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Abstract: Problem statement: How a host (the code consumer) can determine edgttainty that a
downloaded program received from untrusted sourtte (ode producer) will maintain the
confidentiality of the data it manipulates andsisiafe to install and executepproach: The approach
adopted for verifying that a downloaded progran ndlt leak confidential data to unauthorized partie
was based on the concept of Proof-Carrying CodeCjP& mobile program (in its assembly form)
was analyzed for information flow security basedtto® concept of proof-carrying code. The security
policy was centered on a type system for analyiifarmation flows within assembly programs based
on the notion of noninterferenceResults: A verification tool for verifying assembly progranifor
information flow security was built. The tool cdées SPARC assembly programs for secure
information flow by statically analyzing the progrédased on the idea of Proof-Carrying Code (PCC).
The tool operated directly on the machine-code ireqguonly the inputs and outputs of the code
annotated with security levels. The tool providesimdows user interface enabling the users to obntr
the verification process. The proofs that untrugtesigram did not leak sensitive information were
generated and checked on the host machine andyifate valid, then the untrusted program can be
installed and executed safelfConclusion: By basing proof-carrying code infrastructure on
information flow analysis type-system, a sufficieassurance of protecting confidential data
manipulated by the mobile program can be obtaiidi assurance was come due to the fact that type
systems provide a sufficient guarantee of protgatimnfidentiality.
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INTRODUCTION Some prevalent trends in software call for techegto
certify machine-code for secure information flow.

Recent years have witnessed a growing interest imong them, dynamic extensibility, where a trusted
information flow security analysis due to their Computing System is extended by importing and
connection to the problem of protecting confidentia executing untrusted mobile code. For example, web
data. The confidentiality policy concerns multié¢v prowsers plug-ins and operating systems extensions.
security systems. It states that secret data mast b  Some of research works have studied secure
protected during the computation and there shoeld binformation flow in low-level languages. A low-leye
no leakage of that data through public output ceann  secure calculus that use linear continuations giees

Information flow security is formalized as non- non-interference property is presenteffimowever the
interference, which states that final values of -low language is not an assembly language as it hagnit
security variables must be independent of initighh  else structure and has no registers. Recent résearc
security variablé8. Information flow security analysis workd®® studied extending Typed Assembly
verifies if a program respects certain confideiitial Language (TAL) with information flow property in
policy. Denning and Denniffy were first to perform order to enforce non-interference in RISC-style
static information flow analysis for checking pragrs  assembly programs.
for confidentiality. Information flow security analysis of Java

Unfortunately, despite a long history, relatively bytecode has been studied by several authors. An
less interest has been given to low-level langddges information flow type system for a simplified vessiof
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JVM language is developed il and later for an security analysis technique is defiféd Then we
extended fragment of JVM languagé*dh BesideS®,  identify for each conditional instruction the set o
proposed a technique for information flow analysis instructions that execute under its control cooditi
Java bytecode using Boolean functions. MethodsthaseThe set of these instructions constitutes whatalked
on model checking are used for certifying Javathe control dependence region CDR. Every conditiona
applet§” and a refined technique Mt is presented instruction has a control dependence region. Wehese
in®™ for a subset of JVML. ! an approach is notion of control flow graph and the notion of
proposed for information flow analysis of Java postdomination to identify control dependence
bytecode similar to type-level abstract interpietat region&®. The body of a given function F consists of a
used in standard Java bytecode verification andoh t set of basic blocks B, denoted asgBBhe control flow
for Java bytecode verification for secure inforroati graph of function F is a directed graph (N, Eheve
flow is developed. I, the authors developed a N = BB: the set of nodes and E N x N, the set of
semantics based tool for information flow analysfs edges. For two basic blocks Bnd B we say that B
tack-based assembly language. postdominates Bdenoted by B pdom (B), if B; # B;
This study shows how to determine staticallyand Bis on every path from;Bo exit node and that;B
whether it is safe to install and execute a dowsdola  immediately postdominates,Blenoted by B= ipd(B)),
untrusted code on a host machine. It presentsuaisec if B;# B; and there is no node 8uch that B= pdom(B)
analysis technique for certifying assembly programsand B= pdom(R).
generated by off-the-shelf compilers for secure  The security type system is parameterized with
information flow based on the concept of Proof-apstract functions: Region, ipd and propagate. The
Carrying Code (PCE). The downloaded code is function region() identifies the control dependenc
analyzed based on an information flow type systath a region of a conditional branch instruction at addré
security conditions are generated. Proofs of titer#ty  The function ipd(i) returns the address of therirgton
conditions are then generated and checked on tsie hahat is immediately executed after exiting fromioeq(),
machine by the code consumer's system. If the prookhys, representing the immediate postdominator of
are valid, the untrusted code can be installed anghstryction at address i. Finally, the function gagate
executed safely. o . . (region, security level) updates the security cdntef
The researchés® assume existence of special jngtryctions of a given region into a given seguivel.
compilers (certifying compilers) that generate thiget  \ye yse a stack, which is called immediate postdatoin
assembly languages through a trusted compilation. 1;pp 1o handle implicit information flow by storinpe
contrast, the proposed security technique Operater%gions and their immediate postdominators.
directly on assembly language programs generated by ™ gecong, the verification condition generator VCG
general-purpose - off-the-shelf compilers. Moreover,qyqcytes the assembly program P abstractly (opgrati

