Journal of Computer Science 5 (7): 493-500, 2009
ISSN 1549-3636
© 2009 Science Publications

Multi Microkernel Operating Systemsfor Multi-Core Processors

Rami Matarneh
Department of Management Information Systems,
Faculty of Administrative and Financial Sciences,
Al-Isra Private University, Amman, P.O. 11622, Jord

Abstract: Problem statement: In the midst of the huge development in processwisistry as a
response to the increasing demand for high-speecepsors manufacturers were able to achieve the
goal of producing the required processors, but thékistry disappointed hopes, because it faced
problems not amenable to solution, such as contglelxard management and large consumption of
energy. These problems forced the manufacturerstdp the focus on increasing the speed of
processors and go toward parallel processing t@&se performance. This eventually produced multi-
core processors with high-performance, if used @rgp Unfortunately, until now, these processors
did not use as it should be used; because of lamast of operating system and software application
Approach: The approach based on the assumption that simgiekoperating system was not enough
to manage multi-core processors to rethink the tcoctson of multi-kernel operating system. One of
these kernels serves as the master kernel andhbesserve as slave kerndResults. Theoretically,

the proposed model showed that it can do muchrbghide the existing models; because it supported
single-threaded processing and multi-threaded psiicg at the same time, in addition, it can make
better use of multi-core processors because itldivithe load almost equally between the cores and
the kernels which will lead to a significant impeswent in the performance of the operating system.
Conclusion: Software industry needed to get out of the clatdiamework to be able to keep pace
with hardware development, this objective was aadeby re-thinking building operating systems and
software in a new innovative methodologies and oedh where the current theories of operating
systems were no longer capable of achieving thigadigms of future.

Key words: Microkernel, multi-microkernel, multi-core process, inter-process communication

INTRODUCTION

Applications
User mode |

During the past decades there have been significan Libraries
developments for the operating systems, began with T T
simple structure and end with large and complex
structure, although the design and implementatibn o
operating system, not solvable, but some approaches Kemel mode
have proven successfuty

As the kernel is the fundamental part of an opegat
system which implements a set of hardware abstracti

Interprocess

File system =
A0 m ana gem ent
HETVICE
sEIvices
Byslem sevices

comm unicalion

Process seheduling

that provide a clean interface to the underlyingihvare, Hardware

all developments focused on its design which iy var '

three broad categories: Monolithic kernels, Miciroled Fig. 1: Structure of monolithic kernel

and Exokernel$®. Monolithic kernels are a mixture of

everything the OS needed: Inter-process Commuaitati Microkernel design usually provides only minimal

(IPC), file systems, memory management, withouthmuc services by putting a lot of operating system sewi

of an organization (Fig. 1). Newer monolithic kdene such as file systems, device drivers (Fig. 2), user
have a modular design, in which kernel runs in &ern interface and protocol stacks in separate processes
mode and the processes run in user mode on tdpeof trunning on top of the microkernel and can be siaste
kernel. Such design offers adding and removal oftopped at runtime to makes the kernel smaller and
services at run-time. flexible.

493

J. Computer <ci., 5 (7): 493-500, 2009

while Mach and Chorus microkernels keep the device
Applications drivers outside the kerrief.

Libraries Such change in Windows NT led to replace

message passing by system call, which means a
fundamental change in microkernel architecture,

because of this Windows NT considered not a true
microkernel.

The main goal of a microkernel system is to keep i
small as possible by following the pure microkernel
Microkemel doctrine which holds that all nonessential services
should run in the processor's non-privileged rffbdEo
achieve this goal we must determine which services
should be contained within the kernel that canrm®t b
placed elsewhere, or that its presence outsid&eireel
would be costly.

User mode

Mem ory
managem ent
File system
SETVIGES
Drivers

Eemel mode

Hardware

Fig. 2: Structure of Microkernel

In general the following represent essential hait n
Application definitive list of services that should be containe
within the microkernel:
iE iI iI e Short-term scheduling
Library Library Library | ----- e Low-level memory management
e Inter-process communication via message passing
iE ji ji * Low level Input/Output
« Low level network support

