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Abstract: Problem statement: Rectangular steel plates are widely used in vargteel structures
and steel industries. For a proper design of gitsk structures and efficient use of material, the
behavior, strength, buckling and post-buckling ecleteristics of plates should be accurately
determined.Approach: Considering the significance of this matter, latevibration of thick
rectangular plates was studied on the basis of lminglate theory. The exact characteristic
equations for a plate which is single supportetiiio opposite edges are available in the literature.
S-C-S-F boundary condition which covers all possiituations is selected in this stuiResults: The
plate frequencies were calculated for this boundamydition for a wide range of plate sizes and
thicknesses. The plate mode shapes were obtaimedifferent cases and the effect of changes in
boundary conditions; size ratio and thickness @nwbration behavior of rectangular steel plates ar
studied. Conclusion/Recommendations: Since the results of this study is exact and withany
approximation, the presented values can be used @eper criteria to evaluate the error value of
approximate methods which are used by engineermdefsign of steel plates. These results can provide
a good gridline for efficient design and preventafrusing high safety factors. Considering the wide
range of steel rectangular plates, more sizes linlnesses of plates can be studied. The behafior o
plates with other boundary conditions can alsotbdisd for future research.
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INTRODUCTION amongst these theories, those of Mindlin and Rerssn
are closely related and are well known.

The Classic Plate Theory (CPT) provides a  The basic assumption of Mindlin plate theory @tth
theoretical model of plate behavior which has some straight line originally normal to the plate migld
considerable advantages, which cab be employed witburface is constrained to remain straight but eoegally
confidence over a reasonable range of applicatioms, normal to the middle surface after deformations.
which also has significant limitations. The popitiaof The inclusion of shear deformation effects in
CPT arises from the fact that the bending behasia@  Mindlin plate theory means that the two cross-sect
plate is expressed in terms of a sole, fundamentabtations Yy, and Y, have to be considered as
reference quantity that is w, the lateral displagetof  independent, fundamental reference quantities, in
the middle surface. The Kirchhoff hypothesis iscise  addition to w. Thus, three fundamental quantities a
CPT that straight lines originally normal to theatel involved in Mindlin plate theory, against the oné o
middle surface remain straight and normal during th CPTY,
deformation process. The consequence of using this The assumption of Mindlin plate theory implies
hypothesis is that the effect of through-thicknslsear  that shear strain distribution through the platekihess
deformation is ignored in CPT and thus the cla$sicaare uniform, but this cannot be so. To correcttfos,
theory overestimates the stiffness of the platechSu one shear coefficient factor is introduced into the
overestimation is of little consequence for truhint  analysis and selection of these factors is of some
plates but can be of very considerable significafiote  significancé’.
other plates, particularly in vibration and buchlin The present study is to determine the exact
problems when the ratio of plate thickness to tgpic characteristics equations for the case of S-C-S-F.
wavelength increases. A number of plate theoriést ex Considering the transverse shear deformation, Mindl
in which the Kirchhoff hypothesis is relaxed o take plate theory is used to derive the integrated éousibf
account of shear deformation and related effects anmotion in terms of the stress resultant.
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The frequency parameters which are calculated
using the exact characteristic equations are odxaior
this case, which can cover a wide range of plapecs
ratios n and relative thickness ratid. For the X3
mentioned boundary condition S-C-S-F, Three
dimensional mode shapes and their contour piots
n =2 andd = 0.1 are shown. a

X3

MATERIALSAND MATHODS

All the formulations provide here is for a
rectangular plate of length a, width b and uniform
thickness of h. Such a plate is shown in Fig. 1. ) b

The displacements along the x1 andaxes are Xi
respectively marked as;ldnd U and the displacement
in the direction perpendicular to plane qfand % is  Fig. 1: A Mindlin plate with coordinate conventfdn
marked as k&l According to Mindlin plate theory, the

value of displacement components in these direstion  \whered =ER® /12(1-v?), v as Poisson’s ratio and
can be calculated by formulas 1:

E and G as the modulus of elasticity and rigidithe

U, = =X, (X,, X0 1) constant k is the shear_ corr_ection factor int_roduce to
vooTemhe account for the non-uniformity of shear strain tigb

Uy =X,y X5 1) (1) the plate thickness.