abovementioned techniques do not produce explicip, secyrity levels instead of actual values) ometion
proofs for the programs acceptable by such teclesiqu ,; 5 time based on typing rules of the securityetyp

The most prominent difference between the propose ystem. Each class of instructions has a correspgnd
security analysis technique and techniqués df is _rule and the VCG builds an abstract state obtamed
that they treat a stack-based assembly languagenwhi 4 iractly executing of an instruction by applywfgts

is much different from RISC architecture. Furthersjo | 1e. The state of abstract executor is defined inyple
none of the workS™"! produces explicit machine- AE(i, o, so), where i is the value of program counter
checkable proofs of confidentiality conformance. referring to the instruction to be executed nexR—L

is an abstract register state which is a mappiog fr
registers names to security levels from a seciattice

#; o(pc) is the security context of current instruction
and so is the stack offset.

Proof-carrying code for secure information flow:
The security analysis technique we adopt to verdyi
secure information flow is based on the concept o
proof-carrying cod®. The information flow security
analysis is divided into four phases: developingfunc
information flow policy, generating the verificatio

The abstract executor starts executing the body of
tion F with an initial state:

conditions, generating the proofs and checking the AE(io, 50, SQ)
proofs. The proposed security analysis techniques
consider RISC-style assembly language, SAL Where:
First, information flow analysis type system thatF = The function being executed
defines the authorized information flows within SAL i, = 0, the value of program counter referring to
assembly programs and serves as the basis of the the first instruction in function F
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o = Prg, the initial abstract register state, data and High for high-security data. A programsP i
initialized to the security levels as specified by defined as a pair (I, V) where | denotes instruttiand
precondition, Pre V denotes the variables. V is partitioned into & cfe

s = Argg the stack offset is initialized with the low-security variables \,, and a set of high-security
arguments of function F, Agg variables Vjigh.

oo(pc) = Sig, the security context is initialized to the
security level assigned to function F, Sifhe  Non-interference: A program P = (I, V) is secure if,
security level, Sig is initially propagated as a starting form two initial memories which agree dwe t
security context for all instructions in values of the variables,Y,, the program P terminates

function F with two final memories which agree on the valués o
the variables V.
IPD stack is empty. The above definition ensures that the final values

For arithmetic and logical operations, memoryof low-security variables are independent of thiéah
reading instruction (load) and instructions of nmgyi values of high-security variables. Secure infororati
data between registers or between registers awmtt staflow is formalized as non-interferere which states
locations the abstract executor updates abstrgidtee  that the values of high-security do not interfeaéfgct)
state by mapping the destination register intol#ast  the values of low-security variables.
upper bound of the security levels of source opgan

taking into accounts the current security contéxthe MATERIALSAND METHODS
case of conditional branch, both branches are adibtr
executed. The least upper bound of the securitgldev A tool was developed to demonstrate the