Kernel

Microkernel bottlenecks: Highly effective
communications between processes is inevitable and
Fig. 3: Structure of Exokernel the problem of microkernels performance revolves
around the extra work to copy data between seasds
Exokernel accompanied by library operatingapplication programs and the necessary inter-psoces
systems, which provide application developers wh#hn communication between processes results in extra
conventional functionalites of a complete opemtin context switch operatiofs
system (Fig. 3). This approach lets user programs QNX microkenel performs all inter-process
override the standard code exported by the systain a communication by direct copying to reducing
the kernel and leads to very fast operation butkweacomplexity and code size which may cause some extra
safety. copying costs, in contrary L4 microkernel improves
performance by using registers mechanism if the
Microkernel design challenge: The big idea of amount of data being passed is small. Anyway, tacav
microkernel is that the kernel can be split up intothe mentioned problems different techniques weegl us
independent parts called servers, which communicaty different microkernels-based operating systedme
with each other and applications through Inter-Bssc of the most popular techniques known as co-location
Communication (IPC) via message passing. Thigvhich based on allowing the operating system to
architecture is actually a client-server; processegptionally run specific programs inside the keriel
(clients) can call operating system services bydisgn particular servers. Although this technique leads t
requests through IPC to server procédses some complexity in the kernel's scheduler howeiter,
But it seems that the reality is slightly diffeten significantly reduces the number of context switche
where the developers of microkernels have not algreebecause inter-process communication overhead is
on what services the microkernel should providergv reduced to normal system 3l
developer has its own perspective. These different Microkernel performance in general, is often poor
perspectives led to have different versions ofdue to switching between kernel and user mode,
microkernels. For example Windows NT allows deviceswitching between address spaces and context
drivers to run in kernel mode for reasons of efficy, switching between threddf in addition to complicate

494

J. Computer <ci., 5 (7): 493-500, 2009

implementation that is why most operating systems a

I o | Core 0 || Core 1 H Core 2 |----| Core N ‘
using monolithic kernel.
]) [CacheLl |[CacheLl |[Cachell |----[Cachell |
Modern microprocessor s ar chitecture: As a result of
[CacheL2 |[CacheL2 |[CacheL2 |]----[Cachel2 |

the growing demand for more high-speed processors,
CPU manufacturers began the competition by | Cache13 \
increasing parallelism at the instruction level get
more performance out of additional transistors on a | mmor'wlomner |
chip.) . [RAM \
This technique eventually led to complex and hard Multi_core procassor
to manage processors, in addition these processors
consume |arge amount Of pOWer em|tted in the fOfm 0F|g 4: Generic diagram of multi-core processor
high temperature and the problem is become wosse th
greater the speed of the proceSSbrTo resolve this Coding for simultaneous multithreading

problem, it was necessary to reduce the speed @échnology it's not trivial at &' because of some
processors and combine multiple cores on the samgsyes such as interleaving shared data can slow
chiph?*, performance and create errors, in addition, ibisaasy
Multi-core processors came to solve theto write correct multithreaded programs and if we
deficiencies of single core processors, by deangasi assumed that we were able to write such program we
power consumption while increasing bandwidth. In astill facing another serious problem is how to {atiae
multi-core configuration, an integrated circuit tains the threads in the progr&f This problem can be
two or more complete computer processors, Fig. 4lescribed as follows: If we have a program with two
represents a generic diagram of multi-core progessothreads one handle heavy computations while theroth
Usually, these identical processors are manufadtsoe perform simple computation, such case would nad lea
they reside side-by-side on the same die. Eacthef t to significant speed in execution because the Ipage
physica| processor cores has its own resource@SSigned to single core while the other coresadntiost
architectural state, registers and execution unitsSit idle, which will result in application bottieck®.
Processor technology trend follows Moore’s Law,SO. getting S'_Qn'f'cf_‘z'g} increase in performancedsee
which states that the number of transistors pesrin ~ OPtimal condition§**%, which may be difficult to

area on the chip will double approximately every 1g2chieve in most cases.

month€315 which is mean that the number of There is another problem lies in that most
processor cores in one integrated circuit chip wilPrograms do not support muttithreading features thi

continue to increase and this is also confirmed by o> re-designing and re-write these programsfwhic

processor manufacturé® Multi-core technology Xuil require time, effort and knowledge which is

) . robably still is not available to many programmeit
requires the development of operafing system thagf this does not mean reaching a final solutiorase
capable of dealing with such processors.

the operating systems that support dual-cores do no

]] support the Quad-core and which support Quad-core d
Operating systems and software challenge with not support the Octa-core.