Uy =P5(X5, X5, 1) The equations of motion can be derived from three

dimensional equations of motion in the form of Eq.
Where §; and (), are the slope due to bending
alone in the respective planeg; is the transverse
displacement and t is the time. The strains infonm
of tensor components can be derived from equation 1; -
! 0,,,t0 ,,,=pU
and can be written as Eq. 2: 217" 02227 0 25,57 P12 (4)

0311+ 035,10 53,=pUs

011,1+ O-12,2"' o 13,3~ pUl

€1 = —XU 11

€. ==X . . . .
22 W2 where p is mass density per unit volume. Since

€53 =0 there is no shear force in the faces of the pltte,
1 integration through the thickness of plate for eiumes
€, = _E(w 12T W)X, ) 4 gives Eq. 5:
1
f13 = _E(Lu e LIJ 3'1) M11,1+ M 12,2_Q 1:1_]'2ph3(,32¢ 1
1
SRR E Mooy M mQ = oo, ®)

+ = —phw?
If My, and My, and M, are the bending and Quit Q2= PP,

twisting moments per unit length and @nhd Q are the . .

shear forces per unit length, then the plate Iinea(rj. If the coordlnatg_s are r_lorrr;allzed to trt1e plategla b

constitutive relationships can be expressed aSEq. Imensions, - non-dimensional  parameters —can  be
calculated by Eq. 6:

My, =-D(W,, +uy, )

M,, =-D(Y,,+uy,) Xl=%, xzzx_bzv 6:%
D
M,, = _3(1_ V)W, *+W,) (3 n :% (6)
le—kZGh(qu_an,l) B—can\/I
Q, =_K2Gh(w2_l“3,2) D
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where B is frequency parameter. Equation 3 can The parameters’, a2 and o’ can be calculated by

now be written in dimensionless form as Eq. 7: Eq. 11;
=, +onG, Je =g 2
MD %( K2(12 )+1]
i -
2 :_(nqjl,l-'-u':pl,)eu =—*a B2
D a?a2=2
1-v i M
=5+ e =2 a (7) &2 ), 4 (1)
2 D +[(=) 0] 1 +§
~ . Q
= - -_ ém = 1
Ql (lpl lIJS,l) K2Gh GZ :lZKZ( B264 _]}
~ : 3 2 201 _
Q, ==, -, )e" =2 & (72K7(-v)

K’Gh

In these equations, partial differentiation with ~ The governing equations of motion can be writing
respect to the normalized coordinates is repredemye as EQ. 12:
comma subscript. The parametelys, @, and @, can

be given by Eq. 8: W, +PW, ,=—0W,
By (X, X) =W (x,x e Wy HTW, =W, (12)
0,(X X ) =W X, X 5 t)e™ (8) \Ns,11+r]2W3,22= —aW,

e—iul

X, X)) = X 1) —— .
DX XD =0 Lax 1) a One set of the solutions for Eq. 12 can be Eq. 13:
If the dimensionless stress resultants of Eq.e7 ar,,, _ ., _. .
substituted in Eq. 5, 9 can be derived: Wi =[ASIN(AX) +A LOSA X IsinG X ) +

[B1sin(A,X,) + B,cos, X,)]cosf; X,)

1-v
qjl,ll + HZLTJ 1,22+_n(¢' 1t ny 2,1) - . .
1+v W, =[Asinh(A,X,) + A ,cosh@ ,X,)]sin(1 ,X )+

2 252
%(m NG, = _6(315 . [B,sinh(\,X,) + B,coshh , X, )lcost , X,)
-0
lI’z,u"' nij 2,22"']-__[)"](‘1J 1.1z+ ﬂlIJ 2,2) - W3 - [A SSinhO\ 3X 2) A GCOShQ\ SXZ)]COS(J 3Xl)+ (13)
ok 1rv - ©) [Bssinh(A;X,) + Bscoshh ; X, )]sint; X,)
_(lIJ ﬂllls 2) = q’z .
& 6(1‘U) In these equations, A and B are constaxtsnd
B 1+ N0 50— (0,400 ,) = can be found by Eq. 14:
_ 3252 2 _ 2 2y 2
- SRR
SH;~NA; (14)
These equations can be solved if the functidns =pZ+nA2