of the conditional register and the current segurit practicality of the proposed security system. Toel t
context is propagated through the conditional negie  certifies SPARC assembly programs for secure
a security context for all instructions that are@xed information flow. The following software and toase
under the control of conditional expression. Forused. Visual Basic 6: A programming tool, which is
memory write, function calls and functions returnsused to develop the prototype implementation of the
instructions, the VCG constructs a proper verifmat proposed security system. GNU GCC C Comfilter
condition and sends it to the theorem prover tafwer compiles C programs into executables for SPARC
The verification conditions are encoded as LF teértns  platforms. Disassembler: Disassembles the exeautabl
Third, to prove the verification conditions file produced by the GCC compiler into SPARC
generated by the VCG we use a theorem prover foassembly language. An alternative option to produce
first-order predicate logic, which is also able to SPARC assembly program directly is to use the aptio
generate their detailed proofs. Based on the ldtat S with GCC compiler. Emacs Text Editor: edits the
the host machine specifies, the theorem provematie  Twelf signature, which encodes the object logic.elfw
to prove the verification conditions emitted by MG  System: A tool for experimentation in the theory of
and generates their detailed proofs. Theorem pgovinprogramming languages and lodifs It relies on LF
process is guided by a logic program that descithes type theory and the principle of judgments-as-tyjoes
absence of illegal information flows in the assembl specifications.
code. The logic program includes a set of prooésul

which are logical translation of security typindes! RESULTS
Fourth, after proving the verification conditiong
the theorem prover, their proofs are validated pyaof The main result of this study is a security teghei

checker for validation. The proof checker componenfor verifying assembly programs for secure inforiowat
verifies that the proofs generated by the theoreswgr  flow. To make all the components and concepts ef th
are indeed valid and pertaining to the verificationproposed security technique more concrete, a tool,
conditions generated by the VCG. If the proofs arewhich is called SPARC PCC-SIF, was developed for
valid then the untrusted program is considered reecu verifying SPARC assembly programs for secure
and can be installed and executed safely on thé homformation flow based on the proposed security
machine. approach. The tool enables the code consumer toeens
that only the programs that satisfy the confidéityia
Information flow model: We assume a two-point policy are allowed to execute. A satisfaction of
security lattice L = {Low, High}, partially orderetly = confidentiality means that a program has secure
c, where LowE High; Low stands for low-security information flow. The information flow property is
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formalized based on the notion of non-interferenceThe operational semantics is given in terms of ltiegu
Thus, the purpose of the tool is to check whether t state obtained after executing each instructionis It

received program has non-interference property. clear that SAL and SPARC language are also
Most important high-level characteristics of the semantically equivalents.
proposed tool are (1) It operates directly on maehi Figure 1 shows the high level structure of thd.too

code; (2) It enforces information flow policy, naye It consists of a number of components: Control
non-interference policy on SPARC assembly programsDependence Region Calculator, Verification Conditio
(3) It generates explicit machine-checkable segurit Generator (VCG), Checker module, which includes
proofs (certificate) for SPARC assembly progranat th Theorem Prover and Proof Checker.

are proved secure.

The tool is thus can be regarded as an instance @ontrol dependence regions calculator: Extracts
the security analysis for checking secure inforomati functions, identifies basic  blocks, performs
flow of SPARC programs. All components of the jntraprocedural control flow analysis, computestomin
security analysis technique are adapted to work Ogependence regions CDR for conditional branches and

SPARC assembly language. The adapting is &tores the information about CDR in IFD table.
straightforward and quite easy since both SAL and

SPARC are RISC architectures. Verification condition generator module: Performs
Table 1 shows the translation from SAL to 9 ’

SPARC. Obviously, there is a one to one " abstract execution on the code based on thegtypi

correspondence between instructions of SAL ancflJIes anq -initi.al annota.ti.ons one function at_ aetim
SPARC, which facilitates adapting the securityThe v_ern‘lcanon condition genera_tor begins t_he
technique for SPARC. The instance of SAL has 32*ecution of the program code starting from funttio
general purpose registers mapped to SPARC register‘_‘éna'”"-. Th(_e execution continues until the return
In addition the registend (%0,) in SPARC is mapped instruction is encountered or the VCG reaches an
to SAL register “ra”. In 32-bit instance of SAL thase already executed instruction. For each instructtbe,
values range between'220 2°-1 and in 64-bit instance VCG builds an abstract state. VCG produces
of SAL the base values range betweeti t@ #°-1. verification conditions for the actions: functiomlis

