
Journal of Computer Science 5 (9): 614-618, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Boris S. Verkhovsky, Department of Computer Science, New Jersey Institute of Technology, USA
614

Accelerated Search for Gaussian Generator Based on Triple Prime Integers

1Boris S. Verkhovsky and 2Md Shiblee Sadik

1Department of Computer Science, New Jersey Institute of Technology, USA
2 Department of Computer Science, University of Oklahoma, Norman, Oklahoma, USA

Abstract: Problem statement: Modern cryptographic algorithms are based on complexity of two
problems: Integer factorization of real integers and a Discrete Logarithm Problem (DLP).
Approach: The latter problem is even more complicated in the domain of complex integers, where
Public Key Cryptosystems (PKC) had an advantage over analogous encryption-decryption protocols in
arithmetic of real integers modulo p: The former PKC have quadratic cycles of order O (p2) while the
latter PKC had linear cycles of order O(p). Results: An accelerated non-deterministic search algorithm
for a primitive root (generator) in a domain of complex integers modulo triple prime p was provided in
this study. It showed the properties of triple primes, the frequencies of their occurrence on a specified
interval and analyzed the efficiency of the proposed algorithm. Conclusion: Numerous computer
experiments and their analysis indicated that three trials were sufficient on average to find a Gaussian
generator.

Key words: Communication network security, crypto-immunity, primitive root, public-key

cryptography

INTRODUCTION

 A Discrete Logarithm problem, {DLP, for short},
is defined as follows: For real integers g>1, p and h>0
to find an integer x such that satisfies the equation:

gx mod p = h (1)

 This is a computationally formidable problem[7,8,10]
especially if the integer g is a primitive root
(generator)[1,2]. The complexity of the DLP is the basis
for secret-key establishment in modern
cryptography[3,6,11,12]. An RSA cryptographic algorithm
in the domain of complex integers is described in[4].
 The DLP in the domain of complex integers (called
Gaussian integers) is an extension of the problem (1):
To find a real integer x such that holds

Gx mod p = h (2)

Where:
G and H = Gaussian integers
p = A prime

 As in (1), a solution of Eq. 2 is computationally
intense especially if the Gaussian integer G is a
primitive root or generator as described in Definition 2
below.

Definition 1: If X is a Gaussian integer and m is the
smallest positive integer, for which the following
relation holds:

Xm mod p = (1,0) = 1 (3)

then m is defined as the order of X:

ord(X) = m (4)

Definition 2: If the order of Gaussian integer G equals:

m = p2-1 (5)

then G is called a Gaussian primitive root or generator,
(GG, for short).
 There are currently no known deterministic
algorithms that compute a GG. However, if p is
appropriately selected, then the search for a GG can be
substantially simplified.

Definition 3: A prime p is called a Triple Prime (TP) if
both integers:

q := (p+1)/4 and r := (p-1)/6 (6)

are also primes.

J. Computer Sci., 5 (9): 614-618, 2009

615

Table 1: TPs and corresponding primes q and r
p 19 43 67 283 787 907 1,867 9,643 99,907 991,987 1,998,643
q 5 11 17 71 197 227 467 2,411 24,977 247,997 499,661
r 3 7 11 47 131 151 311 1,697 16,651 165,331 333,107

Table 2: Frequencies of TPs on intervals [104m, 104 (m+1)]
m 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30 40 50
No. of 8 6 8 3 5 7 4 7 6 7 3 7 5 3 1 3 3 5 2
TP

Remark: If both p and q are primes, then neither (p-
1)/2 nor (p-1)/3 are primes; {for details Lemma 2}.
 The Table 1 provides examples of several triple
primes.

MATERIALS AND METHODS

Triple primes and their properties: The algorithm
searching for Gaussian generator (9-12) is based on the
following properties of triple primes.

Lemma 1: If a prime p≥43, then for every TP the
following condition holds:

pmod60 = 7 or 43 (7)

 If (7) does not hold, then either q or r are not
integers or not primes. For applications, it is necessary
to know the occurrence of the TP (their density) for
large p. The Table 2 provides such information.

Remark: CPU times T required to find a D digit-long
TP are provided in milliseconds (ms).