¢, and (¢, are written in the form of three

dimensionless potentials W1, W2 and W3 as Eq. 10: It is obvious that for a simply supported edgegfr

20 n? edge and clamed edge Eq. 15-17 can be respectively
=(1- W, W, written as:
lI’l ( (l ) 3) 11 ( (1 XX3) 21 n 3,2
205 xn? M, =0,=0,=
b = (U S+ A W WG, (10) My =0,=0,=0 (15)
3 3
l:[:11:W1+W2 ,\7'11:'\7'12:61:0 (16)
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b, =0,=0,=0 A7y 2L e e
n
S-C-SF boundary condition: This boundary )\221 —a2 - (19)
condition is the most complicated case and covirs a n
possible boundary conditions. For this case, eqodt8 , _1 — 5" 50
can be written: N
MANICLL ,=CL L ~2(C C )ua-v)* RESULTS
cos\, costh, coshy+ (G €)Fp* {[kL- In this part, numerical calculations of the above
2(1-UA2A2n*]sinhA, sink , +A A 2 [L (- ) 2L, equations are given to clarify the method. Poisson’

ratio is assumed to be equal to 0.3.

—- 2 _ _ 2y 24
licosh, +(C, = CICA4{IL L ~2(L - AT (18) The results have high accuracy and can be used for

IsinhA, sinfh, =A A n* [L;(1-v )+ 2L,J}coshA, + determining the accuracy of approximate methods. To
CCAN{ILL A3+L L A% illustrate the results, a typical 3D deformed mode
JsinhA, sint\, +A A, [L,L,— L L Jcoshh ,= 0 shapes together with their corresponding deflection

counter plots for plate with aspect ratig = 2 and
thickness ratio> =0.1are given in Fig 2.

2
In this equationy=mm, C, :1_2L22 For different thickness to length ratios of
(1-v)a; 5=0.01,0.05,0.1,0.1150 and aspect ratios of
2 .
c,=1- 205 _A.\and A,are functions of non- n=0.4,0.52/311.5,2,2, the results are tabulated in
(1-v)a; Table 1. In Table 1, for eveyandn, the nine lowest
dimensional frequency parameters as Eq. 19: values of frequency are displayed in ascendingrorde
Table 1: First nine frequencies for rectangulackiglates with boundary condition S-C-S-F
n > 1 2 3 4 5 6 7 8 9
0.4 0.01 10.1848 13.5047 20.0776 29.5868 39.6021 .1882 42.9565 495127 57.9108
0.05 10.1319 13.4887 19.8437 29.1124 38.9107 8882  42.1449 48.4091 56.3209
0.10 9.9871 13.2121 19.2456 27.8944 37.0765 38.99 39.9820 45,5522 52.3237
0.15 9.7676 12.8087 18.4063 26.2480 34.6080 88.03 37.1334 41.9122 47.4327
0.20 9.4910 12.3200 17.4363 24.4379 31.9525 2395 34.1210 38.1799 42.6163
0.5 0.01 10.4206 15.7393 25.7574 39.7874 40.5324 .0584% 55.2982 60.1784 70.3559
0.05 10.3618 15.5842 25.3653 39.0904 39.6621 3841 53.8756 58.4177 68.0502
0.10 10.2054 15.1956 24.3830 37.2242 37.4665  489.7 50.3101 54.0543 62.5113
0.15 9.9712 14.6443 23.0502 34.6374 34.7311 38.63 45.9063 48.7890 56.0469
0.20 9.6782 13.9934 21.5678 31.6896 32.0545 39.38 41.5112 43.6674 49.9152
2/3 0.01 10.9682 20.3073 37.8901 40.2293 49.6579 4.0669 67.7516 89.1850 94.2461
0.05 10.8951 20.0257 37.0603 39.5018 48.4841 9849  65.5195 85.8902 90.0643
0.10 10.7099 19.3498 35.0192 37.5793 46.5302 7589  60.2293 77.9793 80.6773
0.15 10.4390 18.4298 32.4007 35.0275 41.8180 561.0 54.0632 69.0335 70.5727
0.20 10.1060 17.3888 29.6707 32.3003 38.0442 1484  48.2070 61.6093 63.2764
1 0.01 12.6728 32.9925 41.6472 62.8595 722171  19@8.4 102.7904  111.5689 130.9964
0.05 12.5482 32.2370 40.8218 60.7824 69.4393  786.9 97.5322  106.1105 123.0672
0.10 12.2606 30.4743 38.7128 55.9736 62.9527 128.8  86.2713 94.0906 106.1656
0.15 11.8620 28.2362 35.9677 50.3782 55.6218 689.6  74.6338 81.5621 89.6189
0.20 11.3931 25.8975 33.0747 45.0445 48.8911 08243 64.6148 70.7202 76.0573
15 0.01 16.7875 45.2148 60.8312 91.9180 93.5911 1.1267  149.0012  161.6466 180.1544
0.05 16.5179 44.1176 58.4647 87.1780 89.7406 7987. 138.3211  151.2366 164.9217
0.10 15.9404 41.4965 53.0869 77.3057 80.9273 3B08. 116.7400  129.8348 136.6792
0.15 15.1913 38.2377 46.9606 67.0994 71.2484  636.8 96.8123  109.4262 112.0940
0.20 14.3646 34.9199 41.2635 58.2641 62.5203 8851 81.6739 92.9209 93.3381
2 0.01 22.7512 50.6057 98.4649 99.3823 131.4853 1188  181.7921  250.1932 253.2971
0.05 22.2469 49.0424 93.5256 93.9506 121.8970 .85%4  165.8679  223.8942 227.2697
0.10 21.1870 455725 81.0357 84.0786 103.5900 .2892  137.5355  178.6892 180.1780
0.15 19.8705 41.5047 68.4310 73.5755 86.6229 12472  113.1589  141.1201 145.1981
0.20 18.4903 37.5487 57.8767 64.2947 73.0862 9861 945611  114.5430 119.7053

