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Abstract: Problem statement: Activities of drug molecules can be predicted byafitative
Structure Activity Relationship (QSAR) models, whiovercome the disadvantage of high cost and
long cycle by employing traditional experimental thuds. With the fact that number of drug
molecules with positive activity is rather fewemaththat with negatives, it is important to predict
molecular activities considering such an unbalarsiaghtion. Approach: Asymmetric bagging and
feature selection was introduced into the problemd @symmetric Bagging of Support Vector
Machines (AB-SVM) was proposed on predicting dragvéties to treat unbalanced problem. At the
same time, features extracted from structures wg dnolecules affected prediction accuracy of QSAR
models. Hybrid algorithm named SPRAG was proposéith applied an embedded feature selection
method to remove redundant and irrelevant featfoe#\B-SVM. Results. Numerical experimental
results on a data set of molecular activities shibtv&t AB-SVM improved AUC and sensitivity
values of molecular activities and SPRAG with featselection further helps to improve prediction
ability. Conclusion: Asymmetric bagging can help to improve predicéaeuracy of activities of drug
molecules, which could be furthermore improved leyfgrming feature selection to select relevant
features from the drug.
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INTRODUCTION methods have been used to the modeling of QSAR
problems, like multiple linear regression, k-neares
Machine learning techniques have been used imeighbol?, partial least squar€s Kriging!®, artificial
drug discovery for a number of years. Neverthelesspeural networkd and Support Vector Machines
pharmaceutical manufacturers are constantly seaking (SVM), of which SVM is a state-of-arts method and
increase  predictive  accuracy, either throughachieved satisfactory results in the previous stfdf.
development of existing techniques or through theNowadays, ensemble learning is becoming a hot topic
introduction of new ones. Support Vector Machinesin the machine learning and bioinformatics
(SVMs), genetic algorithm, particle swarm optimieat ~ communitieS!, which has been widely used to improve
are a recent and powerful addition to the family ofthe generalization performance of single learning
supervised machine learning techniques and theimachines. For ensemble learning, a good ensemble is
application to the drug discovery process may be obne whose individuals is accurate and makes their
considerable benefit Modeling of Quantitative Stmie  errors on different parts of the input spdc&he most
Activity Relationship (QSAR) of drug molecules will popular methods for ensembles creation are Bagging
help to predict the molecular activities, which wed  and Boosting®*?. The effectiveness of such methods
the cost of traditional experiments, simultaneouslycomes primarily from the diversity caused by re-
improve the efficiency of drug molecular destgn sampling the training set. Agrafiotés al.*® compared
Molecular activity is determined by its structusy  bagging with other single learning machines on
structure parameters are extracted by differenhotst  handling QSAR problems and found that bagging ts no
to build QSAR models. Today, many machine learningalways the best one. Signal was proposéedf!init
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created an ensemble of meaningful descriptorsaaho performance of ordinary bagging. Here we propose to
from a much larger property space, which showedtombine modified algorithm with asymmetric bagging
better performance than other methods. Randomtforeto treat the unbalanced QSAR problems.

was also used in QSAR probléis Dutta et al.*®

used different learning machines to make an ensemblSupport vector machines: Kernel-based techniques
to build QSAR models and feature selection is used (such as support vector machines, Bayes point
produce different subsets for different learningmachines, kernel principal component analysis and
machines. Although the above learning methodsGaussian processes) represent a major development i
obtained satisfactory results, but most of the jprey  machine learning algorithms. Support Vector Mackine
works ignored a critical problem in the modeling of (SVM) are a group of supervised learning methods th
QSAR that the number of positive examples oftencan be applied to classification or regression. pBup
greatly less than that of negatives. To handle thiwector machines represent an extension to nonlinear
problem, Eitrichet al.*”! implement their own SVM models of the generalized portrait algorithm depelb
algorithm, which assigned different costs for twoby Vladimir Vapnik. The SVM algorithm is based on
different classes and improved the prediction tesul the statistical learning theory and the Vapnik-
Here combing ensemble methods, we propose to usghervonenkis (VC) dimension introduced by Vladimir
asymmetric bagging of SVM to address the unbalance®apnik and Alexey Chervonenkis. After the discovery
problem. Asymmetric bagging of SVM has been usedf SVM they have applied to the biological data
to improve relevance feedback in image retrié¥al mining®®, drug discover§®.