modern microprocessors architecture: Despite the This will lead to rebuild the operating system in
significant progress in building high-speed prooess case of emergence of new processors that contaie mo
new high-speed hardware is not reflected at theesammumber of cores and this fully applied to the saftsv
rate on the operating system performéfitand always application&®2".
bottlenecks were found which prevented using the
computer resources to their fullest capacity. MATERIALSAND METHODS

Multi-core processors are built to support
parallelism, so, to make use of such processorgo’\rchitectureof proposed model: The proposed model
operating system must support multithreading ared this oriented to multi-core processors and consists o
software must have Simultaneous Multithreadingkernels equal to the number of processor cores. The
Technology (SMT}” written into the application model assumes that kernels divided into two categor
software, otherwise the software will only recogniz
and run through a single core which leads to® One master microkernel and
significantly decrease the efficierttd°. « Many slave microkernels

495

J. Computer <ci., 5 (7): 493-500, 2009

The master kernel invoked first and it is here we can notice the deference between this model
responsible for creating all aspects of the syst#fter and other models when running single threaded peoce
that, it creates slave-microkernels and assigns eme on multi-core processor, the process will be agsigo
of them to one and distinct of the processor cofbat one core and the other cores will set idle.
is if we have a processor with N cores the master The second characteristic will give us the abildy
microkernel assigns itself to Core 0 and create N-load master, slave microkernels and nearly all user
microkernels corresponding to processor's coresprograms completely into their caches to reduce the
Figure 5 shows the relationship between microkernelneed for the main memory RAM, which will
and processor cores. significantly increase and enhance the performdhce

Master microkernel responsible for the and one can imagine the difference between cache
management of the system, that is, it is the omg o speed and RAM speed.
capable of dealing with all resources of system and Getting cache with large size is an achievable
directly communicates with servers and in addition target; because caches chips tend to get largbreaith
guarantees the communication between salv@ew generation of processors as transistors become
microkernels with each other and with servers (Bljg. smaller which means there will be more area ordibe
while the job of slave microkernels is limited toet for additional cacH&"*>34
execution of user’'s programs and it can manage and
directly access its processor core and its cactiemid Description of the proposed model mechanism: We
L2), the other system’s resources it can accesg onlcan describe model’'s mechanism through the follgwin
through master microkernel. different cases; assume we have a processor with fo

The proposed model assumes that each processocsres:
core support hyper threading technolé%3” and has
large enough L1 and L2 caches. The first charatieri Case 1. Four processes arrived, respectively, to the
will enable user programs that support multithregdi master microkernel 2 P,, P; and RB. After the
to make use of hyper threading technology resuiting completion of B, arrived R.
good responsiveness and performance, but if user In this case, master microkernel organizer fird id
program doesn’t support multithreading it will ras a cores and maintains information about each process
single threaded process on single core, while thero such as its ID and on which kernel-core running for
cores simultaneously executing other user narmng, future use when necessary, then respectively assign

processes to the cores. Accordingly, it will assyrio
Master p-kernel Slave p-kernel corel, B to core2, Rto core4, since there are no more
' idle cores and all cores nearly with the same lbad

| Core0 | | Corel | | CoreN | starts counting from the beginning and assigntd®

' i | corel. After a specific time sPfinished execution,
i E immediately arrived £ in this case master microkernel

| u-kernel 0 | | u-kernel 1 | | u-kernelN | will assign it to core4; because it is the onlyeidbre at

the current time.

1
L 3

L N cores _ . . .
e o Case 2. P; needs to communicate with P4 In this

case, as both ;Pand B are running in the same
microkernel, this means that slave microkernelll wil
establish the communication link between the two
uster kel s el processes without interference from master microker

‘ Core0 | i

Fig. 5: Relationship between master-slave micraddsrn

[(owt | [comz | [cores | = [coen |

Caen] (oo] (e] - [] Case 3: P, needs to communicate with P,: P, and R
e | [] [eoei] - [] are running in different microkernel, in this caskve

| ; | ! microkernell sends a request to master microkénag|
shartierm | [shortterm | [/ shortterm shrttern it needs to communicate with processaB follows:

scheduler scheduler scheduler —— scheduler

‘ Cachell | |

‘ Cache L2 |

Services
Organizer

servers \-Kernel 0

pkernel 1 pKernel 2 pkernel 3 wKernelN

Link (P;@microkernell, R@masterkernel)

Fig. 6: Model structure and communication between As each process has a unique ID the master
master-slave microkernels and servers microkernel directly locate where,®s now running

