, there are a
Multiplexer and a De-multiplexer which are conteall
by using selector. They are used to pass the dorrec
result to the output. In the De-multiplexer, if ‘Cand
‘C3’ are equals to ‘0’, the output is placed in U’
Otherwise the value is placed in ‘V'.

If (U<V) then (U+V)/2 is the exact result for V.
Otherwise it appears as a result for ‘U’. The redimg
steps are excluded from this dialog in order to not
complicate the diagram.

Caused by its architecture which is based on bit-
serial, it has low power consumption, regular gtrces
low cost in term of area occupied and a reducedbeum
of pins. Thus, it is appropriate for embedded
applications.

There are two phases depicted in Fig. 7. Both
phases require shift left and shift right registéihen
shifting to right, the number needs to be dividgdwo.
When shifting to the left, the number needs to be
multiplied by two.

In this research, this aim is achieved by usirifi-sh
left and shift-right which work in serial-in paraliout.
The two following algorithms are used.

Algorithm 3-shift_Right:

Input: C, SI [0, m].

that has been chosen to compute inversion iutput: PO [0, m].

polynomial representations.

Variable tmp[m:0], PO [m:0].

Based on this structure, the diagram will neveri: |f (posedge C)

reach n+l bit length. It deals with the correction
subtraction. By observing the ‘n’ bit result withet
leftmost bit equals to 1, the multiplication modeset.

It can be done by reducing the current result teggs

by the irreducible polynomials.

Begin
2: Tmp = {1'b0,SI[m:1]}
End
3: PO =tmp;
End
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Fig. 7: Bit-serial inversion block diagram

Algorithm 4-Shift_Left Require d= (di-1, di-2... d0)2, di=1 //'d" is Input
Compute Q=dP
Input: C, SI [0, m]. Q=P
Out.put: PO [0, m]. Forj=i-2t0 0
Variable tmp[m:0], PO [m:0]. Q=2Q // it start with Doubling
1 If (pos_,edge C) If dj=1 then
Begin Q=Q+P // Addition

2: Tmp ={SI[m:1,1'b0]} End if

End End for
3: PO =tmp; Return Q
End

Scalar multiplication: LSB first: As in MSB, LSB
Scalar multiplication: The most important arithmetic on needs the same input arguments (d,P) to calcuete t
elliptic curve applications is the scalar multiplion that point Q. The next steps are used to calculate LSB.
computes ‘dP’. ‘d’ is an arbitrary integer and B’ a
point on elliptic curve. The scalar multiplicatiatP’ can  Require d= (di-1, di-2... d0)2, di=1//'d" is Input
simply be clear by adding the (d-1) copies of titself. ~ Compute Q=dP
If the bit check starts from left to right, it gmlled  Q=0, R=P

Most Significant Bit (MSB) or double-and-add. For j=0 toi-1
However, if it starts from right to left, it usesess If ki=1 then
Significant Bit (LSB) to obtain scalar multiplicat. di Q=Q+R

Endi
MSB (double-and-add): To calculate MSB, two R=2R

parameters are required (d,P) to get the result@tt p End for
Q. The next steps are used to calculate MSB. Return Q
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Table 4: Scalar multiplication The number of times for point doubling operation
Addition (where x<>x,) Doubling (where x>0)  performed is approximately equal to ‘m’. Therefore,
gf:{;)): Oa.ya)*(Xay2) (e ¥9) = Cuy)*tay) — gouple-and-add algorithm averagely takes ‘m’ tipest
S = (y-y)l(xo-xe) S = (300)2+a)/(2y) d_oubl_mg. m/2 times point is a_lddgd addmon_to qerf m-
X3= SX1-Xo Xs= S-2% bit elliptic curve scalar multiplication at one #m
é?:=(2§n§x1-><3)-y1 Y3= S(%-X3)-y1 Data flow for ECC point doubling and point
S = (e (et S = /() addition is ba§ed on the Table 4 in GB(ghich is
Xa= SHSHx+xsta Xo= S+S+a presented in Fig. 8and 9. . _
Y= S(OutXa)+yitXa Y3= (%)2+(S+)%s A Montgomery bit-serial modular inversion
algorithm and Right-to-left shift multiplication thi
_ X3 ‘ serial are developed in this research to reduce the
+ P number of Input/output pins for scalar multiplication
‘ , ) elliptic curves by using double-and-add algorithm.
- - ' P Therefore, in this research the scalar multipigcat
' .|_TLT\\ on elliptic curves in GF(?) can be used to deal with
v B ﬁ’m;n;m‘" ' ) various binary polynomials in GF{2 The arithmetic
~p- - L | e which are introduced in GF{ fields are suitable to be
' U o Mot ] S SR implemented in hardware, since they are binary
“ | arithmetic.
Fig. 8: Point addition in GF({) CONCLUSION

Nowadays, RSA generally is used as public key
cryptosystem in most applications that use PKC.
However, recently ECC has a trend which makes it
become the convenient cryptography system. ECC is
also becomes substitute for RSA in efficacious
applications caused by its efficiency in softwasenll
as in hardware realizations. ECC provides a better
security with shorter bit sizes than in RSA. Shokiey
length saves bandwidth, power and it enhances the
Fig. 9: Point doubling in GF(3 performance. In contrast with the experts becatusan

be used to build a number of cryptographic schemes

There are many advanced researches on modulgfat cannot be constructed in any other way. The
arithmetic operations over finite fields. For exdeyp research starts with survey of cryptography, Htipt
Right-to-left shift field multiplication in F» and  Curve arithmetic and Elliptic Curve operations
Montgomery inversion method. These algorithms arenierarchy algorithms. Our approach is begun with
used in our bit-serial hardware architecture t@wate  competent design for finite field arithmetic, mgstl
scalar multiplication. focusing on inversion and multipliers. The desigh o

Double-and-add algorithm is chosen as it isefficient arithmetic algorithm in bit-serial struce for
dictated in ANSI (Greenlee, 1999) for scalarRight-to-left shift multiplication and Montgomery
multiplication (Vijayalakshmi and Palanivelu, 2007) inversion is shown. Montgomery inversion plays a
The double-and-add algorithm is a fundamentakonsequential task in elliptic curve scalar
technique in calculating scalar multiplication. It multiplication. A bit-serial approach minimizes the
performs by repeating point addition and point dmgb  number of Input/outputs which has a direct effent o
operations which is discussed earlier. In thispower consumption. Three macrocells per bit are
explanation, all equations for point addition ar@inp  exploited for the multiplicand, multiplier and the
doubling in GF(p) and GF(2 are summarized. product. Eventually, Area saving can be achieved

The numbers of ones in the binary representatiomecause it does not need to store reduction poligiom
of 'k’ are expected to be m/2. ‘m’ represents thiegth  in a register. The result of proposed bit-serial
of the integer number ‘k’. The number of ones in 'k architecture for the multiplication and inversiom o
shows how many times the point addition will befinite field arithmetic appears to be an important
performed. consumption of area in comparison with others.
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