Journal of Computer Science 5 (11): 778-782, 2009
ISSN 1549-3636
© 2009 Science Publications

An Improved L azy Release Consistency M odel
Chapram Sudhakar and T. Ramesh

Department of Computer Science and Engineering,
National Institute of Technology, Warangal-50600dlia

Abstract: Problem statement: A network of workstations, viewed as a distribusdthred memory
system can be used to develop and test paralletigims. Approach: For implementing parallel
algorithms on such DSMs shared memory consisteragetplays a vital roleResults: However on a
LAN, strict consistency models like Sequential Gstecy model (SC) are not useful since the
communication is slow. In such environments relaremtiels like Entry Consistency (EC), Release
Consistency (RC) or their variations such as Lazje®se Consistency (LRC) are generally used.
Conclusion/Recommendations. In this study an Improved Lazy Release ConsistdiHdgC) model

is proposed. This model is studied with standaralfg algorithms. In many cases the ILRC model is
proved to work better than the LRC model.

Key words: Distributed shared memory system, lazy releaseistemey model, memory consistency
model, threads

INTRODUCTION TreadMark¥! system. This model works better for
parallel algorithms which manipulate small set atad
Usage of network of workstations for parallel items in a brief critical section that results iery little
processing is very common. Such an environment camodifications in the page of those data items. We t
be viewed by the programmer as a message passiigta set size and the number of processes incrédases
environment or Distributed Shared Memory (DSM) total differences for an interval of time also ieases
environment. The shared memory view makes parallehnd hence this LRC model cannot perform efficiently
programming easier by using threads concept, wagre ILRC overcomes these problems by some modifications
the message passing view makes development @b LRC model.
efficient parallel programs containing explicit In the next part original LRC model, its drawbacks
messaging calls for remote data items. and proposed improvements are described.
Providing specific memory consistency models forimplementation details of proposed modificationsl an
a distributed shared memory system is necessary faest results with standard parallel algorithms are
developing parallel programs. Several models in theresented in subsequent parts of this paper.
literature are proposed which are categorized itwtm
categorie$” based on the data being accessed. Firdackground: Lazy Release Consistency Model ensures
category is uniform models which will treat all Ksmof that all programs without data races behave akeif t
data accesses uniformly. Stfitt Sequential, PRAM, were executing on a conventional Sequentially
Processor and Causal consistency m&defs'® are Consistent (SC) memory. Most parallel programs
some examples for uniform memory consistencysatisfy this condition and behave identically when
models. The second category is synchronization leodeexecuted on a multiprocessor system and DSM system
that differentiate the memory accesses asith LRC model. But compared to Sequential
synchronization related accesses and normal dat@onsistency model LRC has the advantage that it can
accesses. Weak, ReleBseand Entry consistenfy be implemented more efficiently. The TreadMarks
model$°1%%% are some examples for synchronizationimplementation of LR& is described below.
models. Synchronization based models are more LRC divides the execution of each process into
relaxed than the uniform consistency models. Tieee logical intervals that begin at each synchronizatio
variation of Release Consistency model known ayLazaccess. Synchronization accesses are classified as
Release Consistency (LRC) model which is used imelease or acquire accesses. Acquiring a lock is an

Corresponding Author: Chapram Sudhakar, Department of Computer Sciert&ngineering, NIT, Warangal-506004, India,
Tel: 091-870-2462731, 2468731
778

J. Computer Sci., 5 (11): 778-782, 2009

example of an acquire access and releasing a$oak i process which has the ownership of the page argl act
example of a release access. Waiting on a baaiebe like a home machine for that page. Page ownership
modeled as a release followed by an acquire. LRGnight be changed dynamically depending on which
defines the relation corresponds on synchronizatioprocess has recently modified the page. The copy se
accesses as follows: A release access on a lodkdicates the list of processes that are havingy adp
corresponds to the next acquire on the lock to det@p the shared page and used to recall the page frber ot
and a release access on a barrier wait corresportds processes when exclusive access to the page isaequ
acquire accesses executed by all the processelseon fThe status field of a page entry is the operatysjesn
same barrier wait. protection status for the page, i.e., if the stasuso-
Intervals are partially ordered according to theaccess then any access to the page triggers afqage
following two relations: (i) Intervals on a singbeocess and if the status is read-only a write access ¢opidige
are totally ordered by program order and (ii) Antriggers a page fault.
interval x precedes an interval y, if the reledsd ends The procArray has an entry for each process. The
x corresponds to the acquire that stafts ¥he partial entry for process i contains a list of interval awts
order between intervals is represented by assigaing describing the intervals created by i that the lloca
vector timestamp to each interval. TreadMarksprocess knows about. This list is ordered by detnga
implements LRC model by ensuring that if interval x order of interval logical times. We refer to thdueof
precedes interval y (according to this partial oxdell VC; as i's vector time and to the value of WCas i's
shared memory updates performed during x are eisibllogical time. Similarly, the vector time of an inal
at the beginning of y. created by i is the value of Y@vhen the interval is
created and the logical time of the interval is vladue
LRC data structures. Each process maintains the of VCi[i].