Instead of re-sampling from the whole data set, |n SVM The Optimum Separation Hyperplane
asymmetric bagging keeps the positive examplesifixe (OSH) is the linear classifier with the maximum giar
and re-samples only from the negatives to make theyr a given finite set of learning patterns. Coesithe
data subset of individuals unbalanced. Furthermeee, lassification of two classes of patterns thatlaearly
employ AUC (area under ROC cuni$) as the separable, ie., a linear classifier can perfestiparate

measure of predictive results, because predictiofnem  The linear classifier is the hyperplane H
accuracy cannot show the overall performance. We wi (Wex+b =

veis th its of AUC and prediction accuraty = 0) with the maximum width (distance
analysis the results o between hyperplanes;Hand H). Consider a linear
experimental results. Furthermore, In QSAR problems W yperp " H)

classifier characterized by the set of pairs (wthat
many parameters are extracted from the molecular y P (witts

structures as features, but some features are dadtin tsr?tlffle_s.the fc;!lowmg inequalities for any patte¢ in

and even irrelevant, these features will hurt the € training set.

generalization performance of learning macHffes )

For feature selection, different methods can be{W O; +b>+1 if y, =+1

categorized into the filter model, the wrapper mode Wk +b<-1 if y, =-1

and the embedded mot&F?, where the filter model is

independent of the learning machine and both the These equations can be expressed in compact form
embedded model and the wrapper model are depending;:

on the learning machine, but the embedded model has

lower computation complexity than the wrapper model (W', +b)=+1

has. Different methods have been applied to QSAR' '

problem&7%2%and shown that proper feature selection

of molecular descriptor will help improve the pretthn

accuracy. In order to improve the accuracy of

asymmetric bagging, we will use the feature sedecti Yi (W' +b)-120

methods to improve the accuracy of individualss ki

motivated by the work of Valentini and Diettefi¢h Because we have considered the case of linearly
in which they concluded that improve the accuraty oseparable classes, each such hyperplane (w, b) is a
Support Vector Machines (SVMs) will improve the classifier that correctly separates all pattermsnfithe
accuracy of their bagging. et al.” found embedded training set:

feature selection method is effective to improve th

accuracy of SVM. They further combined feature {+1 fw'x +b>0

selection for SVM with bagging and proposed anclass(x = )
-1 if w'x; +<0

modified algorithm, which improved generalization
765
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For all points from the hyperplane H (wex+b = 0), condition§*", we can obtain the value of optimization
the distance between origin and the hyperplane H iproblem (1). Because of the KKT conditions, onlggé
[b]/||w]|. We consider the patterns from the cladbat  Lagrangian multipliersy is, which make the constraint
satisfy the equality wex+b = -1 and determine theactive are non-zeros, we denote these points
hyperplane K the distance between origin and the corresponding to the non-zewois as support vectors
hyperplane H is equal to |-1-b|/||w||. Similarly, the (sv). Therefore we can describe the classificatipper
patterns from the class +1 satisfy the equalitytleex  plane in terms o and b:
+1 and determine the hyperplane,; Hhe distance
between origin and the hyperplang id equal to |+1-
b|/||w||. Of course, hyperplanes H,atd H are parallel y:sg"{
and no training patterns are located between
hyperplanes IH and H. Based on the above

. : . To address the unbalanced problem, C in Eq. 1 is
considerations, the distance between hyperplanegeparated as C+ and C- to adjust the
(margin) H and H is 2/||w]].

From these considerations it follows that thepenalt_ies on the faise positive vs. false negativen
. e , . ; Equation becomes:
identification of the optimum separation hyperplase

performed by maximizing 2/||w||, which is equivalen o |
minimizing ||wf2. The problem of finding the minimize,, ,( w.w) + Q‘Zi:ﬁl:y‘ L&

2.0, (X X)+ b}

optimum separation hyperplane is represented by the iC zl €Y
identification of (w, b) which satisfies: For whidjw]| sty =1
is minimum:

subject toy ((w.x } bp *e& & 1.

Wik +bs-1ify =-1 The SVM obtained by the above equation is named

{ng +h2+1 ify, =+1
as balanced SVM.