A program P is a sequence of SPARC instructiongind returns, memory write instructions. The
I, P = <I>, consisting of functions each of whichd verification conditions and their assumptions are
sequence of SPARC instructions. Furthermore, eactepresented as LF terms and saved in a file.
program P has a function “main”. The operational

semantics of SPARC language is defined as a tflple checker module: The Twelf systef? is the checker

M, R), where | is the value of the program couriéis  mqqyle. The object logic is encoded as an LF sigeat
the memory representing the state of memory logatio The signature is loaded along with a verification

(progrgm var_|ables_) and R represents the currene st oo jition file produced by the verification conditi
of registers including stack locations (localizhles).
generator module. The Twelf theorem prover gensrate

Table 1: The translation table from SAL to SPARChitecture the prOOf s derivations that are to be type'Chedm

SAL SPARC on by Twelf type-checker. If all proofs are welpgd,

r=n mov n, r untrusted program can be executed safely in the cod

r=r mov r', r consumer’s computing system.

r=nraddn add g,n, r

rz=r add g add g, 1, I3

jump label jmp label R Ly Checker Module
Calculator .

r=reqn cmpg n Prostam |_. Cenensor s Tpoorem

jfalse r, label bne label ~ > v

r=n eq b Cmp K, I Annotations N l

jfalse r, label bne label Proof

ra=pc+lcal F call F Checker

ret ret |

r=MIr] Id [r], r v

M[I"] =r str, [I"] Accept/ Reject

r = M[sp+n] Id [sp+n], r

M[sp+n] = r str, [sp+n] Fig. 1: High-level structure of secure inforinat

Sp = sp+n save sp, n, sp flow tool
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int main() main: save Yosp, -112, Yesp mov 1, %ol
sethi %ahi(i), Yool st %ol [%eo0]
or %01, Yolo(i), Yeol b 114
if(i==0) 1d [%00], %01 I13: sethi Yohi(k), Yool
{ cmp %0l 0 or %0l Yelo(k), %ol
if(k==10) bne 112 mov 2. %ol
m=0; sethi Yohi(k), Yool st Yool [%e00]
else or %ol Yolo(k), Yool L14: sethi %ehi(1), %0l
m=1; 1d [%a00], %0l or %01, Yelo(i), Yol
} cmp %01, 10 st %agl, [%e00]
else bne 111 sethi %hi(m), %ol
{ sethi Yohi(m), %ol or %01, Yelo(m), %ol
i(j==0 or %01, Yelo(m), %ol 1d [*a00], %e0l
k=1 st %ag0, [%00] mov %01, Yoil
else b 114 ret
k=2; I1L1: sethi Yohi(m), %ol restore
1 or %ol, Yolo(m), %eol
mov 1, %0l (b)
i=0; st %ol, [%e00]
retum m; LL2: sethi %hi(3), Yool FuncName: main
1 or %ol %lo(j), %eol signature: Low
1d [%a00], %0l precondition : -
cmp %ol, 0 postcondition: %ol: Low
(a) bne L3 global_section: 1: Low, j : Low.k : High, 1: Low
sethi %ohi(k), %eol m: Low
or Yeol, Yolo(k), Yool (c)

Fig. 2: (a): An example source program; (b): Theesponding SPARC program; (c): The typing speatfan

SPARC PCC-SIF makes several assumptions abowabunter (security context), the label (if any), tbp-
the target programs. For example, SPARC PCC-SlEode and the operands. Abstract state window shows
assumes that: (1) Program behavior is insensibiveui  the final security levels of registers, stack lomag and
operations e.g., no-ops instructions; (2) The lasmemory locations.
instruction in the program is return instructior8) ( IFD tree window shows the control dependence
Calling conventions. For example a caller functionregions of each function in the program. IPD stack
passes parameters to the called function througgt af  window shows the addresses of the branches of
registers %00-%06 and receives the result valueonditional jump instructions. Global offset windasv
through %00 register. A register %07 is reservedife  for tracing the security levels of global variabéasl for
return address. tracing the pointers. To trace the order of thecatien

The inputs of SPARC PCC-SIF are two text files:in step by step verification mode the user canthee
the SPARC assembly program file and theexecution traces window. The last window is
specifications file. The source C program (Fig. 2a)verification conditions window, which shows the
consists of one function, main. The program mosdlifie results of the verification process. Upon complgtime
the value of the variable m based on the value oferification process the content of the verificatio
variables i and k and returns the modified valuere T conditions window can be saved into “.elf” file and
corresponding SPARC assembly program text file issubmitted to Twelf system.
shown in Fig. 2b. The content of specification®,fil The general information Panel gives some
shown in Fig. 2c, states that the function main has information about the code, the number of different
input parameters, has security signature Low andonditions generated, the time elapsed for the
returns a low-security value. The global variabjgsk,  verification process. The user can performs steptby
I and m have respectively the security levels Lioay, verification process and can also traces the irgdiate
High, Low and Low. states.

