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Abstract: Problem statement: How a host (the code consumer) can determine with certainty that a 
downloaded program received from untrusted source (the code producer) will maintain the 
confidentiality of the data it manipulates and it is safe to install and execute. Approach: The approach 
adopted for verifying that a downloaded program will not leak confidential data to unauthorized parties 
was based on the concept of Proof-Carrying Code (PCC). A mobile program (in its assembly form) 
was analyzed for information flow security based on the concept of proof-carrying code. The security 
policy was centered on a type system for analyzing information flows within assembly programs based 
on the notion of noninterference.  Results: A verification tool for verifying assembly programs for 
information flow security was built. The tool certifies SPARC assembly programs for secure 
information flow by statically analyzing the program based on the idea of Proof-Carrying Code (PCC). 
The tool operated directly on the machine-code requiring only the inputs and outputs of the code 
annotated with security levels. The tool provided a windows user interface enabling the users to control 
the verification process. The proofs that untrusted program did not leak sensitive information were 
generated and checked on the host machine and if they are valid, then the untrusted program can be 
installed and executed safely. Conclusion: By basing proof-carrying code infrastructure on 
information flow analysis type-system, a sufficient assurance of protecting confidential data 
manipulated by the mobile program can be obtained. This assurance was come due to the fact that type 
systems provide a sufficient guarantee of protecting confidentiality. 
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INTRODUCTION 

 
 Recent years have witnessed a growing interest of 
information flow security analysis due to their 
connection to the problem of protecting confidential 
data. The confidentiality policy concerns multi-level 
security systems. It states that secret data must be 
protected during the computation and there should be 
no leakage of that data through public output channel. 
 Information flow security is formalized as non-
interference, which states that final values of low-
security variables must be independent of initial high- 
security variables[1]. Information flow security analysis 
verifies if a program respects certain confidentiality 
policy. Denning and Denning[2] were first to perform 
static information flow analysis for checking programs 
for confidentiality. 
 Unfortunately, despite a long history, relatively 
less interest has been given to low-level languages[3]. 

Some prevalent trends in software call for techniques to 
certify machine-code for secure information flow. 
Among them, dynamic extensibility, where a trusted 
computing system is extended by importing and 
executing untrusted mobile code. For example, web 
browsers plug-ins and operating systems extensions. 
 Some of research works have studied secure 
information flow in low-level languages. A low-level, 
secure calculus that use linear continuations guarantees 
non-interference property is presented in[6]; however the 
language is not an assembly language as it has if-then-
else structure and has no registers. Recent research 
works[8-10] studied extending Typed Assembly 
Language (TAL) with information flow property in 
order to enforce non-interference in RISC-style 
assembly programs. 
 Information flow security analysis of Java 
bytecode has been studied by several authors. An 
information flow type system for a simplified version of 
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JVM language is developed in[11] and later for an 
extended fragment of JVM language in[12]. Besides[13], 
proposed a technique for information flow analysis of 
Java bytecode using Boolean functions. Methods based 
on model checking are used for certifying Java 
applets[14] and a refined technique of[14] is presented 
in[15] for a subset of JVML. In[16] an approach is 
proposed for information flow analysis of Java 
bytecode similar to type-level abstract interpretation 
used in standard Java bytecode verification and a tool 
for Java bytecode verification for secure information 
flow is developed. In[17], the authors developed a 
semantics based tool for information flow analysis of 
tack-based assembly language.  
 This study shows how to determine statically 
whether it is safe to install and execute a downloaded 
untrusted code on a host machine. It presents a security 
analysis technique for certifying assembly programs 
generated by off-the-shelf compilers for secure 
information flow based on the concept of Proof-
Carrying Code (PCC)[4]. The downloaded code is 
analyzed based on an information flow type system and 
security conditions are generated. Proofs of the security 
conditions are then generated and checked on the host 
machine by the code consumer's system. If the proofs 
are valid, the untrusted code can be installed and 
executed safely.   
 The researches[8-10] assume existence of special 
compilers (certifying compilers) that generate the target 
assembly languages through a trusted compilation. In 
contrast, the proposed security technique operates 
directly on assembly language programs generated by 
general-purpose off-the-shelf compilers. Moreover, 
abovementioned techniques do not produce explicit 
proofs for the programs acceptable by such techniques. 
The most prominent difference between the proposed 
security analysis technique and techniques of[11-17] is 
that they treat a stack-based assembly language which 
is much different from RISC architecture. Furthermore, 
none of the works[11-17] produces explicit machine-
checkable proofs of confidentiality conformance.       
 