Denoting the training sample as:
g g P Bagging: One of the most widely used techniques for

- Ny s creating an ensemble is bagging (short for Bogistra
S = {yIR™EL 1] Aggregation Learning), where a base classifier is
provided with a set of patterns obtained randomly

SVM discriminate h I b itt : . > i
Iscriminate hype plane can be written as resampling the original set of examples and thaiméxd

- independently of the other classifiers. The final
¥ = sgn((wx)+b) hypothesis is obtained as the sum of the averaged
Where: predictions. The algorithm is summarized below:

w = A weight vector

b = A bias 1. LetS={xyvy)l=1,...... m} be training set
2. Generate T bootstrap samplég s 1,.....,T from S
According to the generalization bound in statatic 3- fort=1toT
learning theor$™, we need to minimize the following 4. Train the classifier fvith the set of example$ ®
objective function for a 2-norm soft margin versioh minimize the classification erra¥; I(y; # fi(x)),
SVM: where I(S) is the indicator of the set S

5. Set the ensemble predictor at time tto be
inimi L F(x) = sgn(L/E'i fi'(x))

miNimize ,, o, w e (ilf 6. End for
subject to yi((w.)+b)=1-€i =1 Bagging as a procedure capable to reduce the

' variance of predictors mimicking averaging over
in which, slack variablei is introduced when the Several training sets. For well behaved loss fonet
problem is infeasible. The constant C>0 is a pgnalt Pagging can provide generalization bounds withta ra
parameter and a larger C corresponds to assigning ¥ convergence of the same o_rder. as lehOUOV
|a|’ger pena|ty to errors. By bu||d|ng a Lagrangm regulf’:lrlzatlon. The key .Observatlon is that using
using the Karush-Kuhn-Tucker (KKT) complimentarily bagging, anC-stable algorithm can becomes strongly
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O-stable with appropriate sampling schemes. Stronglyn the training set. However, it cannot solve the

O-stable algorithms provide fast rates of convergencproblem of irrelevant and weak redundant features i

from the empirical error to the true expected pedin  the datasets. We can solve it by feature selection
error. The key fact in the previous analysis ist thaembedded in the bagging method.

certain sampling plans allow some points to aftedy

a subset of learners in the ensemble. The impartanc Input: Training data set,8%,...x%, C),

this effect is also remarked 91”. In these studies, Number of individuals T

empirical evidence is presented to show that bagginProcedure:

equalizes the influence of training points in theFork=1:T

estimation procedure, in such a way that point$liig 1. Generate a training subsef Srom
influential (the so called leverage points) are dew negative training Set (Sby using
weighted. Since in most situations leverage poants Bootstrap sampling algorithm, the
badly influential, bagging can improve generaliaati size of § is the same with that of'S
by making robust an unstable base learner. From thi 2. Train the individuals model Nthe
point of view, resampling has an effect similarabust training subset & S’ by using
M-estimators where the influence of sample poists i support vector

(globally) bounded using appropriate loss functjdos
example the Huber's loss or the Tukey's bisqua® lo  Assymetric bagging SVM approach:

Since in uniform resampling all the points in the PRIFEB: Feature selection for the individuals can help
sample have the same probability of being seledted, to improve the accuracy of bagging and is basethen
seems counterintuitive that bagging has the abitity conclusion df® where they concluded that reducing the
selectively reduce the influence of leverage poifitee  error of Support Vector Machines (SVMs) will reduce
explanation is that leverage points are usualljated  the error of bagging of SVMs. At the same time, we
in the feature space. To remove the influence of ased embedded feature selection to reduce the @frror
leverage point it is enough to eliminate this pdiom  SvMs  effectively. Prediction Risk based Feature
the sample.but to remove the influence of a nonselection for Bagging (PRIFEB) which uses the
leverage point we must in general remove a group ofmhedded feature selection method with the predicti
observations. Now, the probability that a groupsiaé  (jsk criteria for bagging of SVMs to test if featur
K be completely ignored by bagging is (1iK = m) Mggaction can effectively improve the accuracy of
which decay.s exponentlally. with K For. K= 2 for bagging methods and furthermore improve the degree
example (1 j K = mm » 0:14 while (1 j 1= mm »eorediction of drug discovery. In PRIFEB, the préitic
0:368. This means that bootstrapping allows the. o . .

