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Abstract: Problem statement: In this study, a general plan of hybrid architecture for quantum 
algorithms is proposed. Approach: Analysis of the quantum algorithms shows that these algorithms 
were hybrid with two parts. First, the relationship of classical and quantum parts of the hybrid 
algorithms was extracted. Then a general plan of hybrid structure was designed. Results: This plan 
was illustrated the hybrid architecture and the relationship of classical and quantum parts of the 
algorithms. This general plan was used to increase implementation performance of quantum 
algorithms. Conclusion/Recommendations: Moreover, simulation results of quantum algorithms on 
the hybrid architecture proved that quantum algorithms can be implemented on the general plan as 
well. 
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INTRODUCTION 

 
 A quantum computer is a device that takes 
advantage of quantum mechanical effects, such as 
superposition and entanglement, to perform certain 
computations faster than a purely classical machine can. 
Quantum parallelism is best understood in the context 
of the concepts of superposition, entanglement and 
measurement. If large-scale quantum computers can be 
built, they will be able to solve certain problems much 
faster than any of our current classical computers. 
Quantum computers are different from traditional 
computers based on transistors. Some computing 
architectures such as optical computers may use 
classical superposition of electromagnetic waves. 
Without some specifically quantum mechanical 
resources such as entanglement, it is conjectured that an 
exponential advantage over classical computers is not 
possible. 
 Today, many researchers are doing research to 
design a quantum computer with the implementation of 
quantum algorithms. A lot of work has been done over 
the last decade, since the Shor’s discovery of quantum 
discrete logarithm and factoring algorithms[6] and 
Grover’s publication of a quantum search algorithm[7]. 
Nonetheless, these algorithms still stand as far and 

away the most significant developments in quantum 
computation. The performance of quantum algorithm 
can be evaluated in terms of speed, efficiency and 
implementation of quantum circuits. 
 The objective of our research is undertaken to 
analyze and design a general plan of the hybrid 
architecture for quantum algorithms. The plan is being 
used to increase performance of implementation of 
quantum algorithms. For finding a general plan, we 
must analyze and compare the existing quantum 
algorithms. Moreover, the hybrid architecture will be 
designed for quantum algorithms and the relationship of 
classical part and quantum part of algorithms will be 
extracted. Finally we verify and simulate the existing 
quantum algorithms with this plan and represent the 
results of implementation and simulation of quantum 
algorithms. 
 
Related study: A primary goal of the theory of 
quantum complexity is to determine when quantum 
computers may offer a computational speed-up over 
classical computers. At present, there are only a few 
general techniques known in the field of quantum 
computing and finding new problems which give a 
polynomial time quantum algorithm for some problem 
for which no classical polynomial time solution is 
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known. Given the possible power of quantum 
parallelism, much work has been done to show formally 
with mathematical proofs how quantum computers 
differ from classical ones in their power to compute 
things. There are few quantum algorithms that can be 
implemented on quantum computer to solve certain 
problems. In the next, the quantum algorithms will be 
analyzed to find a general plan of quantum algorithms. 
The plan shows the hybrid architecture of quantum 
algorithms.  
 In 1980 Paul Benioff offered a classical Turing 
machine which used quantum mechanics in its 
workings, thus showing that theoretically a quantum 
computer was at least as powerful as a classical 
computer[1]. 
 The first quantum algorithm is Deutsch’s 
algorithm[2,3] which can determine whether a function is 
constant (f(0) = f(1)) or balanced (f(0) ≠ f(1)), using 
only a single call to the function. Note that classically, 
to solve this problem with a success probability bigger 
than one half, a machine has to query the black box 
twice; both f(0) and f(1) are needed. Deutsch’s 
ingenuity is to use interference of the amplitudes of the 
quantum state such that only one query to the black box 
suffices. The following circuit on two qubits gives the 
quantum algorithm. As a result, Deutsch’s algorithm 
saves one query in comparison to the best possible 
classical algorithm for this problem. One query might 
seem very little, yet we will see how this algorithm has 
been generalized in several steps to ultimately factor 
numbers. 
 Deutsch and Jozsa[4] showed in a research in 1992 
that there was an algorithm that could be run in poly-
log time on a quantum computer, but required linear 
time on a deterministic Turing machine. This may have 
been the first example of a quantum computer being 
shown to be exponentially faster than a deterministic 
Turing machine. Unfortunately, for the quantum 
computer, the problem could also be solved in poly-log 
time in a probabilistic Turing machine, a Turing 
machine which is capable of making a random choice. 
The Deutsch-Jozsa algorithm can determine whether a 
function f that maps n bits to one bit, is constant or 
balanced, using only a single call to the function. Note 
that classically, to solve this problem deterministically, 
one needs 2n-1+1 queries in the worst case. The 
Deutsch-Jozsa algorithm solves this problem with one 
quantum query with the following algorithm.  
 The algorithm of Simon[5] finds the “period” of a 
function. This algorithm finds the hidden string s in 
Simon’s Problem. Simon’s problem requires an 
exponential number of queries on a classical computer. 
One can show that the best any classical probabilistic 

