
Journal of Computer Science 5 (2): 163-171, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Abdulrahman Muthana, Malaysian Institute of Microelectronic Systems Berhad,
 Technology Park Malaysia, Kuala Lumpur 57000, Malaysia

163

Proof-Carrying Code Based Tool for Secure Information

Flow of Assembly Programs

1Abdulrahman Muthana, 2Abdul Azim Abd Ghani, 1Ramlan Mahmod and 2Hasan Selamat
1Malaysian Institute of Microelectronic Systems Berhad,

Technology Park Malaysia, Kuala Lumpur 57000, Malaysia
2Faculty of Computer Science and Information Technology,

University Putra Malaysia, Serdang, Selangor 43400, Malaysia

Abstract: Problem statement: How a host (the code consumer) can determine with certainty that a
downloaded program received from untrusted source (the code producer) will maintain the
confidentiality of the data it manipulates and it is safe to install and execute. Approach: The approach
adopted for verifying that a downloaded program will not leak confidential data to unauthorized parties
was based on the concept of Proof-Carrying Code (PCC). A mobile program (in its assembly form)
was analyzed for information flow security based on the concept of proof-carrying code. The security
policy was centered on a type system for analyzing information flows within assembly programs based
on the notion of noninterference. Results: A verification tool for verifying assembly programs for
information flow security was built. The tool certifies SPARC assembly programs for secure
information flow by statically analyzing the program based on the idea of Proof-Carrying Code (PCC).
The tool operated directly on the machine-code requiring only the inputs and outputs of the code
annotated with security levels. The tool provided a windows user interface enabling the users to control
the verification process. The proofs that untrusted program did not leak sensitive information were
generated and checked on the host machine and if they are valid, then the untrusted program can be
installed and executed safely. Conclusion: By basing proof-carrying code infrastructure on
information flow analysis type-system, a sufficient assurance of protecting confidential data
manipulated by the mobile program can be obtained. This assurance was come due to the fact that type
systems provide a sufficient guarantee of protecting confidentiality.

Key words: Proof-carrying code, secure information flow, assembly language, non-interference

INTRODUCTION

 Recent years have witnessed a growing interest of
information flow security analysis due to their
connection to the problem of protecting confidential
data. The confidentiality policy concerns multi-level
security systems. It states that secret data must be
protected during the computation and there should be
no leakage of that data through public output channel.
 Information flow security is formalized as non-
interference, which states that final values of low-
security variables must be independent of initial high-
security variables[1]. Information flow security analysis
verifies if a program respects certain confidentiality
policy. Denning and Denning[2] were first to perform
static information flow analysis for checking programs
for confidentiality.
 Unfortunately, despite a long history, relatively
less interest has been given to low-level languages[3].

Some prevalent trends in software call for techniques to
certify machine-code for secure information flow.
Among them, dynamic extensibility, where a trusted
computing system is extended by importing and
executing untrusted mobile code. For example, web
browsers plug-ins and operating systems extensions.
 Some of research works have studied secure
information flow in low-level languages. A low-level,
secure calculus that use linear continuations guarantees
non-interference property is presented in[6]; however the
language is not an assembly language as it has if-then-
else structure and has no registers. Recent research
works[8-10] studied extending Typed Assembly
Language (TAL) with information flow property in
order to enforce non-interference in RISC-style
assembly programs.
 Information flow security analysis of Java
bytecode has been studied by several authors. An
information flow type system for a simplified version of