Lemma 2: If n is an odd integer and:

• n≥5 is not divisible by 3, then 24 divides n2-1
• n≥23 and (n+1)/4 is a prime, then (n-1)/6 is an

integer

Proof: n-1 and n+1 are two consecutive even integers,
hence one of them is divisible by 4 and their product is
divisible by 8. In addition, either n-1 or n+1 is divisible
by 3. Therefore, if n is a Blum prime, then:

(n2-1)/24 = [(n+1)/4][(n-1)/6] (8)

where both factors in (8) are integers.
 Suppose there is n1≥23, for which q1 = (n1+1)/4 is
a prime, but r1 = (n1-1)/6 is not an integer. Since n1-1
is even, hence 3 does not divide n1-1. Therefore three
divides the prime q1. This contradiction proves
Lemma 2. More details are provided in Fig. 1.

Table 3: Length in decimal digits (D), TPs and average time (T) to
compute it

D TP p T (ms)
5 11,443 48.36
6 100,483 217.75
7 1,006,267 469.44
8 10,009,267 1087.07
9 100,019,923 7829.67
10 1,000,013,107 9205.34

Fig. 1: Number of TPs on intervals [104m, 104 (m+1)]

RESULTS AND DISCUSSION

Algorithm searching for generator:
Step1: Select a triple prime p≥19:

compute q := (p+1)/4

and

r: = (p-1)/6 (9)

Step 2: Select integers such that hold:

a ≠ b; 1≤a,b≤p-1; a+b ≠ p

and

(a2 + b2)mod p ≠ 1

Step 3: For k = {2, 3, q} compute:

(c,d) := (a,b)k mod p (10)

Step 4: If k ≠ q and {c = 0 or d = 0 or |c| = |d|}, then
goto Step 2; {(a, b) is not a generator}.

Step 5: If k = q and {c = 0 or d = 0}, then goto Step 2;
{(a, b) is not a generator}.

J. Computer Sci., 5 (9): 614-618, 2009

616

Step 6: Compute:

e := -4c4 mod p (11)

Step 7: If efmod p = ±1 (12)

then go to Step 2; {(a, b) is not a generator};
else output G = (a, b); {(a, b) is a generator}.

Analysis of basic results: Numerous computer
experiments demonstrated that the algorithm (9-12)
finds a Gaussian generator after three trials of (a, b) on
average.

Algorithm validation:
Lemma 3: Suppose (a, b) is a Gaussian integer
(Gaussian, for short), p is a TP and:

(c,d):= (a,b)q mod p (13)

 If a component in (c, d) equals zero, then (a, b) is
not a GG.

Proof: If (a,b)q mod p =(c,0), then:

(a,b)(p^2-1)/4 mod p = cp-1 mod p = 1 (14)

 Hence, the order of (a, b) is smaller than p2 -1:

therefore, ord(a,b) ≤ (p2 - 1)/4 (15)

If (a,b)q mod p=(0,d), then:

(a,b)2q = (0,d)2 = (-d2) (mod p) (16)

Therefore:

(a,b)(p^2-1)/2 mod p == (-d2)p-1 mod p = 1 (17)

 Thus, the order of (a, b) is smaller than p2 -1; as a
result:

ord(a,b) ≤ (p2 -1) /2 (18)

 Hence in both cases, (14) and (16), (a, b) is not a
GG. Q.E.D.

Theorem 4: Suppose (a, b) is a Gaussian integer, p is a
TP:

(a,b)q ≡ (c,p±c) (mod p) (19)

Let:

e :=(-4c4)mod p = -(±2c2)2 mod p (20)

If:

e(p-1)/6 mod p = ±1 (21)

then (a, b) is not a GG.

Proof: First of all:

(a,b)4q = (c,±c)4 = - (±2c2)2(mod p) = e (22)

 Let us define:

vk := e

(p-1)/k mod p (23)

then v1 = 1 and v1 = ±1. Therefore (21) implies that:

(–4cd)r = (c,±c)dr = (a,b)4qr
= (a,b)(p^2-1)/6 = ±1(mod p) (24)

Hence:

ord(a,b) ≤ (p2 – 1)/3 (25)

i.e., (a, b) is not a generator.
 Suppose that condition (21) does not hold, i.e., let:

v6 ≠ ±1 (26)

 Let us analyze two sub-cases:

v3 = ±1 or v2 = ±1 (27)

Case A: v6

2modp = v3 = -1 is impossible, otherwise
v1 = -1 and that contradicts Fermat’s theorem. On the
other hand v6

2 mod p = v3 = 1 implies that v6 = ±1,
which contradicts the assumption (26).