Tisk criteria  is used to rank the features, which

ensemble predictions to depend mainly on\common Lo -

examples, which in turns allows to get a betterevaluates one feature through estimating prediction

generalization. error of the data sets when the.values of all exesngf
Thus Bagging helps to improve stable of singleth's feature are replaced by their mean value:

learning machines, but unbalance also reduce its_ _

generalization performance, therefore, we propase tSi=ERR(X)- ERR

employ asymmetric bagging to handle the unbalanced

problem, which only execute the bootstrapping aa th Where:

negative examples since there are far more negativeRR = The training error

examples than the positive ones. Tei@l.*® applied ERR(x') = The test error on the training data set with
asymmetric bagging to another unbalanced problem of the mean value of itfeature and defined
relevance feedback in image retrieval and obtained as:

satisfactory results. This way make individual sifier

of bagging be trained on a balanced number of ipesit g _

and negative examples, so for solving the unbathnceEER(Y)=TZ((§/(>§,---,X_' ,...;‘2)# Y)

problem asymmetric bagging is used =

Asymmetric bagging: In AB-SVM, the aggregation is Where:

implemented by the Majority Voting Rule (MVR). The | = The number of examples
asymmetric bagging strategy solves the unstabl® = The number of features

problem of SVM classifiers and the unbalance pnoble X' = The mean value of the ith feature
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Y™() = The prediction value of the jth example after
the value of the itHeature is replaced by its
mean value

Finally, the feature corresponding with the snsille
will be deleted, because this feature causes tladiesh
error and is the least important one.

The basic steps of PRIFEB are described as

follows.

Suppose Trx %,...., ¥°,C) is the training set and
p is the number of individuals of ensemble. Tr prate
input into the procedure and ensemble model L és th
output.

Step 1: Generate a training subset Trk from Tr by using

Bootstrap sampling algorithm the size qf & three
quarters of the size of.T

Step 2: Train an individual model Lon the training
subset Jx by using support vector machines algorithm
and calculate the training error ERR.

Step 3: Compute the prediction risk valug 8sing
equation. If Sis greater than 0, th8 feature is selected
as one of optimal features.

Step 4: Repeat step 3 until all the features ip dre
computed.

Step 5: Generate the optimal training subsefofimal
from T, according to the optimal features obtained in
Step 3.

Step 6: Re-train the individual modellon the optimal
training subset [iopima DYy using support vector
machines.

Step 7: Repeat from Step 2-6 until p models are set up,2'

Step 8: Ensemble the obtained models L by the way of

majority voting method for classification problems.

SPRAG algorithm: Feature selection has been used in

ensemble learning and obtained some interestin
results, Li and Lif? proposed to use the embedded
feature selection method with the prediction rigkecia

for bagging of SVMs, where feature selection canb.

effectively improve the accuracy of bagging methods

As a feature selection method, the prediction risk7.

criteria was proposed by Moody and Utihswhich

evaluates one feature through estimating predictior.

error of the data sets when the values of all exasnpf
this feature are replaced by their mean value:

768

S = AUC-AUC (%))

Where:

AUC =The prediction AUC on the training data set

(x") AUC =The prediction AUC on the training data set
with the mean value of ith feature

Finally, the feature corresponding with the snsdlle
will be deleted, because this feature causes tladlesh
error and is the least important one. The embedded
feature selection model with the prediction riskesia

is employed to select relevant features for the
individuals of bagging of SVMs, which is named as
Prediction Risk based Feature selection for Bagging
(PRIFEB). PRIFEB has been compared with MIFEB
(Mutual Information based Feature selection for
Bagging) and ordinary bagging, which showed that
PRIFEB improved bagging on different data S8ts
Since the asymmetric bagging method can overcome
both the problems of unstable and unbalance and
PRIFEB can overcome the problem of irrelevant
features. So we propose a hybrid algorithm to combi
the two algorithms.

The basic idea of SPRAG algorithm is that we first
use bootstrap sampling to generate a negative sampl
and combine it with the whole positive sample ttaob
an individual training subset. Then, predictionkris
based feature selection is used to select optieaalifes
and we obtain an individual model by training SVM o
the optimal training subset. Finally, ensemble the
individual SVM classifiers by using majority voting
Rule to obtain the final model.

L ear ning and perfor mance measurement:

1. Begin

Fork=1to T do

Generate a training subsetSfor negative training
set S; by using the bootstrap sampling technique,
the size of S§,is same with that of, 5

train the individual model L on the training subset
S« O S* by using the support vector machine

algorithm and calculate the AUC value on the

3.