following data structures in its local memory: The storage for the differences, the write notice
records and the interval records is not freed gatibage
PageArray: Array with one entry per shared page collection is performed, i.e., a process effecyivel
ProcArray: Array with one list of interval recorgger maintains a log of all shared memory accesses $irce
process last garbage collection. This is necessary becauge
DirtyList: Identifiers of pages that were modified other process that requires a page which was refede
during the current interval long back, may ask for entire history of differemder
VC: Local vector clock that page. In that case all the differences fot peaye
Pid: local process identifier from the oldest interval must be given in the refplythe

page difference request.

Each shared page entry has fields for twin page,
write notices, page manager, copy set and curtentss MATERIALSAND METHODS
of the page. The twin page of a shared page is fased
storing old contents of the corresponding page reefo Weaknesses of LRC model: There are several
attempting any modifications and is used laterhat t drawbacks for the original Lazy Release Consistency
release time (or delayed till the next page difieee implementation, when applied to real parallel
request) to compute the page differences. The writapplications. If the data of the application isw&rge
notices field in the page entry describes modifices and is modified frequently, then the difference
to the page. The entry for process i in the wriddaes representation for one interval can exceed the sfze
array contains a list with all the write noticesated by original page itself. Even if smaller differencese a
i for the page, that are known to the local procEseh there, collectively for a number of processes, Wwhic
of these write notice records describes the updatesmight acquire the lock in sequence before the atirre
performed by i to the page in a given interval. Wréee process, the total size of differences together may
notice record contains a pointer to the intervalord exceed the size of original page itself. The oaglrtRC
describing that interval and a pointer to the défees implementation is useful if one or few scalar vhlés
containing the words of the page that were updated are present in a page that is modified in critgedtion,
the interval. The interval records contain a basiter where the resultant differences are smaller. Ihas
to a list with one write notice for each page thats suitable for large data arrays that are modified
modified during the interval. Whenever an interval frequently by large number of processes. The amofunt
record is created, it is tagged with the vectoretiand space utilized by twin pages, which may be maiwrtzhin
the identity of its creator. The page manager i thfor longer periods, if differences are not requesis

779

J. Computer Sci., 5 (11): 778-782, 2009

additional overhead in addition to the write notice Array of NormalSharedPages : {manager, last
records, interval records and page differences. interval, state}

Computing page differences, when requested byrray of SmallDataltemSet : {Page number, size,
other processes, is time consuming and requests get manager, last interval,
delayed. If in advance page differences are conmlpute state}
then it may become wastage of time if those diffees IntervalRecord . Interval record
are not requested in the future. The improved holding write notices
implementation of LRC, overcomes these memory for small data item set
space and CPU time problems. pages

VectorClock : To order the intervals

Improved LRC implementation: Improved LRC

implementation takes annotated input source program A NormalSharedPage entry contains information
All the variables of the source program are dividd about the page such as which process is the current
two categories, small data items and larger detast manager, interval when the page is last requestdd a
Synchronization wise related set of small data steime its state indicating read-only, writable and diré
kept together in one page. Different such setpk®ed SmallDataltem set entry contains the page number of
in to separate pages. The compiler includes the sizthe data items allocated to and their size in #mfdito
element for each related data item set. This itdéca the NormalSharedPage information. IntervalRecord
used amount of memory for the variables in thatepag contains for a given interval of vector time, theitev
Even though most of the page is wasted, for anyotices for small data item set pages that are fieddi
parallel application usually very few such type of The vector clock is used for partial ordering o€ th
smaller data items exist. So the overall wastageeiig intervals in all processes.

less. For larger data items that may span mulfiptges, The prototype system is designed to support any
any additional information is not required. Thosgy@s type of memory consistency model. It includes a
are treated normally with write-invalidation protdc generic memory consistency manager that suppoyts an

When a lock is acquired the process gets thefist model with a common interface. The common interface
current managers of the recently modified page® Thcontains set of operations for all memory consisgen
acquired process modifies its data structuresdixéte related events. Some of the operations of the mgmor
the managers for each such modified page. For theonsistency model interface are given below:
pages which have not been modified since they are
requested for the last time, those are still upate. If Interface of memory consistency model:
an older page is referenced, then a page faultreccu InitConsistencyData: This function initializes the
The page fault handler determines whether the mge memory consistency model specific data structutés.
small data item set page or normal page. It sends ealled automatically when the process is beingterka
partial page request or full page request to theager or if the process explicitly calls set_mctype(...) et
of that page depending on page type. It can alpoest the memory consistency model to a specific model.