J. Computer Sci., 5 (2): 163-171, 2009

164

JVM language is developed in[11] and later for an
extended fragment of JVM language in[12]. Besides[13],
proposed a technique for information flow analysis of
Java bytecode using Boolean functions. Methods based
on model checking are used for certifying Java
applets[14] and a refined technique of[14] is presented
in[15] for a subset of JVML. In[16] an approach is
proposed for information flow analysis of Java
bytecode similar to type-level abstract interpretation
used in standard Java bytecode verification and a tool
for Java bytecode verification for secure information
flow is developed. In[17], the authors developed a
semantics based tool for information flow analysis of
tack-based assembly language.
 This study shows how to determine statically
whether it is safe to install and execute a downloaded
untrusted code on a host machine. It presents a security
analysis technique for certifying assembly programs
generated by off-the-shelf compilers for secure
information flow based on the concept of Proof-
Carrying Code (PCC)[4]. The downloaded code is
analyzed based on an information flow type system and
security conditions are generated. Proofs of the security
conditions are then generated and checked on the host
machine by the code consumer's system. If the proofs
are valid, the untrusted code can be installed and
executed safely.
 The researches[8-10] assume existence of special
compilers (certifying compilers) that generate the target
assembly languages through a trusted compilation. In
contrast, the proposed security technique operates
directly on assembly language programs generated by
general-purpose off-the-shelf compilers. Moreover,
abovementioned techniques do not produce explicit
proofs for the programs acceptable by such techniques.
The most prominent difference between the proposed
security analysis technique and techniques of[11-17] is
that they treat a stack-based assembly language which
is much different from RISC architecture. Furthermore,
none of the works[11-17] produces explicit machine-
checkable proofs of confidentiality conformance.

Proof-carrying code for secure information flow:
The security analysis technique we adopt to verifying
secure information flow is based on the concept of
proof-carrying code[4]. The information flow security
analysis is divided into four phases: developing
information flow policy, generating the verification
conditions, generating the proofs and checking the
proofs. The proposed security analysis techniques
consider RISC-style assembly language, SAL[4].
 First, information flow analysis type system that
defines the authorized information flows within SAL
assembly programs and serves as the basis of the

security analysis technique is defined[5]. Then we
identify for each conditional instruction the set of
instructions that execute under its control condition.
The set of these instructions constitutes what is called
the control dependence region CDR. Every conditional
instruction has a control dependence region. We use the
notion of control flow graph and the notion of
postdomination to identify control dependence
regions[19]. The body of a given function F consists of a
set of basic blocks B, denoted as BBF. The control flow
graph of function F is a directed graph (N, E), where
N = BBF the set of nodes and E ⊆ N × N, the set of
edges. For two basic blocks Bi and Bj we say that Bj
postdominates Bi, denoted by Bj= pdom (Bi), if Bi ≠ Bj

and Bj is on every path from Bi to exit node and that Bj
immediately postdominates Bi, denoted by Bj = ipd(Bi),
if B i

≠ Bj and there is no node Bk such that Bk = pdom(Bi)

and Bj = pdom(Bk).
 The security type system is parameterized with
abstract functions: Region, ipd and propagate. The
function region(i) identifies the control dependence
region of a conditional branch instruction at address i.
The function ipd(i) returns the address of the instruction
that is immediately executed after exiting from region (i),
thus, representing the immediate postdominator of
instruction at address i. Finally, the function propagate
(region, security level) updates the security context of
instructions of a given region into a given security level.
We use a stack, which is called immediate postdominator
IPD, to handle implicit information flow by storing the
regions and their immediate postdominators.
 Second, the verification condition generator VCG
executes the assembly program P abstractly (operating
on security levels instead of actual values) one function
at a time based on typing rules of the security type
system. Each class of instructions has a corresponding
rule and the VCG builds an abstract state obtained by
abstractly executing of an instruction by applying of its
rule. The state of abstract executor is defined by a triple
AE(i, σ, so), where i is the value of program counter
referring to the instruction to be executed next, σ: R→L
is an abstract register state which is a mapping from
registers names to security levels from a security lattice
L; σ(pc) is the security context of current instruction
and so is the stack offset.
 The abstract executor starts executing the body of
function F with an initial state:

AEF(i0, σ0, so0)

Where:
F = The function being executed
i0 = 0, the value of program counter referring to

the first instruction in function F

J. Computer Sci., 5 (2): 163-171, 2009

165

σ0 = PreF, the initial abstract register state,
initialized to the security levels as specified by
precondition, PreF

so0 = ArgF, the stack offset is initialized with the
arguments of function F, ArgF

σ0(pc) = SigF, the security context is initialized to the
security level assigned to function F, SigF. The
security level, SigF, is initially propagated as a
security context for all instructions in
function F