496

J. Computer <ci., 5 (7): 493-500, 2009

and send request to its microkernel, after thattenas Mathematically we can represent LSTn the

microkernel establish the communicating link andfollowing form:

works as intermediate between the two slave

microkernels. n i

LST=>>'Q (1)
11

Case 4: P, needsfile systems service: In this case:

. P, sends the request to the master microkernel senfyhere:
(P.@microkernell, File system service)
* Master microkernel sends the request to file systeny, ={O' if the core bus 2
service " | Q, if the core idle
» File system service performs the request and return
the result to the master microkernel n = The number of rounds
* Master microkernel sends back the result to sendl = The number of cores
(P.@microkernell, result)
* In this model, the master microkernel is And therefore the value of the total lost time TLT

responsible for all of the following: will be:
» Assigning processes to one of idle or low-load

kernels TLT = number of idle state 3)
* memory management number of all states
e Inter-process communication between slave

microkernels By applying the algorithm with appropriate
Input/output management parameters for a single-kernel operating systems we
Network support will get the result as shown in Fig. 7.

Using formula 1 and 2, to get the value for, @&hd
RESULTS TLT:

To evaluate the proposed model in term of ST =0+ 0+ 0+ Or OF O 0= 0
performance, let's assume a group of scheduledST: =0+ 20+ 20+ Or 26- 18 28 10
processes as in Table 1 and a multi-core proceggor LST, =0+ 20+ 20+ Or 20- 18 28 1C
4 cores.

For simplicity we will use simple round robin 1T =1%-0 48
algorithm with quantum time (Q) 20 and it should be 21
mentioned here that the selection of the algorittoes] .
not play an important role, because the evaluation, The.obtamed results show that corel is bgs;hallt
focuses on the throughput of the system in territsof time while core2 and core3 busy only one third fef t
organization and inter-process communication not orime, which means bad distribution of loads between
the algorithm itself. cores, leading to loss of time due to poor expiiitaof

For the purpose of performing some calculation tgMicroprocessor’s cores. Figure 8 represents Uidiaa
compare multi microkernel model with classical #ing atio for each core.

kernel model, assume the following variables: Now we will use the same data for the proposed
model (multi microkernel model), this will give tke

Lost time for each core LST;: this time considered results shown in Fig. 9.
when corgidle while other cores busy with a specific

TL;
process. =

TLT 20 40 60 80 100 118 138

Total lost time is TLT: which is representing the —|Remes| Bev | e | e | Buy | I8 | fde | e | 100

ration of idle states to the busy states duringaalhds. Kemdn| Buy | e | e | Buy | @ | e | 1@ | 100
Table 1: Group of scheduled processes gy B | Tm | Ry | e | R | e | B
Process Burst time Type By Py P By By B3 B3

P 40 Multithreaded 0 20 10 60 50 100 118 138

P, 60 Not multithreaded

P; 38 Not multithreaded ~ Fig. 7: Lost time for single-kernel operating sysse

497

J. Computer <ci., 5 (7): 493-500, 2009

Corel Core2 Core3

Fig. 8: Utilization ratio for each core in singlerkel
operating systems

Kernel3 Busy Busy Idle 22
P:
Kernel 2 Busy Busy Busy 0
Pz
Kerel 1 Busy Busy Idle 20
Py
0 20 40 60

Fig. 9: Lost time for multi microkernel operating
systems

B LU e I i

L aantatal | | EEEEEEEEEEEREEES

80 fmmmmmmmmm e [oo

L

60 |-~

S0F--

40¢-- e

30}-- B R

20 f--

1of--

Corel Core2 Core3

Fig. 10: Utilization ratio for each core in multikel
operating systems

LST, =0+ 0+ 20= 2C
LST,=0+0+0=0
LST, =0+ 0+ 22= 22

TLT = 2 =0.22
9

The obtained results show that corel is busyhall t
time while core2 and core3 busy almost two-thirfls o

In addition TLT for single-microkernel is almost
twice the time of multi microkernel:

TLTsingIe-microkerneI: 0.48
TLT mutti microkernel =0.22

This means that we can save twice or may be more
than twice the time using the new proposed model,
leading to high performance due to good utilizatodn
microprocessor cores.