machine can do is to query elements at random until a 
collision is found. The probability of a collision for two 
randomly chosen elements is about 2-n and a slightly 
more elaborate analysis shows that the expected 
number of queries until a collision happens among the 
queried elements is O(2n/2). The expected number of 
evaluations of the function in the execution of the 
algorithm is less than n and the expected number of 
other elementary gates is in O(n3). 
 Shor’s algorithm is a quantum algorithm for 
factoring an integer N in O((log N)3) time and O(log 
N) space. A common public-key cryptography method 
known as RSA is based on the assumption that it is 
computationally infeasible to factor a large integer. 
For this reason a quantum computer with sufficiently 
many quantum bits could “break” RSA. RSA uses a 
public key N which is the product of two large prime 
numbers. One way to crack RSA encryption is by 
factoring N, but with classical algorithms, factoring 
becomes increasingly time-consuming as N grows 
large; more specifically, no classical algorithm is 
known that can factor in time which is polynomial in 
log N. The first necessary observation is that in order 
to find a factor of a number, it is sufficient to solve a 
problem called period finding, the problem Shor’s 
algorithm[6]. 
 The Grover’s algorithm performs a generic search 
for a solution to a very wide range of problems. 
Consider any problem where one can efficiently 
recognize a good solution and wishes to search through 
a list of potential solutions in order to find a good one[7-

9]. Quantum searching is a tool for speeding up these 
sorts of generic searches through a space of potential 
solutions. The problem of unstructured search is 
paradigmatic for any problem where an optimal 
solution needs to be found in a black box fashion. 
Classically, a deterministic algorithm needs to make 2n-
1 queries to identify w in the worst case and a 
probabilistic algorithm still needs O(2n) queries. Grover 
gave a quantum algorithm that solves this problem with 
O(2n/2) queries and this is known to be the best possible. 
Grover’s algorithm can hence speed up any algorithm 
that uses searching as a subroutine.  
 

MATERIALS AND METHODS 
 
 In this study, first a general plan of the hybrid 
architecture will be designed for quantum algorithms 
and also the relationship of classical part and quantum 
part of algorithms will be extracted. We determine the 
complete cycle of the hybrid architecture for the 
quantum algorithms and verify the existing quantum 
algorithms with this plan. These algorithms according 
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to the hybrid architecture are simulated by MATLAB. 
Finally, the results of implementation and simulation 
of the hybrid architecture for Grover’s search 
algorithm and Shor’s period finding algorithm are 
represented. The explanations of other quantum 
algorithms are same. 

 
A hybrid architecture for quantum algorithms: The 
gate-based quantum computers are not universal. On 
the other hand, global unitary operations like the shift 
operator cannot be expressed within the circuit model, 
cannot be equally applied to machines with unlimited 
and limited memory and cannot be assumed to be 
equally available on different quantum hardware 
architectures. 
 To overcome the above restrictions, quantum 
programming uses a classical universal language to 
define the actual sequence of elementary instructions 
for a quantum computer, so a program is not intended 
to run on a quantum computer itself, but on a 
(probabilistic) classical computer, which in turn 
controls a quantum computer and processes the results 
of measurements. In the terms of classical computer 
science, you can describe this setting as a universal 
computer with a quantum oracle. Figure 1 shows this 
hybrid architecture. 
 The quantum algorithms such as Shor's algorithm 
consists of two parts; first part is classical algorithm 
which can be done  on a classical computer and 
second part is Quantum algorithms which can be done 
on a quantum computer or simulate on classical 
computer[10-12]. In this study, a general plan is illustrated 
to show the hybrid architecture and to find the 
relationship of classical and quantum parts of the 
algorithms. Figure 2 shows the relationship of classical 
part and quantum part of the algorithm. 