25 0.01 30.5270 57.8545 105.1242 148.7010 172.278881.4601 232.9375 259.0458 302.2416
0.05 29.6813 55.5986 99.6242 136.3896 159.7670 3.9483 206.9864 233.6515 263.6216
0.10 27.8981 50.9077 88.2403 112.4394 133.2557 5.5890 165.0990 189.4319 205.4196
0.15 25.7584 45.7332 76.6139 91.0054 107.5361 .4238 132.1264 153.2002 162.1838
0.20 23.6105 40.9415 66.6065 74.5669 88.3290 8@2.8 108.2063 126.5933 131.8118
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Fig. 2: First nine mode shapes of S-C-S-F rectargul
plate § =2,6 =0.1)

DISCUSSION

As it was mentioned before, the method which is

used in this study is accurate and is based oexhet
characteristic equations and no estimationvslired.

Table 2: Comparison study of frequency parametens sguare
mindlin plates with S-C-S-F boundaries

Mode sequences

5  Method 1 2 3 4
0.1 Leweta™ 122492 304083 38.6346  55.8018
Present 122492  30.4086 38.6342  55.8017
02 Lieweta” 113619 257547 32.8934  44.7241
Present 11.3619  25.7545 32.8937  44.7244
*K %= 5/6

To assure the performance of this method, the tesul
are compared to those of an approximate methodhwhic
has acceptable accuracy Liewval.”) in the case of a
rectangular plate withd=0.001. This comparison is
tabulated in Table 2 for the first four frequencids it
can be seen, the results are close which confien th
performance of the exact method. The minor
differences is because of the approximations éxidie
Liew non-exact method.

CONCLUSION

In this study, Mindlin plate Theory is used to
investigate the free vibration of thick rectangutates.
The general characteristic equations and trandversa
deformations, frequencies and different mode shapes
are presented for S-C-S-F boundary condition which
covers all other boundary conditions. Considerihg t
high applicability of rectangular steel thick pkatend
the exact results of this method, the method camsked
by engineers who need the exact results for opgimiz
plate design.
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