for ownership if the faulted instruction is write .)
operation. PageFault: This performs memory consistency model

This method eliminates the need for COmputingspecific operations such as invalidation, updation,

page differences and maintaining write notice réspr reduest a page copy, when a page fault occurs.

age differences and interval records. But for qzade . . .
iF; ?naintains type of the page, page manager Ia%.(ockAcquwe: This is called when a lock/semaphore is
acquired interval and state information which odesp '0cked by the current process.
very little space. This is really advantageous eal r
parallel applications that require huge amounts o
memory. As the related small variables are 'T?.a'f’m'” when joining, LockRelease is called and when legvin
in one page those can be requested at once wiitigle s LockAcquire is called
partial page request and thus communication can bée q '
reduced. Implementation details of this method \tfit
data structures are given below.

4_ockReIease: This is called when a lock/semaphore is
released by the current process. In the case afrieb

InvalidatePage: This is called when invalidation
request for a page is received from other processes

ILRC data structures. Each process maintains the UpdatePage: This is called when update request is
following data structures: received.
780

J. Computer Sci., 5 (11): 778-782, 2009

Enlar geConsistencyData: This is called for Table1:Performance ILRC and LRC compared

expansion/shrinking of memory consistency specificApplication Data set size LRC ILRC Percentage
: : of the App (m.sec) (m.sec) of Impr.
data structures in the case of process address sjrac :
is chanaed Reduction 8388608 23426 183.08 218
IS changed. Sieve 4194304 301.19 23881 20.7
o Matmult 51512 878.45 652.74 257
ProcessM CRequest: This is called when any other merge 5242880 516.86 350.25 322
type of memory consistency request is received fronfuiksort 5242880 831.59 813.93 2.1
o i i SP 20 236.01 225.02 4.6
another process. This is provided for extend!ng th S Cketsort 1104304 1056647 829861 oL7
support for any other type of memory consistency, 512x512 195585 163367 165
model specific events. Radixsort 2097152 1800.39 1545.95 14.1
Barnes 16384 1631.40 1600.00 1.9
ProcessM CReply: This is also provided for extending FMM 16384 2484.75 2276.62 8.4
the support for handling any consistency model ipec ©cean-cont 258258 30119 24677 181
reply message Ocean-non 25858 343.01 27065 211
ply ’ Water-nsquared 512 418.31 294.53 29.6
. . . . Water-spatial 512 368.11 262.69 28.6
ProcessExit: This is called when a process is grr 65536 41.83 3582 144
terminating, to upload the locally made changeth®
data items to their respective home locations. which effectively reduces the amount of changehin t

. _ . flag array. But even then ILRC is showing slight
Environment and software: The prototype system iS jmprovement over the original LRC model. This is

currently running with a set of X86 based 32-q,e tg high amount of change in the flags arraghén
workstations connected with high-speed Ethernet LAN;q;itia) stages. The reduction algorithm is very gienin

All workstations execute the same copy of the diga \hich contention for lock (Global sum) occurs oaly
system. The application can be developed using,e eng. But twin page creation for very short qeri
standard pthread library. Any pthread based parallg;sage, which is done sequentially one after theroth
application can be executed without any modificatio processor, makes comparatively much difference.
But for using improved features of LRC and Entry jence some difference in execution times can be
consistency models source program must be annotatgghserved in this case also. Matrix multiplication
with the required information, which is a minor oga. problem is actually not affected by any particular
An application can be started from any Workstation.modeL because all computations are independent
When it creates threads, corrgspondingly Process®s ompuytations. Propagation of changes in the dagysr
spawned on other workstations, which can run injoeg not happen in this case. So there shouldenatip
parallel. All those processes use same selectedoryem itrerence in execution time. But in ILRC improved
consistency model or a default consistency modelommunication primitives are used for propagatién o
assigned by the system. matrix rows and hence the difference is shown @& th
table. In the case of travelling sales person prablas
RESULTSAND DISCUSSION the algorithm follows lexicographic search ordémast
gll processors search independently. The only idata

been tested with well known parallel algorithmstsas shared both for 'Tef”‘d"?g and writing, IS currer)t\,kno
reduction, sieve (finding prime numbers), matrix bound value. As it is simple small data item, therao

multiplication, merge sort, quick sBit, bucket sort and considerable difference between _the_ two consistency
a branch and bound algorithm for travelling salesme models. In other SPLASH-2 applications and kernels

problent? and SPLASH-2 Benchmark programs. All of also similar improvements can be observed.