J training subset

5. fori=1toDdo
compare the prediction risk value; Bsing the
equation

If R; is greater than O thd' feature is selected as
one of optimal features

End for

Enerate the optimal training subsek.qmima from
S according to the above optimal features

9.
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10. Train the individual model N on the optimal Table 1: Result for using SVM on the NCI data set

training subset Qqpima DY Using support vector No AUC ACC TPR TNR
machines. 1 0.5863 0.9805 0.2325 0.9945
11. End for 2 0.5941 0.9787 0.0203 0.9933
: ) 3 0.6171 0.9790 0.2103 0.9935
12. Ensemble the obtained model N by the way ofs 0.5444 0.6590 0.4539 0.6662
majority voting method for classification problems 5 0.6147 0.9804 0.2528 0.9941
13. End 6 0.5958 0.9797 0.2306 0.9938
7 0.6067 0.9789 0.2177 0.9932
Since the class distribution of the used dataisset g 8'2522 88;3; 8%82 8'3322
unbalanced, classification accuracy may be mistepdi 19 0.6250 0.9790 0.2306 0.9930
Therefore, AUC (Area Under the Curve of Receiveraverage 0.5957 0.9474 0.2472 0.9609

Operating Characteristic (RO} is used to measure
the performance. At the same time, we will presenfl'able 2: Result for using balanced SVM (balancddei= 0.01) on
detail results of prediction accuracy (ACC), which the NCI data set

consists of two parts True Positives Ratio (TPR) an AUC ACC PR TR
. . 0.5997 0.9793 0.2583 0.9928
True Negatives Ratio (TFR). ACC, TPR and TNR are> 0.6070 0.9781 0.2269 0.9922
defined as: 3 0.6304 0.9784 0.2417 0.9922
4 0.5961 0.9794 0.2325 0.9934
i 5 0.6249 0.9793 0.2768 0.9925
ACC= #correctly predicted examples 6 0.6141 0.9792 0.2638 0.9926
#wholeexamples 7 0.6216 0.9783 0.2417 0.9921
8 0.5943 0.9791 0.2528 0.9927
) » 9 0.6033 0.9780 0.2380 0.9919
TPR= #correctly predicted positiveexample 10 0.6397 0.9786 0.2602 0.9922
#whole positiveexamples Average 0.6131 0.9788 0.2491 0.9925
Table 3: Result for using bagging of balanc&MS(balanced
TNR = #correctly predicted negative examp ridge = 0.01) on the NCI data set
#whole negative examples No AUC ACC TPR TNR
1 0.7326 0.6777 0.6495 0.6781
2 0.7433 0.6806 0.6753 0.6806
0.7491 0.6827 0.6679 0.6829
wherg_, #A means the number of A. TPR.a_llgo names a} 07372 0.6819 0.6568 06825
sensitivity and TFR names as specificity. In thes 0.7449 0.6839 0.6845 0.6842
i i 6 0.7446 0.6806 0.6697 0.6807
following, we present the analysis of the resuttef > 07477 06771 0.6864 06771
our experiments. The AUC and ACC values ares 0.7535 0.6797 0.6845 0.6795
9 0.7551 0.6779 0.6900 0.6774
averaged over 10 random runs. 10 07445 0.6851 0.6827 06652
Average 0.7453 0.6807 0.6753 0.6808

Numerical experiments: ) - .
NCI AntiHIV drug screen data set: The NCI has one third of the training data set, while fdB-A

ARV i Sree et se (NG s . I SV, 1 82 of il Gtz sl et
categoncr?l respccgf/le r;e?surlnl_?lvhloyvf a Coﬂz?ungalidation scheme is used to validate the results,
protects human cells from HIV-1 infection. experiments on each algorithm are repeated 10 times
29374 examples, of which 542 (1.85%) is positivd an

28832 (98.15%) is negative. The structure DISCUSSION

4] . .
parameter$l consist 64 BCUT descriptors. Table 1-6 list the results of ordinary SVM,

balanced-SVM, bagging of balanced-SVM, ordinary
RESULT bagging, AB-SVM and SPRAG (special prediction risk
based feature selection for asymmetric baggingnfr
Experiments are performed to investigate ifwhich we can see that:
asymmetric bagging and feature selection help to
improve the performance of bagging. Support vector

mach_ir_1es with C = 10Gy = 0.1 are u_s_ed as ir_ldividual * Bagging methods improves stability of single ones
classifiers and the number of individuals is 5. For and obtain better results than single ones do.

balanced SVM, balanced_bridge is used to denote the Especia”y on ba|anced_SVM, baggnqg improves
ratio of C+ to C-. For ordinary bagging, each indial 0.1322 from single one