 

 
 
Fig. 1: The hybrid architecture between classical and 

quantum computers 

 Naturally, the quantum algorithms are the hybrid 
algorithms that consist of classical and quantum 
components. Moreover, the quantum portion of many 
algorithms is probabilistic; often need multiple runs to 
get the desired result. The complete cycle of the hybrid 
architecture for the quantum algorithms will be done as 
follows: 
  
1. Pre-calculate certain classical factors (initialize and 

run the classical part of the algorithm) 
2. Running the quantum algorithm by the quantum 

circuit 
a. Initialize the quantum node (Initialize quantum 

circuit and define all gates, switches and unitary 
function) 

b. Prepare inputs state (store inputs on target and 
control registers) 

c. Execute the quantum portion of the algorithm 
(Apply gates and unitary transformation on input 
data) 

d. Measure the output of Machine State (Measure 
the output registers of the quantum circuit) 

e. Evaluate Measurement (If have the desired result, 
then doing post-processing in step 3) 

f. Exit if desired result (If solution found then exit 
from quantum circuit, else repeat step 2) 

3. Finish post-processing (Run the second classical 
part of the algorithm) 

 
 Steps 1 and 3 been executed on classical computer 
and step 2 been executed on quantum computer by 
quantum circuits. Measuring and evaluating of the 
quantum circuit in steps 2(e) and 2(f) can be done on 
classical computer. The diagram in Fig. 3 shoes the 
development of a general plan of hybrid architecture for 
the quantum algorithms and being simulated on 
classical computer. The quantum circuit is simulated on 
classical computer. 
 

 
 
Fig. 2: The relationship of classical part and quantum 

part of the hybrid algorithm 



J. Computer Sci., 5 (10): 725-731, 2009 
 

728 

 
 
Fig. 3: The classical part and the quantum part of the 

hybrid algorithm 
 

RESULTS 
 
 A general plan of hybrid architecture for the 
quantum algorithms can be developed and implemented 
for circuits of the quantum algorithms. This plan is 
useful for simulation and architecture design of 
quantum computer to be run quantum algorithms and 
inspired a development of new quantum algorithm. The 
circuits of the quantum algorithms are simulated using 
MATLAB based on the hybrid architecture. 
 In its simplest form, a quantum algorithm is 
consisting of a unitary transformation and a subsequent 
measurement of the resulting state.  The common part in 
all quantum algorithms is the black box or oracle 
function Uf that is often used to model a subroutine of 
calculates and is reversible. Classically, a black-box 
function can be simply thought of as a box that evaluates 
an unknown function f. A black box function is often 
used to model a subroutine of calculate. Many of the 
separations between classical and quantum computing 
power will be formulated in the black box or oracle 
model. For certain problems a quantum algorithm needs 
to make substantially less calls or queries to the black 
box than any classical algorithm. Classically, a black-box 
function can be simply thought of as a box that evaluates 

an unknown function f. The input is some n-bit string |x〉 
and the output is given by an m-bit string f(x). To create 
a reversible box, the input |x〉 is output together with f(x). 
This reversible box, when given to a classical machine, is 
no stronger than the corresponding simple non-reversible 
box that maps x to f(x). Note that this box now induces a 
transformation on n+m-bit strings that can be described 
by a permutation of the 2n+m possible strings; in 
particular it is unitary. 
 At the end of the calculation in the quantum part of 
hybrid algorithm, the result register is a superposition 
of all of the results, one for each of the 2n possible 
inputs. However, we can’t directly read out all of those 
results. If we measure the result register to get our 
answer, the superposition collapses into a single state 
with a probability according to the weights discussed 
above. Then we have only a single value; our end result 
is no better than if we had used a classical computer to 
compute the function for one possible input chosen at 
random. The measurement of a qubit causes the 
collapse of the wave function, forcing the state of the 
system into just one term of the superposition.  
 In this study the initialization and setup of the 
existing quantum algorithms have been demonstrated 
based on the hybrid architecture. Moreover, the well-
known quantum algorithms are implemented and 
simulated on this hybrid architecture.  