Figure 3 shows the window interface of SPARC Figure 4 shows the results of the verification of
PCC-SIF with the input file (Fig. 2b) and specifioas = SPARC assembly program (Fig. 2b). Note that the
file (Fig. 2c). The code window shows the programresults are intermediate and thus not sufficierugh
being verified and specification window shows theto decide whether the program being verified isusec
contents of specification file given by the useheT or not. In fact, the task of this step of verificat is to
abstract execution window contains an abstract $tet  collect the verification conditions that will beldered
each instruction of the code. Each line the infdfoma to Twelf system to verify. Figure 5 shows the
that describes the execution state: The instrudtipn verification conditions to be submitted to Twelf
the basic block, the security level of the programtheorem prover to generate their proofs.
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Proof Carrying Code for Secure Information Flow Analysi
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Fig. 4: Verification of SPARC assembly program aj.R2b
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Table 2: Characteristics of test cases and nunftssanirity conditions
Program 1 Program 2 Program 3 Program 4 Prograndgram 6 Program 7 Program 8 Program 9 Program 10

LOC 52 63 76 80 139 169 172 261 428 779
Verification condition 0.016 0.016 0.015 0.016 @03 0.078 0.094 0.079 0.156 0.344
generation
Proof generation 0.030 0.025 0.016 0.032 0.015 40.02 0.045 0.026 0.420 0.630
and checking
Total (sec) 0.046 0.041 0.031 0.048 0.046 0.102 39.1 0.105 0.576 0.974

%% Verification condition of Function: main sIc ; exp.

%% Line : 16 st %g0, [%00] PC - exp.

SE:_: Sxp. ref: exp.

E;f. e:i ™m: exp.

m :.exp?. A1 - pf(haslevel sre Low).

21 : pf (haslevel src Low). A2 - pf (haslevel PC High).

22 : pf (haslevesl PC High). A3 - pf (haslevel ref Low).

23 : pf (haslevel ref Low). A4 - pf (haslevel rm Low).

24 : pf (haslevel rm Low). asolve

Eso0lve 5 r.'.*H:pr(secL;re‘.'IRITI-] src PC ref rm). pf (secureWRITE sre PC ref rm).

%% Line : 22 st %ol, [F00] . ) )

sre o exp. [Closing file example. elf]

BC : exp. example.elf:13.2-13 .49 Error:

ref : exp. No solution to %esolve found

m o eHp. %% ABORT %%

21 : pf (haslevel src High).

(
22 : pf (haslevel PC High). . - . " .
33 : pf (haslevel ref Low). Fig. 6: Verification conditions file of SPARC assem

24 : pf (haslevel rm Low) . : H

%solve SBW :pf(secureWRITE src PC ref rm). prOgram flle Of Flg 2b

2% Lins : 34 st %o0l, [%00]

e :enn tool are two files: An LF signature for reasonirgpat

ref : exp. secure information flow in SPARC assembly programs

rm I €Xp. . .. . pe . .

21 - pf (haslevel src Low). and the file containing the verification conditions
pf |

22 : pf (haslevel EC Low) . generated by SPARC PCC-SIF tool. Based on the

23 : pf (haslevel ref High). A .

24 : pf (haslevel rm Kigh) . signature given, the Twelf theorem prover attenipts

%solve SRW :pf(secureWRITE src PC ref rm). . e . s .

%% Line : 40 st Sol, [200] verify the verification conditions and generategirth

2o ewpn detailed proofs.

e Figure 6 shows the result of proving the

AL : pf (haslevel szc Tow). verification conditions by Twelf theorem prover. We

22 i pf (haslevel PC Low). L.

a3 @ pf (haslevel ref High). R can see that the program is insecure as the theorem

24 : pf (haslevel rm High)lve SRW : pf (secureWRITE . . .