Proof-carrying code for secure information flow: 
The security analysis technique we adopt to verifying 
secure information flow is based on the concept of 
proof-carrying code[4]. The information flow security 
analysis is divided into four phases: developing 
information flow policy, generating the verification 
conditions, generating the proofs and checking the 
proofs. The proposed security analysis techniques 
consider RISC-style assembly language, SAL[4].    
 First, information flow analysis type system that 
defines the authorized information flows within SAL 
assembly programs and serves as the basis of the 

security analysis technique is defined[5]. Then we 
identify for each conditional instruction the set of 
instructions that execute under its control condition. 
The set of these instructions constitutes what is called 
the control dependence region CDR. Every conditional 
instruction has a control dependence region. We use the 
notion of control flow graph and the notion of 
postdomination to identify control dependence 
regions[19]. The body of a given function F consists of a 
set of basic blocks B, denoted as BBF. The control flow 
graph of  function F is  a directed graph (N, E), where 
N = BBF the set of nodes and E ⊆ N × N, the set of 
edges. For two basic blocks Bi and Bj we say that Bj 
postdominates Bi, denoted by Bj= pdom (Bi), if Bi ≠ Bj 

and Bj is on every path from Bi to exit node and that Bj 
immediately postdominates Bi, denoted by Bj = ipd(Bi), 
if B i

 
≠ Bj  and there is no node Bk such that Bk = pdom(Bi) 

and Bj = pdom(Bk). 
 The security type system is parameterized with 
abstract functions: Region, ipd and propagate. The 
function region(i) identifies the control dependence 
region of a conditional branch instruction at address i. 
The function ipd(i) returns the address of the instruction 
that is immediately executed after exiting from region (i), 
thus, representing the immediate postdominator of 
instruction at address i. Finally, the function propagate 
(region, security level) updates the security context of 
instructions of a given region into a given security level. 
We use a stack, which is called immediate postdominator 
IPD, to handle implicit information flow by storing the 
regions and their immediate postdominators.  
 Second, the verification condition generator VCG 
executes the assembly program P abstractly (operating 
on security levels instead of actual values) one function 
at a time based on typing rules of the security type 
system. Each class of instructions has a corresponding 
rule and the VCG builds an abstract state obtained by 
abstractly executing of an instruction by applying of its 
rule. The state of abstract executor is defined by a triple 
AE(i, σ, so), where i is the value of program counter 
referring to the instruction to be executed next, σ: R→L 
is an abstract register state which is a mapping from 
registers names to security levels from a security lattice 
L; σ(pc) is the security context of current instruction 
and so is the stack offset. 
 The abstract executor starts executing the body of 
function F with an initial state: 
 

AEF(i0, σ0, so0) 
 
Where: 
F = The function being executed 
i0 = 0, the value of program counter referring to 

the first instruction in function F 
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σ0 = PreF, the initial abstract register state, 
initialized to the security levels as specified by 
precondition, PreF 

so0 = ArgF, the stack offset is initialized with the 
arguments of function F, ArgF 

σ0(pc) = SigF, the security context is initialized to the 
security level assigned to function F, SigF. The 
security level, SigF, is initially propagated as a 
security context for all instructions in 
function F 

   
 IPD stack is empty. 
 For arithmetic and logical operations, memory 
reading instruction (load) and instructions of moving 
data between registers or between registers and stack 
locations the abstract executor updates abstract register 
state by mapping the destination register into the least 
upper bound of the security levels of source operands 
taking into accounts the current security context. In the 
case of conditional branch, both branches are abstractly 
executed. The least upper bound of the security levels 
of the conditional register and the current security 
context is propagated through the conditional region as 
a security context for all instructions that are executed 
under the control of conditional expression. For 
memory write, function calls and functions returns 
instructions, the VCG constructs a proper verification 
condition and sends it to the theorem prover to verify. 
The verification conditions are encoded as LF terms[20]. 
 Third, to prove the verification conditions 
generated by the VCG we use a theorem prover for 
first-order predicate logic, which is also able to 
generate their detailed proofs. Based on the logic that 
the host machine specifies, the theorem prover attempts 
to prove the verification conditions emitted by the VCG 
and generates their detailed proofs. Theorem proving 
process is guided by a logic program that describes the 
absence of illegal information flows in the assembly 
code. The logic program includes a set of proof rules, 
which are logical translation of security typing rules. 
 Fourth, after proving the verification conditions by 
the theorem prover, their proofs are validated by a proof 
checker for validation. The proof checker component 
verifies that the proofs generated by the theorem prover 
are indeed valid and pertaining to the verification 
conditions generated by the VCG. If the proofs are 
valid then the untrusted program is considered secure 
and can be installed and executed safely on the host 
machine.    
 
Information flow model: We assume a two-point 
security lattice L = {Low, High}, partially ordered by 
⊑, where Low ⊑ High; Low stands for low-security 

data and High for high-security data. A program P is 
defined as a pair (I, V) where I denotes instructions and 
V denotes the variables. V is partitioned into a set of 
low-security variables VLow and a set of high-security 
variables VHigh. 
 
