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Abstract: Problem statement: Template matching is a famous methodology thatahasde range of
applications in image and signal processing. Fderaplate and input image, template matching
methodology finds the partial input image that igstnclosely matches the template image in terms of
specific criterion such as the Euclidean distanceross-correlationApproach: In this study, a fast
and robust template matching algorithm was propegeeie exact Legendre moment invariants were
used where a cross-correlation was employed tacttte most similar partial input image regardless
of location, width and heighResults: Experimental results showed that template matcbhingsing
exact Legendre moment invariants achieve higherege@f robustnessConclusion: Template
matching by using exact Legendre moment invarient®ry efficient where the high accuracy ensure
the matching process and avoids any mismatching.

Key words: Legendre moments, translation and scaling invaeatemplate matching, image features,
gray-level images

INTRODUCTION information redundancy (Teh and Chin, 1988).
Invariance to scaling and translation could be e
Template matching measures the degree ofhought image normalization or directly by using th
similarity between two images. The first imageadled  original Legendre polynomials (Hosny, 2010).
template image while the second is called the input Recently, (Omachi and Omachi, 2007) proposed a
image. Template matching is one of the most importa NEW approach for fast template matching. This
and challenging problems in object recognitionresie 2PProach called algebraic template matching. They

matching, feature tracking, remote sensing andamployed approximate Legendre  moments  to
.reconstruct template image and then use the NCC to

computer vision (Brunelli, 2009; Yazdi and Hosseinlfinol the most similar partial image in the inputsige
2008; Bentoutowet al, 2005; Pengt al, 2003; Bimbo regardless the width or height. They compare their

and Palg, 1997). It relies on Ga'C‘_"a“”Q at eaﬁit'rmn results with that obtained from the least-squaréhoe
of the image under examination a correlation Ofn fact their approach is promising. Unfortunagely

distortion function that measures the degl’ee Obpproximate Legendre moments represent the main
similarity to the template image and the best miatgh  weak point in their approach.

is obtained when the similarity value is maximized. In this study, we proposed a robust and fast

However, conventional template matching methodsemplate matching algorithm. In this algorithm, low
using a template image consume a large amount afrder exact translation and scaling Legendre moment
computational time. A number of techniques havenbeeinvariants are employed as image features. The high
proposed in order to speed up the template matchingccuracy ensures the matching process and avojds an
process (Laket al, 2008; Stefanet al, 2004; Stefano mismatching. Fast computation and low complexity
and Mattoccia, 2003; Gharavi, 2001). requirements ensure the efficiency of the proposed

Template matching involves two typical aspects:method. Numerical experiments are performed to show
similarity measurement and search strategy. Ambag t the robustness and the efficiency of the proposed
similarity measurements, Normalized Cross-Corretati template matching algorithm with different gray éév
(NCC) is widely used due to its robustness in texgpl images.
matching.

Orthogonal moments were first introduced bylLegendre moments: The 2D Legendre moments of
(Teague, 1980). Legendre moments are proved torder (p + q) for image intensity function f(x, gye
represent an image with a minimum amount ofdefined as:
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(2p+3)(2q+ 3. For the discrete-space version of the image, Eq. 1
Lo = 4 is usually approximated by the Zeroth-Order
11 (1) Approximation (ZOA) form (Liao and Pawlak, 1996):
R (X) R (¥ f(x.y) dxdy
11 L :(2p+1)(2q+j),
Legendre polynomial, ), of order p is defined ™ MN ®8)
as: MoN
RO R(%)T(xy)
i=1 j=
1 d°
P(X) == L (xz-l)p 2
2°p! dx MATERIALS AND METHODS
where, % [-1,1] and the Legendre polynomial(®) Equation 8 is so-called direct method for Legendre
obeys the following recursive relation: moments computations. As proved by (Hosny, 2007b),
Eq. 8 is inaccurate approximation of Eq. 1. In ortde
P..(%) :(Zp”) () - P P (3) improve its accuracy, an alternative approach is
(p+1) (p+2) employed. In this approach a digital image of $izeN

) is represented as an array of pixels. Centers edeth
with Py (x) = 1, B (x) = x and p>1. The set of Legendre pixels are the point{x,.y,)1{ 1.4-[ 1.7 where the
polynomials, B(x), forms a complete orthogonal basis ) i e ] .
set on the interval [-1,1]. The orthogonality pragés ~ image intensity function is defined. The sampling
defined as: intervals in the x-and y-directions a@e, =x,,, - x; ,

0 o g Dy, =y,, -y, respectively. In the literature of digital

N ,

B (x) R( %) dh= 9 ) image processing, the intervddg; andDy; are fixed at

constant value®x, =2/M and Dy, =2/N respectively.