769

Balanced SVM obtained a slight improvement of
ordinary SVM



J. Computer <ci., 5 (10): 764-772, 2009

Table 4: Result for using ordinary bagging on th&l Nata set

No AUC ACC TPR TNR

1 0.6856 0.9827 0.0996 0.9992
2 0.7075 0.9824 0.0941 0.9991
3 0.7221 0.9825 0.0996 0.9991
4 0.6932 0.9826 0.0941 0.9993
5 0.7122 0.9825 0.0996 0.9991
6 0.6928 0.9826 0.0941 0.9993
7 0.7198 0.9819 0.0701 0.9991
8 0.6954 0.9821 0.0867 0.9989
9 0.7182 0.9826 0.0867 0.9994
10 0.7272 0.9829 0.1052 0.9994
Average 0.7074 0.9825 0.0923 0.9992

Table 5: Result for using AB-SVM on the NCI data se

No AUC ACC TPR TNR

1 0.7300 0.6729 0.6458 0.6733
2 0.7409 0.6762 0.6845 0.6759
3 0.7493 0.6788 0.6790 0.6786
4 0.7359 0.6847 0.6476 0.6854
5 0.7438 0.6801 0.6863 0.6802
6 0.7426 0.6761 0.6753 0.6761
7 0.7441 0.6652 0.6845 0.6651
8 0.7500 0.6668 0.6919 0.6660
9 0.7509 0.6736 0.6808 0.6733
10 0.7442 0.6798 0.6845 0.6798
Average 0.7432 0.6754 0.6753 0.6754

Table 6: Result for using our modified algorithmtbe NCI data set

No AUC ACC TPR TNR

1 0.7955 0.6840 0.9133 0.6936
2 0.7982 0.6884 0.9188 0.6981
3 0.8101 0.6955 0.9244 0.7054
4 0.7952 0.6981 0.9077 0.7084
5 0.7821 0.7000 0.8948 0.7107
6 0.7996 0.6912 0.9133 0.7011
7 0.7821 0.6874 0.8911 0.6976
8 0.8044 0.6756 0.9225 0.6848
9 0.7947 0.6947 0.9133 0.7048
10 0.7961 0.6988 0.8967 0.7094
Average 0.7958 0.6914 0.9096 0.7014

predicted correctly. If we simply predict all the
labels as negative, we can get a high value as
98.15%, which is the ratio of negative sample to
the whole sample

Since this is a drug discovery problem, we pay
more attention to positives. AUC is more valuable
than ACC to measure a classifier. Asymmetric
bagging improves the AUC value of ordinary
bagging and our modified algorithm  further
significantly improves it to a higher one 79.58% in
average, simultaneously, TPR are improved from
9.23-90.95%, which shows our modified algorithm
is proper to solve the unbalanced drug discovery
problem.

Asymmetric bagging wins in two aspects, one is
that it make the individual data subset balandesal, t
second is that it pay more attention to the positiv
and always put the positives in the data set, which
makes TPR is higher than ordinary bagging and
AUC is improved

Feature selection using prediction risk as criterio
also wins in two aspects, one is that embedded
feature selection is dependent with the used
learning machine, it will select features which
benefit the generalization performance of
individual classifiers, the second is that diffaren
features selected for different individual data
subsets, which makes more diversity of bagging
and improves their whole performance.

CONCLUSION

To address the unbalanced problem of drug

discovery, we propose to apply asymmetric bagging
and feature selection to the modeling of QSAR aigdr

*  Ordinary bagging gets a high ACC value, with amglecules. AB-SVM and our modified novel algorithm
proper AUC value, but TPR is very low, which are compared with ordinary bagging of support vecto
means that few of the positive examples aremachines on a large drug molecular activities data

predicted correctly

experiments show that asymmetric bagging and featur

* AB-SVM reduces the ACC value, but improves theselection can improve the prediction ability innsrof
AUC value of ordinary bagging. TPR increasesAUC and TPR. Since this is a drug discovery problem

from 9.23-67.53%

the positive sample is few but important, AUC areRT

* PRIFEB improves both the ACC and AUC valuesis more proper than ACC to measure the generalizati
of AB-SVM, TPR are improved dramatically and it performance of classifiers. This work introduces

is 90.96% in average

As for the above results, we think that:

asymmetric bagging into prediction of drug actesti

furthermore extends feature selection to

asymmetric bagging. Extension of this paper include
test the proposed algorithms with a higher numbfer o

+ Since single SVM is not stable and can not obtairindividuals. This work only concerns an embedded

valuable results and bagging can improve them

feature selection model with the prediction riskesia

« Although ordinary bagging gets a high ACC value,and one of the future works will try to employ more
it is trivial, because few positive examples areefficient feature selection methods for this task.
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