Case B: Let us demonstrate that:

v2 = 1 (28)

is also impossible. Indeed, consider:

v2 = e(p-1)/2 = (-1)(p-1)/2 [(2c2)2](p-1)/2
= (-1)(p-1)/2 mod p = 1 (29)

 Therefore, this implies that (a, b) is a GG. Q.E.D.
 Suppose that N(p) is the number of Gaussian
generators.

J. Computer Sci., 5 (9): 614-618, 2009

617

Table 4: Required number of Real Integer Multiplications (RIM)
Operations (c,d):= (a,b)q mod p er mod p
Squarings log q complex squarings Requires logr RIM
 require 2logq RIM
Multiplications On average (log q)/2 complex Requires on average
 multiplications require 3 (logr)/2 RIM
 (logq)/2 RIM
Overall 3.5 log q RIM 1.5 log r RIM

Theorem 5: For large p:

N(p) →(p2 – 1)/3 (30)

Proof: If G is a GG, then Gz mod p is also a GG if z is
co-prime with p2-1.
 Euler’s totient function shows how many integers z
satisfy this requirement:

ϕ(p2 -1) = ϕ(24qr) = ϕ(24)ϕ(q-1)ϕ(r-1)
=(p-3)(p-7)/3=[(p-5)2 -4] /3 (31)

 Therefore, N(p) = [(p-5)2 -4]/3 = (p2 -1)/3 – o(p).

Corollary: For a large p, if a Gaussian (a, b) is selected
randomly, then the probability of it being a primitive
root (generator) is close to 1/3. After t trials, (a, b) is
likely to be a GG with probability 1-(2/3)t.
 If t = 3, then the probability is 1-(2/3)t = 0.703703….
that it is a GG.
 Numerous computer experiments demonstrate that,
on average, the algorithm (9-12) finds a GG after a
mere three trials, with a standard deviation of 2.44.

Complexity analysis of algorithm: The following
Table 4 facilitates the analysis.

Indeed, from[5] (x,y)2 = ((x+y)(x-y),2xy)(modp) (32)

and (u,w)(x,y)=(ux-wy,(u+w)(x+y)-ux-wy)mod p (33)

therefore, the squaring requires two RIM and the
product of two complex integers requires three RIM
(32). Thus, the total number of required RIM is equal to
3.5×log(p+1)/4+1.5×log(p-1)/6<5log(p+1)/4 = Θ(logp).
Further reduction of complexity can be achieved via
application of Toom’s algorithm for computation of
multi-digit long integers[9].

Illustrative example: The following numeric example
demonstrates the most important features of the search
algorithm and quadratic order of the GG.
 Suppose a triple prime p = 11443.

Step 1: p = 11443, q = 2861 and r = 1907; {all three
integers are primes}.

Table 5: TPs, Gaussian generators and their orders
TP p GG ord (GG) T (µs)
11,443 (3801, 7240) 130,942,248 35.21
11,587 (9925, 3113) 134,258,568 17.07
12,163 (4761, 10711) 147,938,568 8.78
14,107 (3598, 1763) 199,007,448 13.31
15,187 (10173, 12371) 230,644,968 6.32
99,907 (12209, 93518) 9,981,408,648 7.34
100,987 (58921, 38436) 10,198,374,168 61.50
103,387 (21044, 47275) 10,688,871,768 6.17
104,947 (10289, 17250) 11,013,872,808 5.70
991,987 (473412, 476250) 984,038,208,168 61.26
1,030,867 (665172, 814725) 1,062,686,771,688 5.89
1,038,523 (322164, 825494) 1,078,530,021,528 6.02
1,998,643 (372339, 931799) 3,994,573,841,448 3.26
2,004,763 (574467, 342161) 4,019,074,686,168 12.83

Step 2: {First trial}:

 Select randomly (a, b) = (2446, 1893);
 Step 3: Repeat for k = {2, 3, q}

 Step 4 {iteration for k = 2}:
 Compute (c, d) = (7880, 3169);
 if c = 0 or d = 0 or |c| = |d|,
 then goto the next trial;
 Step 4 {iteration for k = 3}:

 Compute (c, d) = (1683, 11074);
 if c = 0 or d = 0 or |c| = |d|,
 then goto the next trial;
 Step4 {iteration for k = q}:
 Compute (c, d) = (0, 11074);
 if c = 0 or d = 0, then goto the next trial;
Step 2: {Second trial}:
 Select randomly (a, b) = (3801, 7240);
 Step 3: Repeat for k = {2, 3, q}
 Step4 {iteration for k = 2}:
 Compute (c, d) = (9318, 9093);
 if c = 0 or d = 0 or |c| = |d|,
 then goto the next trial;
 Step4: {iteration for k = 3}:
 Compute (c, d) = (11335, 10468);
 if c = 0 or d = 0 or |c| = |d|,
 then goto the next trial;
 Step4: {iteration for k = q}:
 Compute (c, d) = (9571, 9571);
 if c = 0 or d = 0, then goto the next trial;
 Step 5: Compute e = 938;
 Step 6: f = 2932; {see (11) and (12)};
 Step 7: If f ≠ ±1, then output (a, b) = (3801, 7240)
is a Gaussian generator.
 It is easy to verify that the order of the GG equals:
ord (3801, 7240) = p2-1 = 114432-1= 130,942,248;
(Table 5).

Remark: CPU times T required to compute a Gaussian
generator are provided in micro-seconds (µs).

J. Computer Sci., 5 (9): 614-618, 2009

618

All computations were performed on a PC with the
following specifications: Intel Pentium dual-core
processor; 2.16 GHz, 1 MB l2 cache and 2GB
DDR2Main Memory.
 Table 5 shows that if a GG=(574467, 342161)

modulo triple prime p=2,004,763, then ord(GG) =
4,019,074,686,168.

CONCLUSION

 In various public-key cryptographic protocols users
select a large prime and a corresponding generator g
that are computationally-intense problems. Selection of
a triple prime p is a computationally challenging task.
Fortunately, the triple prime p must be selected only on
a system-design level. After the triple prime p of a
specified size is computed, the system designer can
periodically change Gaussian generators. This policy
provides additional cyber-immunity to cryptographic
protocols.

ACKNOWLEDGEMENT

 The first author expresses his appreciation to Md.
S. Sadik for his dedicated programming support and
assistance in extensive computer experiments and
gratitude to P. Fay for his valuable comments that
improved the style of this study.

REFERENCES

1. Boneh, D., 1998. The decision diffie-hellman

problem. Lecture Notes Comput. Sci., 1423: 48-63.
2. Diffie, W. and M. Hellman, 1976. New directions

in cryptography. IEEE. Trans. Inform. Theor.,
22: 644-654.

 http://www.citeulike.org/user/junin/article/504050
3. ElGamal, T., 1985. A Public-key cryptosystem and

a digital signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31: 469-472.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&a
rnumber=1057074&isnumber=22749

4. Elkamchouchi, H., K. Elshenawy and H. Shaban,
2002. Extended RCA cryptosystem and digital
signature schemes in the domain of gaussian
integers. Proceeding of the 8th International
Conference on Communication Systems, Nov. 25-
28, IEEE Xplore Press, USA., pp: 91-95.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1182444

5. Karatsuba, A. and Y. Ofman, 1962. Multiplication
of many-digital numbers by automatic computers.
Doklady Akad. Nauk SSSR, 145: 293-294.

6. Katz, J. and Y. Lindell, Introduction to Modern
Cryptography, Chapman and Hall CRC, London,
New York, 2008. ISBN: 1584885513, pp: 534.

7. Pollard, J., 1978. Monte carlo methods for index
computation. Math. Comput., 32: 918-924.
http://www.jstor.org/stable/2006496

8. Shank, D., 1971. Class number, a theory of
factorization and genera. Proc. Symp. Pure Math.,
20: 415-440.

9. Toom, A., 1963. The complexity of a scheme of
functional elements realizing the multiplication of
integers. Doklady Akad. Nauk SSSR., 150: 496-498.
http://www.de.ufpe.br/~toom/articles/engmat/MUL
T-E.PDF

10. Verkhovsky, B., 2008. Generalized baby-step
giant-step algorithm for discrete logarithm
problem. Adv. Decis. Technol. Intell. Inform.
Syst., IX: 88-90.

11. Verkhovsky, B., 2009. Accelerated cybersecure
communication based on reduced encryption/
decryption and information assurance protocols. J.
Telecomm. Manage., 2 (to appear).

12. Verkhovsky, B., 2008. Information assurance
protocols: efficiency analysis and implementation
for secure communication. J. Inform. Assurance
Secur., 3: 263-269.