According to the classical-quantum algorithm, the 
complete cycle of the hybrid architecture for classical 
and quantum part of the algorithm will be done. In the 
classical part, pre-calculate certain classical factors 
conduct and then the quantum part will be started. In 
the quantum part, two different inputs |x〉 and |y〉 is 
initialized depend on quantum algorithm. The input |x〉 
is stored in the control register and second input |y〉 in 
the target register. In the next, as the circuit of quantum 
algorithm, Hadamard or QFT gates are applied on 
target and control registers sequentially. Moreover, the 
unitary function Uf is applied on two registers and then, 
inverse of the input gate is applied on target register. 
Finally the output is measured and the result is 
evaluated. The classical post processing of the hybrid 
algorithm is run, if we achieve the desired result, 
otherwise the quantum algorithm iterates. A feedback is 
needed to ensure the iteration of the quantum algorithm. 
 The simulation results of quantum search algorithm 
is shown in the Fig. 4 for n = 6 qubits as a data index. 
In these diagrams, number of possible inputs is N = 64 
and this number is length of data queue. We assumed 
that there is one solution. The amplitude value of 
solution in Grover's algorithm reaches to 1 after (π/4) 
Sqrt (64) = 6.28 iterates and the amplitude value of 
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other data reached to zero. Fig. 4 shows that with 6 
iterate we find solution and if we continue to run the 
algorithm, then the amplitude value of solution keep a 
way from 1 and we lose solution. The maximum 
iteration of algorithm is (π/4) N.  
 The simulation results for n = 12 qubits as a data 
index will be shown in the Fig. 5. In these diagrams, 
number of possible inputs is N = 4096 and this number 
is length of the data queue. The element of 3750 is 
desired key. The amplitude value of solution in 
Grover's algorithm reaches to one after (π/4) N 50=  
iterates and the amplitude value of other data reached to 
zero. In the next section, the results of implementation 
and simulation of the complete cycle of Grover’s search 
algorithm and Shor’s period-finding algorithm based on 
the hybrid architecture are represented. 
 

 
 
Fig. 4: The result of quantum search algorithm with 6 

qubits input data and 64 elements with 15 
iterations 

 

 
 
Fig. 5: The simulation result of quantum search 

algorithm with 12 qubits input data and 4096 
elements in queue with (π/4) N  = 50 iteration 

DISCUSSION 
 
 In this study the initialization and setup of the 
existing quantum algorithms have been demonstrated 
based on the hybrid architecture. Moreover, the well-
known quantum algorithms are implemented based on 
the hybrid architecture and simulated by MATLAB. 
However, the explanation of setting up quantum search 
algorithm and order-finding problem on the hybrid 
architecture seems to be adequate.  
 Quantum search algorithm can hence speed up any 
algorithm that uses searching as a subroutine. Stages of 
the algorithm distribute to classical and quantum parts. 
In the classical part of algorithm, pre-calculate certain 
classical factors conduct and then the quantum part will 
be started. In the quantum part, the n-qubit input |x〉 is 
stored in the control register and the 1-qubit |y〉 in the 
target register. As the quantum circuit of Grover 
algorithm, an n-qubit control register is initialized to 
|0〉⊗n and a 1-qubit target register to |1〉. In the next, n-
qubit and 1-qubit Hadamard gates are applied on target 
and control registers sequentially. Moreover, the unitary 
function Uf is applied on two registers and then, the 
sequence H⊗nU0

⊥H⊗n is applied on target register. 
Finally the output is measured and the result is evaluated. 
The classical post processing of the hybrid algorithm is 
run, if we achieve the desired result, otherwise Grover 
algorithm iterates the operator G = H⊗nU0

⊥H⊗nUf that 
defined by the following sequence of transformations 
and named Grover Iterate. A feedback is needed to 
ensure the iteration these sequence transformations of G 
for O( N ) times.  
 The hybrid architecture of Shor’s algorithm 
consists of two parts; first part is a reduction of the 
factoring problem to the problem of order-finding, 
which can be done on a classical computer. Second part 
is a quantum algorithm to solve the order-finding 
problem. We implement this algorithm based on hybrid 
architecture with 3 steps that steps 1 and 3 execute on 
classical computer and step 2 execute on quantum 
computer that here is simulated on classical computer. 
The complete cycle will be done as follows: 
 