 IPD stack is empty.
 For arithmetic and logical operations, memory
reading instruction (load) and instructions of moving
data between registers or between registers and stack
locations the abstract executor updates abstract register
state by mapping the destination register into the least
upper bound of the security levels of source operands
taking into accounts the current security context. In the
case of conditional branch, both branches are abstractly
executed. The least upper bound of the security levels
of the conditional register and the current security
context is propagated through the conditional region as
a security context for all instructions that are executed
under the control of conditional expression. For
memory write, function calls and functions returns
instructions, the VCG constructs a proper verification
condition and sends it to the theorem prover to verify.
The verification conditions are encoded as LF terms[20].
 Third, to prove the verification conditions
generated by the VCG we use a theorem prover for
first-order predicate logic, which is also able to
generate their detailed proofs. Based on the logic that
the host machine specifies, the theorem prover attempts
to prove the verification conditions emitted by the VCG
and generates their detailed proofs. Theorem proving
process is guided by a logic program that describes the
absence of illegal information flows in the assembly
code. The logic program includes a set of proof rules,
which are logical translation of security typing rules.
 Fourth, after proving the verification conditions by
the theorem prover, their proofs are validated by a proof
checker for validation. The proof checker component
verifies that the proofs generated by the theorem prover
are indeed valid and pertaining to the verification
conditions generated by the VCG. If the proofs are
valid then the untrusted program is considered secure
and can be installed and executed safely on the host
machine.

Information flow model: We assume a two-point
security lattice L = {Low, High}, partially ordered by
⊑, where Low ⊑ High; Low stands for low-security

data and High for high-security data. A program P is
defined as a pair (I, V) where I denotes instructions and
V denotes the variables. V is partitioned into a set of
low-security variables VLow and a set of high-security
variables VHigh.

Non-interference: A program P = (I, V) is secure if,
starting form two initial memories which agree on the
values of the variables VLow, the program P terminates
with two final memories which agree on the values of
the variables VLow.
 The above definition ensures that the final values
of low-security variables are independent of the initial
values of high-security variables. Secure information
flow is formalized as non-interference[1], which states
that the values of high-security do not interfere (affect)
the values of low-security variables.

MATERIALS AND METHODS

 A tool was developed to demonstrate the
practicality of the proposed security system. The tool
certifies SPARC assembly programs for secure
information flow. The following software and tools are
used. Visual Basic 6: A programming tool, which is
used to develop the prototype implementation of the
proposed security system. GNU GCC C Compiler[7]:
compiles C programs into executables for SPARC
platforms. Disassembler: Disassembles the executable
file produced by the GCC compiler into SPARC
assembly language. An alternative option to produce
SPARC assembly program directly is to use the option-
S with GCC compiler. Emacs Text Editor: edits the
Twelf signature, which encodes the object logic. Twelf
System: A tool for experimentation in the theory of
programming languages and logics[18]. It relies on LF
type theory and the principle of judgments-as-types for
specifications.

RESULTS

 The main result of this study is a security technique
for verifying assembly programs for secure information
flow. To make all the components and concepts of the
proposed security technique more concrete, a tool,
which is called SPARC PCC-SIF, was developed for
verifying SPARC assembly programs for secure
information flow based on the proposed security
approach. The tool enables the code consumer to ensure
that only the programs that satisfy the confidentiality
policy are allowed to execute. A satisfaction of
confidentiality means that a program has secure
information flow. The information flow property is