DISCUSSION

The proposed model based on multikernel approach
shows through the obtained results that the pegoom
of multi-microkernel-based operating system is much
better than single-microkernel-based operatingesyst

By making the master microkernel only
responsible for the fundamental services in theéesys
running on a separate core with large caches tiis w
lead to eliminate all classical problems related to
microkernel-based operating systems such as
bottleneck, switching between user and kernel mode.
On the other hand, assigning the task of executsgy
programs to the slave microkernels, by dividing the
total number of process as subsets between the slav
microkernels this will enhance the performance,
increase the throughput and decrease turnaroure tim
waiting time and response time of the system.

Creating a number of slave microkernels
depending on the number of processor cores make the
operating system independent of the microprocessor
architecture which gives it the ability to behave
dynamically, which is mean that the operating syste
can deal with processors with any number of cores
without the need for rebuilding it.

CONCLUSION

In this study, new model for operating system
presented to solve the bottlenecks problem and
operating systems and software challenge with nmoder
microprocessors architecture of classical single-
microkernel-based operating system, the proposed
model shows high performance compared with the
classical model, because of its dynamic nature and
independency of microprocessor architecture, in
addition to its ability to adapt with both multigaded
and single threaded process.

REFERENCES

the time, which means that the new proposed madel i

better in term of distribution of loads betweenemr
leading to minimize loss of time due to good
exploitation of microprocessor's cores. Figure 10
represents utilization ratio for each core.

498

1. Silberschatz, A., P. Baer Galvin and G. Gagne,
2004. Operating System Concepts. 7th Edn. John
Wiley and Sons, Hoboken, New Jersé¢yBN: 10:
0471694665, pp: 944.

10.

11.

12.

13.

J. Computer <ci., 5 (7): 493-500, 2009

Heiser, G., K. Elphinstone, G. Klein, I. Kuz and 14. Gordon Moore,

M.S. Petters, 2007. Towards trustworthy
computing systems: Taking microkernels to the
next level. Operat. Syst. Rev.,, 41: 3-11.

http://portal.acm.org/citation.cfm?id=1278901.127 15.

8904

Jochen, L., 1995. On p-kernel construction.
Proceeding of 15th ACM Symposium on Operating
System Principles, (SOSP’95),
http://www.citeulike.org/user/rahul/article/364430
Brett, D. Fleisch, Mark Allan A. Co, 1999.
Workplace microkernel and OS: A case study.
Software: Pract. Exp., 28: 569-591.

http://www3.interscience.wiley.com/journal/1798/a 17

bstract?CRETRY=1&SRETRY=0
Andrew S. Tanenbaum, 1995.
Operating Systems. Prentice
0132199084, pp: 648.

Distributed
Hall, ISBN:

Mark E. Russinovich and David A. Solomon, 2003.18.

Microsoft Windows Internals. 4th Edn., Microsoft
Press, ISBN: 0-7356-1917-4, pp: 976.

Andrew, S., 2001. Modern Operating Systems, 2/E,
Tanenbaum. Prentice Hall, ISBN:
9780130313584, pp: 976.

Hidaka, S., K. Kodama, Y. Ji and K. Maruyama,
2002. A file server optimization using
scatter/gather IPC on L4 based multi-server
operating system. Proceedings of the 6th Worl
Multi Conference on Systemics, Cybernetics an
Informatics, (SCI'02), Tokyo, pp: 184-189.
http://research.nii.ac.jp/H20/SCI-2002.pdf
Rajkumay R., 1999. Operating Systems and
Services. Springer, ISBN: 0792385489, pp: 204.
Hartig, H., M. Hohmuth, J. Liedtke, J. Wolterda
S. Schénberg, 1997. The performanceudiernel-
based systems. Operat. Syst. Rev., 31: 66-77.
http://direct.bl.uk/bld/PlaceOrder.do?UIN=038779
461&ETOC=RN&from=searchengine

Peng, L.et al., 2007. Memory performance and 22.

scalability of intel's and AMD's dual-core
processors: A case studyroceeding of the IEEE
International Conference on Performance,
Computing and Communications, Apr. 11-13,
IEEE Xplore Press, New Orleans, LA., pp: 55-64.
DOI: 10.1109/PCCC.2007.358879

Knight, W., 2005. Two heads are better than one
IEEE. Rev., 51: 32-35.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnu
ber=1540008

Geer, D., 2005. Chip makers turn to multi-core
processors. Computer, 38: 1-13. DOI:
10.1109/MC.2005.160

499

pp: 237-250.16.

13: 19.

21.

23.