Therefore, the pointéx; .y, ) will be defined as follows:

Based on the orthogonality of Legendre
polynomials, the process of image reconstru_ctimmfr X, = - 1+ (i- }p X,y =-1* (- ED y 9)
Legendre moments only adds the individual 2 2
components of each order to generate the recotestruc ) o
image. The image function f(x, y) could be writtes Withi=1,2,3,...Mandj=1, 2, 3,...N. Equatiorisl
an infinite series expansion in terms of the Legend €xpressed as follows:
polynomials over the square [-1,1] x [-1,1] asdulb:

L =(2p*d(2ar ).
v Pq 4
oy)= | LuPo(X)P(Y) ®) () (%) o

i=1 j=

where the Legendre momentgqlare computed over \yhere:
the same square. If only Legendre moments of order

smaller than or equal to Max are given, then the Ui Vpu
function f(x, y) in Eq. 5 can be approximated as hpq(xi,yj): P(x) @(X) dx dy (11)
follows: U,
R Max P Dx Dx.
fMaX(X’y): Lp—q,qpp q(x) Pq( y) (6) Ui+1 =X +7I'Ui =% - Tl (12a)
p=0 g=0
i Dy. .

Where the total number of independent Legendrev_+1 =y.+i,v. Zy. - Dy, (12b)
moments are: ! ! a2
N = (Max+I)(Max+2) 7y Translation-scale Legendre moment invariants:in

Total ( ) . . .
2 this subsection, the computational process of
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translation-scale 2D Legendre moment invariants is® P

presented in details. This process consists ofstages: nzodpn P(ax)=d d;, R( (172)
The exact central Legendre moments which are
invariant to translation are computed by using a
modified version of our novel method (Hosny, 2007b)  d_,P,(by)=b' d,, P(}Y) (17b)
This step is followed by the second step in which t d=° d=0

called Legendre moment invariants are computeis. It

the 2D Legendre moment invariants are computedvhere the matrixd,, is defined by using the following
exactly without the need of original 2D Legendre equations:

moment computation. The set of 2D central Legendre

moment could be exactly computed by: d,, =1 (18a)

~ M N p-n 2 B d

Lo = (- %) q(y i yo)f (X 'Fyi) (13) d,n= - —lenn per) r)Bn plp 1) (18b)
i=1 j=1

yvherlg(,j (%, nyJ)frefgrf to (tjhg ;_m:ige cent(;oid.quuagotr:]li% Subject to the conditions, p- - F even

is valid only for an .Forp=0an = e . . .

following sgecial cases are ConsioFI)ered: | p- n=evenandp- r* 2. Using Eq. 17 in Eq. 16 yields
the following scaled Legendre moments:

p=0,09=0,1,2,3,.......... Max .
p=0,1,2,3,......... Max : Where:
Apo—%: :1 1, - X o)f (x i,yj) (15) o W o0

where the derivation of the kernels,(y,-y,) and The scaling factors a and b could be cancelléd ou

1,(x,- x,) , are fully described in (Hosny, 2010). Fast The normalized translation-scale invariants of Lrefye

computation of the exact 2D central Legendre moenentmomemS are derived as follows:

is desirable especially in the applications requios- X A s

line computational process. The set of 2D centraly :M (21)
Legendre moments of the order-(p+q) could be Pl Y (p+2) oY o(q+2)

computed in a very fast way by employing successive
computation of the 1D g-th order moment for each.ro
This approach was successfully implemented in
(Hosny, 2007a; 2007b). Non-uniform scale Legendre
moments are defined as:

(2p+3(2a+ 3 !

ol (16) 1

R, (a) R( by) 1 x.) dxah

-1

Yoa=

where, a and b are unequal non-zero real numbers . ‘.\Il S
representing the scaling factors in x- and y-dicect @) ()
respectively. Chongt al (2004) expressed the scaled

Legendre polynomials in terms of the original Led)en  Fig. 1: Template matching (a) template image (putn
polynomials as follows: image

1085




J. Computer Sci., 6 (10): 1083-1087, 2010

Template matching: This subsection is devoted to
describe the template matching process. This psoce

The third experiment is concerned with a template
$mage which contains a mixture of Arabic and Erglis

consists of three stages: First, compute low ordelanguages. The input image is a gray level imagé wi
translation and non-uniform scaling Legendre momengomplicated background as displayed in Fig. 4.
invariants of the template image. Second, comphete t Vehicles, different signs with different languages all
same set of Legendre moments invariants of thetinpufisplayed in the input image. Such image could be a
image for each location. Third, compute the cross€hallenging problem for any template matching

correlation between the template image and allipless
partial input images. The cross-correlation for tsats
of selected features S and T is defined as:

(22)

05

where, ns is the length of both vectors of the cdete
features. The moment invariants of the same oralers
used for both template and selected partial inmatge.
Since we compute the translation and scale Legend

used as a reference size in the input image (FidiHe
sweeping process started by the first image bloitk w
size equal to the size of the template image. Titss
block must be located at the top left corner ofitiput
image. Similar partial image blocks of the same sie
considered in horizontal and vertical directions.

RESULTS AND DISCUSSION

Numerical experiments are conducted by using

different gray level images. In the first experimethe
standard image of pirate is used. The face of ittagepis

considered as the template image. Both input and

template images are depicted in Fig. 2. In the rstco
experiment, a gray level image of interstate roadssed
as input image where the image of 66 interstatd i®a
the template image. Figure 3 display the images.

@ (b)
Fig. 2: (a) Template image (b) pirate image

R

moment invariants, the size of the template image Ly

algorithm.

The proposed method successfully matched all
templates with their corresponding input images. No
mismatching encountered. The highly accurate
Legendre moment invariants play the essential irole
the matching process where the accuracy of thescros
correlation completely depends on the accuracyhef t
computed moment invariants. Computational time of
computing Legendre moment invariants is very
important where the matching process required
computational of the same set of invariants fofedént
locations in the input image. The very fast propose
method overcomes the challenging problem of
computational process. The third attractive propeft
e proposed method is concerned with the mixtdire o
fferent languages.

@ ®)
Fig. 3: (a) Template image (b) Interstate road ienag

eI Bas plive

@

(b)

Fig. 4: (a) Template image (b) Arabic Interstatado
image
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CONCLUSION Hosny, K.M., 2007b. Exact Legendre moment
computation for gray level images. Patt. Recog.,
This study presents a new template matching 40: 3597-3605. DOI: 10.1016/j.patcog.2007.04.014
algorithm. The proposed algorithm used exactHosny, K.M., 2010. Refined translation and scale
translation and scaling Legendre moment Invariasts Legendre moment invariants. Patt. Recog. Lett.,
image features. Such features are computed for both 31:533-538. DOI: 10.1016/j.patrec.2009.12.008
template and partial input images. Fast, highljemie Lai, R., X.D. Liu and F. Ohkawa, 2008. A fast teatpl
and low-complexity computation of the mentioned matching algorithm based on central moments of
image features results in accurate Cross-Correlatio images. Proceedings of the IEEE International
The accuracy of the Cross-Correlation ensures the Conference on Information and Automation, June
robustness of the matching process and avoids any 20-23, IEEE Xplrore Press, Changsha, pp: 596-600.
mismatching. Based on the obtained results, more DOI: 10.1109/ICINFA.2008.4608069
generic orthogonal polynomials such as Gegenbaudrao, S.X. and M. Pawlak, 1996. On image analysis b

and Jacobi will be promising in template matching. moments. |EEE Trans. Patt. Anal. Mach. Intell.
18: 254-266. DOI: 10.1109/34.485554
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