J. Computer Sci., 5 (2): 163-171, 2009

166

formalized based on the notion of non-interference.
Thus, the purpose of the tool is to check whether the
received program has non-interference property.
 Most important high-level characteristics of the
proposed tool are (1) It operates directly on machine-
code; (2) It enforces information flow policy, namely
non-interference policy on SPARC assembly programs;
(3) It generates explicit machine-checkable security
proofs (certificate) for SPARC assembly programs that
are proved secure.
 The tool is thus can be regarded as an instance of
the security analysis for checking secure information
flow of SPARC programs. All components of the
security analysis technique are adapted to work on
SPARC assembly language. The adapting is a
straightforward and quite easy since both SAL and
SPARC are RISC architectures.
 Table 1 shows the translation from SAL to
SPARC. Obviously, there is a one to one
correspondence between instructions of SAL and
SPARC, which facilitates adapting the security
technique for SPARC. The instance of SAL has 32
general purpose registers mapped to SPARC registers.
In addition the register r15 (%O7) in SPARC is mapped
to SAL register “ra”. In 32-bit instance of SAL the base
values range between -215 to 215-1 and in 64-bit instance
of SAL the base values range between -263 to 263-1.
 A program P is a sequence of SPARC instructions
I, P = <I>, consisting of functions each of which is a
sequence of SPARC instructions. Furthermore, each
program P has a function “main”. The operational
semantics of SPARC language is defined as a triple (I,
M, R), where I is the value of the program counter, M is
the memory representing the state of memory locations
(program variables) and R represents the current state
of registers including stack locations (local variables).

Table 1: The translation table from SAL to SPARC architecture

SAL SPARC

r = n mov n, r
r = r' mov r', r
r2 = r1 add n add r1, n, r2
r3 = r1 add r2 add r1, r2, r3
jump label jmp label
r = r1 eq n cmp r1, n
jfalse r, label bne label
r = r1 eq r2 cmp r1, r2

jfalse r, label bne label
ra = pc+1 call F call F
ret ret
r = M[r'] ld [r'], r
M[r'] = r st r, [r']
r = M[sp+n] ld [sp+n], r
M[sp+n] = r st r, [sp+n]
sp = sp+n save sp, n, sp

The operational semantics is given in terms of resulting
state obtained after executing each instruction. It is
clear that SAL and SPARC language are also
semantically equivalents.
 Figure 1 shows the high level structure of the tool.
It consists of a number of components: Control
Dependence Region Calculator, Verification Condition
Generator (VCG), Checker module, which includes
Theorem Prover and Proof Checker.

Control dependence regions calculator: Extracts
functions, identifies basic blocks, performs
intraprocedural control flow analysis, computes control
dependence regions CDR for conditional branches and
stores the information about CDR in IFD table.

Verification condition generator module: Performs
an abstract execution on the code based on the typing
rules and initial annotations one function at a time.
The verification condition generator begins the
execution of the program code starting from function
“main”. The execution continues until the return
instruction is encountered or the VCG reaches an
already executed instruction. For each instruction, the
VCG builds an abstract state. VCG produces
verification conditions for the actions: function calls
and returns, memory write instructions. The
verification conditions and their assumptions are
represented as LF terms and saved in a file.

Checker module: The Twelf system[18] is the checker
module. The object logic is encoded as an LF signature.
The signature is loaded along with a verification
condition file produced by the verification condition
generator module. The Twelf theorem prover generates
the proof’s derivations that are to be type-checked later
on by Twelf type-checker. If all proofs are well typed,
untrusted program can be executed safely in the code
consumer’s computing system.

Fig. 1: High-level structure of secure information

flow tool

J. Computer Sci., 5 (2): 163-171, 2009

167

Fig. 2: (a): An example source program; (b): The corresponding SPARC program; (c): The typing specification

 SPARC PCC-SIF makes several assumptions about
the target programs. For example, SPARC PCC-SIF
assumes that: (1) Program behavior is insensitive to null
operations e.g., no-ops instructions; (2) The last
instruction in the program is return instruction; (3)
Calling conventions. For example a caller function
passes parameters to the called function through a set of
registers %o0-%o6 and receives the result value
through %o0 register. A register %o7 is reserved for the
return address.
 The inputs of SPARC PCC-SIF are two text files:
the SPARC assembly program file and the
specifications file. The source C program (Fig. 2a)
consists of one function, main. The program modifies
the value of the variable m based on the value of
variables i and k and returns the modified value. The
corresponding SPARC assembly program text file is
shown in Fig. 2b. The content of specifications file,
shown in Fig. 2c, states that the function main has no
input parameters, has security signature Low and
returns a low-security value. The global variables i, j, k,
l and m have respectively the security levels Low, Low,
High, Low and Low.
 Figure 3 shows the window interface of SPARC
PCC-SIF with the input file (Fig. 2b) and specifications
file (Fig. 2c). The code window shows the program
being verified and specification window shows the
contents of specification file given by the user. The
abstract execution window contains an abstract state for
each instruction of the code. Each line the information
that describes the execution state: The instruction id,
the basic block, the security level of the program