SICPCTST M. o (3001 prover fails to generate its security proofs andreb

sro : exp. o the theorem proving. By a visual inspection of the

PC : . .

rof : oup. corresponding source program we can see that a low-

a1 : pf (naslevel src Low. security variable m has been assigned values in- hig

a3 RS (Aol T security region which may reveal information abtiuet

T T e e ke et . value of high-security variable k.

R uine ;22 ret SPARC PCC-SIF tool is applied to few case

Ietralue ¢ ocm. studies. The programs that are used as test cases a

Al : pf (haslevel retValue Low). written to reflect the desired program property for

EZ : pf (haslevel postcond Low) . . . .

%50lve SR:pf(secureRET main postcond retvalue) . which the security tool verifies the assembly pavgs

for (i.e., non-interference property). All case dstu
Fig. 5: Verification conditions file of SPARC programs are written in C language and compiledh wit
assembly program file of Fig. 2b GCC compiler (Version 2.953)
Table 2 summarizes the time required to verify
The inputs of the Twelf tool are two files: an LF each program for secure information flow on a 2HzG
signature for reasoning about secure informatiow fl Intel machine with 1GB memory. The times include th
in SPARC assembly programs and the file containindime for scanning the program and producing
the verification conditions generated by SPARC PCCuverification condition for it, generating the precdénd
SIF tool. Based on the signature given, the Twelfchecking the proofs. The time to verify these case
theorem prover attempts to verify the verification studies ranges from 31 milliseconds to 1 sec. Adbfs
conditions and generates their detailed proofs. are obtained within fractions of a second.
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For the case studies programs 3, 5 and 9 the time fMemory aliasing between memory locations cannot be
generating and checking the proofs are also shaen e easily reason about. Memory aliasing refers to the
though the theorem prover fails to generates prmfs situation in which two pointers point to same meynor

them. The Twelf theorem prover aborts the theoremocation.

proving operation once
predicate for which there is no proof derivatiorthin
the given logic program.

DISCUSSION

it encounters a security

Implications: An important feature of the proposed
tool is that it certifies assembly programs gerestdty
general-purpose off-the-shelf compilers. This githes
code producers flexibility in the choice of the hilgvel
language, in which programs are written and allows

In absence of a reliable protection mechanism thaénd-users to check a wide Variety of programs hod t

can verify if a piece of downloaded code maintainsthe tool

can be used effectively for protecting

confidentiality end-users may avoid executing theconfidentiality. As our technique checks only theput
code due to the concern that it may leak confidgénti of the compiler, it eliminates the dependence ofisy
data. While it protects end-users, this strategychecking results on the correctness of the comgpliter

however prevents them to benefit from the richrafss
the web.

There are two ideas for utilizing secure informoati
flow analysis for protecting data confidentiality.

Idea 1: Developing Secure Software. In this idea secure

information flow analysis is used to help in deiegt
unauthorized

It could be used as a static analysis tool thatssgiee

potential leakage and alerts the programmer who wil

respond by rewriting the program in such that ieyb
the information flow policy. Here, secure infornuati
flow analysis can be carried out on source code.

Idea 2: Preventing Malicious Programs. The idea her
is to use the secure information flow analysis as a

information flows when writing the
program and thus helps in developing secure soétwar

addition, it leads to separating of security polfoym

the source language, which in turn, enables thee cod
consumer to extend the security properties against
which the untrusted code is checked.

CONCLUSION

We have presented a security technique that allows
the verification of assembly programs for secure
information flow. The tool SPARC PCC-SIF was
developed and is based on the concept of proofiogrr
code and provides an automatic verification of SEAR
assembly programs for secure information flow. To
perform the secure information flow verification igt

dequired that all variables in the program are eissed

with security levels. The presence of explicit geothat

analyzer to verify the security of untrusted mobile@'€ generated and checked provides distrustfulsuser

programs. A piece of untrusted code is analyzeth wit With @ strong guarantee of protecting confidertiali
the goal of establishing its security. If the mebil making them more confident in the security techaiqu

program has been proved secure, then it is allowed a@nd the tool.
execute, otherwise its execution is stopped. Here,

secure information flow analysis is carried out the
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