24,

E., 1965. Cramming more
components onto integrated circuits. Electronics,
38: 114-117.
http://www.citeulike.org/user/sjanusz/article/81276
Access My Library, 2005. Intel, Innovation more
important than ever in platform era.
http://www.accessmylibrary.com/coms2/summary_
0286-18980112_ITM

Muneer, H. and K. Rashid, 2006. SPE architectur
for concurrent execution OS kernel and user code.
Inform. Technol. J., 5: 192-197.
http://scialert.net/asci/ascidetail.php?doi=itj.800
92.197&kw=

Eggers, S.J., J.S. Emer, H.M. Levy, J.L. Lo, Rian3n
and D.M. Tullsen, 1997. Simultaneous
multithreading: A platform for next-generation
processors. IEEE Micro, 17: 12-19. DOI;
10.1109/40.621209

Ron Kalla, Balaram Sinharoy and J.M. Tendler,
2004. IBM power5 chip: A dual-core multithreaded
processor. |EEE Micro, 24: 40-47. DOL:
10.1109/MM.2004.1289290

Van Roy Peter, 2008. The challenges and
opportunities of multiple processors: Why multi-
core processors are easy and internet is hard.
Proceeding of the International Computer Music
Conference, (ICMC’08), Belgium, pp: 1-2.
http://www.info.ucl.ac.be/~pvr/vanroy-mc-panel.pdf

0. Artho, C. and A. Biere, 2001. Applying static

analysis to large-scale, multi-threaded java
programs. Proceeding of the 13th Australian
Software Engineering Conference, Aug. 27-28,
IEEE Computer Society Washington DC., USA,,
pp: 68-68.
http://portal.acm.org/citation.cfm?id=872575
STAR Watch, 2005. Double the performance:
Dual-core CPU’s make their debut.
http://www.wnylc.net/pdf/star-
watch/MayJunel05.pdf

Visser, W., K. Havelund, G. Brat and S. Park,
2000. Model, checking programs. Proceeding of
the International Conference on Automated
Software Engineering, pp: 1-10.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.36.3362&rep=repl&type=pdf

Akhter, S. and J. Roberts, 2006. Multi-Core
Programming: Increasing Performance through
Software Multithreading. 1st Edn., Intel Press,
ISBN: 13: 978-0976483243, pp: 360.

Stewart Taylor, 2007. Optimizing Applicatiore f
Multi-Core Processors, Using the Intel® Integrated
Performance Primitives. 2nd Edn., Intel Press,
ISBN: 13: 978-1934053010, pp: 600.

J. Computer <ci., 5 (7): 493-500, 2009

25. Hughes, C. and T. Hughes, 2008. Profession#8. Koufaty, D. and D.T. Marr, 2003. Hyperthreading

26.

27.

Multicore Programming: Design and
Implementation for C++ Developers. Wrox, ISBN:
13: 978-0470289624, pp: 648.

Tullsen, D.M., S.J. Eggers and H.M. Levy, 1995.29.

Simultaneous multithreading: Maximizing on-chip
parallelism. Proceedings of the 22nd Annual
International Symposium on
Architecture, June 22-24, |IEEE Xplore Press,
USA., pp: 392-403.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?ernu 31.

ber=524578

Tullsen, D.M., S.J. Eggers, J.S. Emer, H.M.\l,ev
J.L. Lo and R.L. Stamm, 1996. Exploiting choice:
Instruction fetch and issue on an implementable
simultaneous multithreading processor. Comput.
Architect., 24: 191-202.
http://portal.acm.org/citation.cfm?id=232974.2329
93

500

Computer 30.

technology in the netburst microarchitecture, Micro
IEEE., 23: 56-65. DOI:
10.1109/MM.2003.1196115

Lin Chao, 2002. Hyper-threading technology.
http://www.buzzle.com/editorials/7-31-2004-
57330.asp

Geer, D., 2007. For programmers, multicore £hip
mean multiple challenges. Computer, 40: 17-19.
http://portal.acm.org/citation.cfm?id=1301953
Alameldeen, A.R. and D.A. Wood, 2007.
Interactions between compression and prefetching
in chip multiprocessors. Proceedings of the 2007
IEEE 13th International Symposium on High
Performance Computer Architecture, Feb. 10-14,
IEEE Xplore Press, Scottsdale, AZ., pp: 228-239.
DOI: 10.1109/HPCA.2007.346200