the programs are tested using 8-workstations. e d CONCLUSION

set sizes for each one of the algorithms and the

comparative execution times wusing old LRC The Improved Lazy Release Consistency model

implementation and improved LRC implementation arehas been implemented and tested with standardigdaral

shown in Table 1. algorithms. For many cases ILRC model has shown
Merge sort algorithm changes most of the contentbetter performance compared to the original LRC

of the data frequently. So, as expected, ILRC ignodel. The only drawback is program needs to be

showing considerable performance improvement is thiannotated, to indicate small data item sets angelar

case. In Sieve algorithm, actually marking is redtlic data item sets. It can be improved to identify

as the current prime number increases, dynamically small data item sets and large datm ite

781

The developed memory consistency model ha

support
“implementation of distributed shared memory system
using page based memory management system”.

J. Computer Sci., 5 (11): 778-782, 2009

sets by prediction. Another possible improvemeat th 6.
can be done is adaptively using either whole page
approach
dynamically depending on the amount of changes.

or incremental modification approach

ACKNOWLEDGEMENT

Researchers thank MHRD for their financial 7.
through the research project entitled

8.

REFERENCES

9.
Tanenbaum, A.S., 1994. Distributed Operating
Systems. US Edn., Prentice Hall, ISBN: 10:
0132199084, pp: 648.
Bennett, J.K., J.K. Carter and W. Zwaenpoel 0199
Munin: Distributed shared memory based on type-10.
specific memory coherence. Proceeding of the 2nd
ACM Symposium on Principles and Practice of
Parallel Programming, Mar. 14-16, ACM Press,11.
Seattle, Washingtomynited States USA., pp: 168-176.
http://portal.acm.org/citation.cfm?id=99182
Bershad, B.N., M.J. Zekauskas and W.A. Sawdon]2.
1993. The midway distributed shared memory
system. Proceeding of the IEEE Conference on
COMPCON Spring, Feb. 22-26, IEEE Xplore
Press, San Francisco, CA., USA., pp: 528-53713.
DOI: 10.1109/CMPCON.1993.289730
Amza, C., A. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu and W. Zwaenepoel, 1996.
TreadMarks: Shared memory computing on
networks of workstations. IEEE Comput., 29: 18-28.
DOI: 10.1109/2.485843
Fleisch, B. and G. Popek, 1989. Mirage: A
coherent distributed shared memory design.
Proceedings of the 14th ACM Symposium on
Operating System Principles, Dec. 3-6, ACM
Press, New York, USA., pp: 211-223.
http://portal.acm.org/citation.cfm?id=74851.74871

782

Protic, J., M, Tomasevic and V. Milutinovic, 229

A survey of distributed shared memory systems.
Proceedings of the 28th Annual Hawaii
International Conference on System Sciences, Jan.
04-07, IEEE Computer Society Washington, DC.,
USA, pp: 74-74.
http://portal.acm.org/citation.cfm?id=798090

Li and Hudak, 1989. Memory coherence in shared
virtual memory systems. ACM Trans. Comput.
Syst., 7: 321-359.
http://portal.acm.org/citation.cfm?id=75105

Quinn, M.J., 1993. Parallel Computing Theory and
Practice. 2nd Edn., Tata McGraw-Hill Companies,
USA., ISBN: 10: 0070512949, pp: 446.
Ramachandran, U. and M.Y.A. Khalidi, 1989. An
implementation of distributed shared memory.
Proceeding of the 1st Workshop Experiences with
Building Distributed and Multiprocessor Systems,
(EBDMS’89), USENIX Association, pp: 21-38.
Steinke, R.C. and G.J. Nutt, 2004. A unifieglotty

of shared memoryonsistency. J. ACM., 51: 800-849.
http://portal.acm.org/citation.cfm?id=1017464
Adve, S.V. and K. Gharachorloo, 1996. Shared
memory consistency models: A tutorial. Computer,
29: 66-76. DOI:10.1109/2.546611

Ramesh, T. and C. Sudhakar, 2006. A linearespac
deterministic, parallelizable, algorithm for
travelling sales person problem. Proceedings of
NCIOM, Mar. 3-4, Allied Publishers, pp: 273.

Zhou, S., M. Stumm and T. Mclnerney, 1990.
Extending distributed shared memory to
heterogeneous environments. Proceedings of the
10th International Conference on Distributed
Computing Systems, May 28-June 01, IEEE
Xplore Press, Paris, Francgp: 30-37. DOI:
10.1109/ICDCS.1990.89329