counter (security context), the label (if any), the op-
code and the operands. Abstract state window shows
the final security levels of registers, stack locations and
memory locations.
 IFD tree window shows the control dependence
regions of each function in the program. IPD stack
window shows the addresses of the branches of
conditional jump instructions. Global offset window is
for tracing the security levels of global variables and for
tracing the pointers. To trace the order of the execution
in step by step verification mode the user can use the
execution traces window. The last window is
verification conditions window, which shows the
results of the verification process. Upon completing the
verification process the content of the verification
conditions window can be saved into “.elf” file and
submitted to Twelf system.
 The general information Panel gives some
information about the code, the number of different
conditions generated, the time elapsed for the
verification process. The user can performs step-by-step
verification process and can also traces the intermediate
states.
 Figure 4 shows the results of the verification of
SPARC assembly program (Fig. 2b). Note that the
results are intermediate and thus not sufficient enough
to decide whether the program being verified is secure
or not. In fact, the task of this step of verification is to
collect the verification conditions that will be delivered
to Twelf system to verify. Figure 5 shows the
verification conditions to be submitted to Twelf
theorem prover to generate their proofs.

J. Computer Sci., 5 (2): 163-171, 2009

168

Fig. 3: User interface of the SPARC PCC-SIF tool

Fig. 4: Verification of SPARC assembly program of Fig. 2b

J. Computer Sci., 5 (2): 163-171, 2009

169

Table 2: Characteristics of test cases and number of security conditions
 Program 1 Program 2 Program 3 Program 4 Program 5 Program 6 Program 7 Program 8 Program 9 Program 10
LOC 52 63 76 80 139 169 172 261 428 779
Verification condition 0.016 0.016 0.015 0.016 0.031 0.078 0.094 0.079 0.156 0.344
generation
Proof generation 0.030 0.025 0.016 0.032 0.015 0.024 0.045 0.026 0.420 0.630
and checking
Total (sec) 0.046 0.041 0.031 0.048 0.046 0.102 0.139 0.105 0.576 0.974

Fig. 5: Verification conditions file of SPARC

assembly program file of Fig. 2b

 The inputs of the Twelf tool are two files: an LF
signature for reasoning about secure information flow
in SPARC assembly programs and the file containing
the verification conditions generated by SPARC PCC-
SIF tool. Based on the signature given, the Twelf
theorem prover attempts to verify the verification
conditions and generates their detailed proofs.

Fig. 6: Verification conditions file of SPARC assembly

program file of Fig. 2b

tool are two files: An LF signature for reasoning about
secure information flow in SPARC assembly programs
and the file containing the verification conditions
generated by SPARC PCC-SIF tool. Based on the
signature given, the Twelf theorem prover attempts to
verify the verification conditions and generates their
detailed proofs.
 Figure 6 shows the result of proving the
verification conditions by Twelf theorem prover. We
can see that the program is insecure as the theorem
prover fails to generate its security proofs and aborts
the theorem proving. By a visual inspection of the
corresponding source program we can see that a low-
security variable m has been assigned values in high-
security region which may reveal information about the
value of high-security variable k.
 SPARC PCC-SIF tool is applied to few case
studies. The programs that are used as test cases are
written to reflect the desired program property for
which the security tool verifies the assembly programs
for (i.e., non-interference property). All case study
programs are written in C language and compiled with
GCC compiler (Version 2.95.3)[7].
 Table 2 summarizes the time required to verify
each program for secure information flow on a 2.4 GHz
Intel machine with 1GB memory. The times include the
time for scanning the program and producing
verification condition for it, generating the proofs and
checking the proofs. The time to verify these case
studies ranges from 31 milliseconds to 1 sec. All proofs
are obtained within fractions of a second.