1. Initialize and run the classical part of the algorithm ( 

Pick a random number a < N, then compute GCD(a, 
N) by using the Euclidean algorithm. If GCD(a, N) 
≠ 1, then there is a nontrivial factor of N, so we are 
done. Otherwise, go to step 2 and use the period-
finding algorithm to find r, the period of the 
function f(x)=ax mod N, i.e. the smallest integer r for 
which f(x + r) = f(x) ).  
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2. Running the quantum algorithm by the quantum 
circuit ( Run the quantum order-finding algorithm): 
a. Initialize quantum circuit (Choose an integer n so 

that 2n ≥ 2r2. The value n = 2logN will suffice). 
b. Prepare inputs state (Initialize an n-qubit |0〉⊗n  in 

control register, and an n-qubit |1〉 = |00 . . . 01〉 
in the target register). 

c. Execute the quantum portion of the algorithm 
(First, apply the QFT to the control register, and 
then apply unitary function c-Ua

x on control and 
target registers, and finally apply the QFT−1 to 
the control register). 

d. Measure the output of Machine State (Measure 
the control register to obtain an estimate x1/2

n of 
a random integer multiple of  1/r). 

e. Evaluate Measurement (Use the continued 
fractions algorithm to obtain integers c1 and r1. 
Repeat step 2 to obtain another integer x2 and a 
pair of integers c2 and r2, if no such pair of 
integers is found, output ‘FAIL’.) 

f. Exit if desired result (Compute r = LCM(r1, r2). 
If ar mod N = 1, then output r, and go to step 3. 
Otherwise, output ‘FAIL’). 

3. Run the second classical part of the algorithm( If r is 
odd or a r /2 ≡ -1 mod N, go back to step 1 to repeat 
the algorithm, otherwise GCD(ar/2 ± 1, N) is a 
nontrivial factor of N. We are done).  

 
 The quantum period-finding method used to 
determine the order r of  x   modulo N. If r is even and 
xr/2 ≠ -1 mod N, calculate GCD(xr/2-1 , N) and GCD(xr/2-
1 , N). One of these should be a factor of N. If not, or if r 
is odd, repeat the algorithm, choosing a different x. The 
order of x modulo N is found by noting that we can 
calculate the modular exponentiation xa mod N for all a. 
We use two quantum registers, which will hold, 
respectively, a and xa mod N. In the end, the control 
register measure to find the period of the function. 
 The creation of a machine that executes Shor’s 
algorithm would have implications for security on the 
Internet, breaking the widely-used RSA public-key 
crypto system. The difficulty of cracking RSA is known 
to be related to the difficulty of factoring a large, 
composite number into its prime factors. Shor’s 
algorithm can factor prime numbers readily on a 
quantum computer. However, Shor’s algorithm 
demonstrates that a workable quantum computer can 
easily crack an RSA encryption scheme. All known 
algorithms for factoring an n-bit number on a classical 

computer take time proportional to O(2n) time and in 
the best known algorithm to O(exp(n1/3) time. But 
Shor’s algorithm for factoring on a quantum computer 
takes time proportional to O(n3) (and with the 
optimized quantum circuit to O(n2 log n)). 

 
CONCLUSION 

 
 This study is proposed the hybrid architecture for 
the quantum algorithms. The quantum algorithms are as 
hybrid algorithms that consist of classical and quantum 
components. Moreover, the quantum portion of many 
algorithms is probabilistic; often need multiple runs to 
get the desired result. We designed and described 
relationship of classical and quantum part of algorithm 
that shows in Fig. 2. Also the following steps of each 
part of the hybrid algorithm are shown in Fig. 3. This 
flowchart will be used for design and implement the 
quantum algorithms. The implementation of the general 
plan on the quantum circuit of hybrid algorithms has 
been simulated on classical computer. This plan is 
useful for simulation and the architecture design of 
quantum computer. This plan is important to develop 
new quantum algorithms. A framework of quantum 
algorithm processing unit in the quantum computer is 
for future study. 
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