J. Computer Sci., 5 (2): 163-171, 2009

170

For the case studies programs 3, 5 and 9 the time for
generating and checking the proofs are also shown even
though the theorem prover fails to generates proofs for
them. The Twelf theorem prover aborts the theorem
proving operation once it encounters a security
predicate for which there is no proof derivation within
the given logic program.

DISCUSSION

 In absence of a reliable protection mechanism that
can verify if a piece of downloaded code maintains
confidentiality end-users may avoid executing the
code due to the concern that it may leak confidential
data. While it protects end-users, this strategy;
however prevents them to benefit from the richness of
the web.
 There are two ideas for utilizing secure information
flow analysis for protecting data confidentiality.

Idea 1: Developing Secure Software. In this idea secure
information flow analysis is used to help in detecting
unauthorized information flows when writing the
program and thus helps in developing secure software.
It could be used as a static analysis tool that spots the
potential leakage and alerts the programmer who will
respond by rewriting the program in such that it obeys
the information flow policy. Here, secure information
flow analysis can be carried out on source code.

Idea 2: Preventing Malicious Programs. The idea here
is to use the secure information flow analysis as an
analyzer to verify the security of untrusted mobile
programs. A piece of untrusted code is analyzed with
the goal of establishing its security. If the mobile
program has been proved secure, then it is allowed to
execute, otherwise its execution is stopped. Here,
secure information flow analysis is carried out on the
machine code (assembly code). Our research work
subsumes under this category. It is obvious that
analyzing machine code is much more difficult than
analyzing the source code.

Issues with information flow checking of assembly
programs: To perform information flow analysis of
assembly programs, the issues we face include: (1)
Reuse of registers: a register holds values of different
variables at different program points; registers cannot
be assigned fixed security levels; (2) Assembly
programs lack the high-level control flow structures,
which may present in source programs and are
necessary for tracking implicit information flows; this
calls for a mechanism to retrieve such structures; (3)

Memory aliasing between memory locations cannot be
easily reason about. Memory aliasing refers to the
situation in which two pointers point to same memory
location.

Implications: An important feature of the proposed
tool is that it certifies assembly programs generated by
general-purpose off-the-shelf compilers. This gives the
code producers flexibility in the choice of the high-level
language, in which programs are written and allows
end-users to check a wide variety of programs and thus
the tool can be used effectively for protecting
confidentiality. As our technique checks only the output
of the compiler, it eliminates the dependence of security
checking results on the correctness of the compiler. In
addition, it leads to separating of security policy from
the source language, which in turn, enables the code
consumer to extend the security properties against
which the untrusted code is checked.

CONCLUSION

 We have presented a security technique that allows
the verification of assembly programs for secure
information flow. The tool SPARC PCC-SIF was
developed and is based on the concept of proof-carrying
code and provides an automatic verification of SPARC
assembly programs for secure information flow. To
perform the secure information flow verification it is
required that all variables in the program are associated
with security levels. The presence of explicit proofs that
are generated and checked provides distrustful users
with a strong guarantee of protecting confidentiality
making them more confident in the security technique
and the tool.

REFERENCES

1. Goguen, J.A. and J. Meseguer, 1982. Security

policies and security models. Proceedings of IEEE
Symposium on Security and Privacy, (SCP’ 82),
IEEE Computer Society, USA., pp: 11-20.
http://doi.ieeecomputersociety.org/10.1109/SP.198
2.10014

2. Denning, D.E. and P.J. Denning, 1977.
Certification of programs for secure information
flow. Commun. ACM., 20: 504-513.
http://doi.acm.org/10.1145/359636.359712

3. Sabelfeld, A. and A. Myers, 2003. Language-based
information-flow security. IEEE J. Selected Areas
Commun., 21: 5-19. DOI:
10.1109/JSAC.2002.806121

J. Computer Sci., 5 (2): 163-171, 2009

171

4. Necula, G., 1997. Proof-carrying code.
Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, Jan. 15-17,
Paris, France, pp: 106-119.
http://doi.acm.org/10.1145/263699.263712

5. Muthana, A., A.A. Ghani, M. Ramlan and H. Selamat,
2007. Information flow type system for proof
carrying code. Int. J. Comput. Sci. Network Secur.,
7: 177-184.

 http://paper.ijcsns.org/07_book/200707/20070724.pdf
6. Zdancewic, S. and A. Myers, 2002. Secure

information flow via linear continuations. Higher-
Order Symbol. Comput., 15: 209-234.
http://www.cis.upenn.edu/~stevez/papers/ZM02.pdf

7. Woehr, J., 1994. What's GNU? Embed. Syst.
Program., 7: 70-72, 74.

8. Bonelli, E., A. Compagnoni and R.Medel, 2004.
SIFTAL: A typed assembly language for secure
information flow analysis. Technical report,
Stevens Institute of Technology, Hoboken, NJ.
http://www.cs.stevens.edu/~abc/publications/siftal
Long.ps

9. Medel, R., A. Compagnoni and E. Bonelli, 2005.
Non-interference for a typed assembly language.
Proceedings of 2005 Workshop on Foundations of
Computer Security, May 13-13, Chicago, IL.,
pp: 1-12.

 http://www.cs.stevens.edu/~abc/publications/sifon.
pdf

10. Yu, D. and N. Islam, 2006. A typed assembly
language for confidentiality. Lecture Notes
Comput. Sci., 3924: 162-179. DOI:
10.1007/11693024_12

11. Barthe, G., A. Basu and T. Rezk, 2004. Security
types preserving compilation. Proceedings of the
5th International Conference on Verification,
Model Checking and Abstract Interpretation, Jan. 11-
13, Venice, Italy, pp: 2-15. http://www.msr-
inria.inria.fr/~rezk/publication/Barthe-Basu-Rezk.php

12. Barthe, G. and T. Rezk, 2005. Non-interference for
a JVM-like language. Proceedings of the 2005
ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation, Jan.
10-10, ACM Press, New York, USA., pp: 103-112.
http://doi.acm.org/10.1145/1040294.1040304

13. Genaim, S. and F. Spoto, 2005. Information flow
analysis for java bytecode. Proceeding of the 6th
International Conference on Verification, Model
Checking and Abstract Interpretation, Feb. 4-4,
Springer, Paris, France, pp: 346-362. DOI:
10.1007/b105073

14. Bieber, P., J. Cazin, V. Wiels, G. Zanon, P. Girard
and J.L. Lanet, 2002. Checking secure interactions
of smart card applets: Extended version. J.
Comput. Secur., 10: 369-398.
http://iospress.metapress.com/content/vb59hrkba34
d8nm0/

15. Bernardeschi, C. and N. Francesco, 2002.
Combining abstract interpretation and model
checking for analysing security properties of Java
bytecode. Proceedings of Verification, Model
Checking and Abstract Interpretation, Jan. 21-22,
Venice, Italy, pp: 1-15.
http://portal.acm.org/citation.cfm?id=646541.6961
78&coll=GUIDE&dl=

16. Avvenuti, M., C. Bernardeschi and F. Francesco,
2003. Java bytecode verification for secure
information flow. ACM SIGPLAN Notic., 38: 20-27.
http://doi.acm.org/10.1145/966051.966055

17. Bernardeschi, C., N. De Francesco and G. Lettieri,
2002. An abstract semantics tool for secure
information flow of stack-based assembly
programs. Microprocess. Microsyst., 26: 391-398.
DOI: 10.1016/S0141-9331(02)00064-9

18. Pfenning, F. and C. Schurmann, 1999. System
description: Twelf: A meta-logical framework for
deductive systems. Proceedings of the 16th
International Conference on Automated Deduction,
Jan. 7-10, Springer, Berlin, pp: 202-206.
http://portal.acm.org/citation.cfm?id=648235.753634

19. Ball, T., 1993. What's in a region? Or computing
control dependence regions in near-linear time for
reducible control flow. ACM Lett. Program.
Languages Syst., 2: 1-16.
http://doi.acm.org/10.1145/176454.176456

20. Harper, R., F. Honsell and G. Plotkin, 1993. A
framework for defining logics. J. Assoc. Comput.
Mach., 40: 143-184.
http://doi.acm.org/10.1145/138027.138060