Non-interference: A program P = (I, V) is secure if, 
starting form two initial memories which agree on the 
values of the variables VLow, the program P terminates 
with two final memories which agree on the values of 
the variables VLow.  
 The above definition ensures that the final values 
of low-security variables are independent of the initial 
values of high-security variables. Secure information 
flow is formalized as non-interference[1], which states 
that the values of high-security do not interfere (affect) 
the values of low-security variables. 
 

MATERIALS AND METHODS 
 
 A tool was developed to demonstrate the 
practicality of the proposed security system. The tool 
certifies SPARC assembly programs for secure 
information flow.  The following software and tools are 
used. Visual Basic 6: A programming tool, which is 
used to develop the prototype implementation of the 
proposed security system. GNU GCC C Compiler[7]: 
compiles C programs into executables for SPARC 
platforms. Disassembler: Disassembles the executable 
file produced by the GCC compiler into SPARC 
assembly language. An alternative option to produce 
SPARC assembly program directly is to use the option-
S with GCC compiler. Emacs Text Editor: edits the 
Twelf signature, which encodes the object logic. Twelf 
System: A tool for experimentation in the theory of 
programming languages and logics[18]. It relies on LF 
type theory and the principle of judgments-as-types for 
specifications. 
 

RESULTS 
 
 The main result of this study is a security technique 
for verifying assembly programs for secure information 
flow. To make all the components and concepts of the 
proposed security technique more concrete, a tool, 
which is called SPARC PCC-SIF, was developed for 
verifying SPARC assembly programs for secure 
information flow based on the proposed security 
approach. The tool enables the code consumer to ensure 
that only the programs that satisfy the confidentiality 
policy are allowed to execute. A satisfaction of 
confidentiality means that a program has secure 
information flow. The information flow property is 
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formalized based on the notion of non-interference. 
Thus, the purpose of the tool is to check whether the 
received program has non-interference property.  
 Most important high-level characteristics of the 
proposed tool are (1) It operates directly on machine-
code; (2) It enforces information flow policy, namely 
non-interference policy on SPARC assembly programs; 
(3) It generates explicit machine-checkable security 
proofs (certificate) for SPARC assembly programs that 
are proved secure. 
 The tool is thus can be regarded as an instance of 
the security analysis for checking secure information 
flow of SPARC programs. All components of the 
security analysis technique are adapted to work on 
SPARC assembly language. The adapting is a 
straightforward and quite easy since both SAL and 
SPARC are RISC architectures.  
 Table 1 shows the translation from SAL to 
SPARC. Obviously, there is a one to one 
correspondence between instructions of SAL and 
SPARC, which facilitates adapting the security 
technique for SPARC. The instance of SAL has 32 
general purpose registers mapped to SPARC registers. 
In addition the register r15 (%O7) in SPARC is mapped 
to SAL register “ra”. In 32-bit instance of SAL the base 
values range between -215 to 215-1 and in 64-bit instance 
of SAL the base values range between -263 to 263-1.  
 A program P is a sequence of SPARC instructions 
I, P = <I>, consisting of functions each of which is a 
sequence of SPARC instructions. Furthermore, each 
program P has a function “main”. The operational 
semantics of SPARC language is defined as a triple (I, 
M, R), where I is the value of the program counter, M is 
the memory representing the state of memory locations 
(program variables) and R represents the current state 
of  registers  including  stack locations (local variables). 
 
Table 1: The translation table from SAL to SPARC architecture 

SAL SPARC 

r = n mov n, r 
r = r'  mov r', r 
r2 = r1 add  n add r1, n, r2 
r3 = r1 add r2 add r1, r2, r3 
jump label jmp label 
r = r1 eq n cmp r1, n 
jfalse r, label bne label 
r = r1 eq r2 cmp r1, r2 

jfalse r, label bne label 
ra = pc+1 call F call F 
ret ret 
r = M[r'] ld [r'], r 
M[r'] = r st r, [r'] 
r = M[sp+n] ld [sp+n], r 
M[sp+n] =  r st r, [sp+n] 
sp = sp+n save sp, n, sp 

The operational semantics is given in terms of resulting 
state obtained after executing each instruction. It is 
clear that SAL and SPARC language are also 
semantically equivalents.    
 Figure 1 shows the high level structure of the tool. 
It consists of a number of components: Control 
Dependence Region Calculator, Verification Condition 
Generator (VCG), Checker module, which includes 
Theorem Prover and Proof Checker.  
 
Control dependence regions calculator: Extracts 
functions, identifies basic blocks, performs 
intraprocedural control flow analysis, computes control 
dependence regions CDR for conditional branches and 
stores the information about CDR in IFD table. 
 
Verification condition generator module: Performs 
an abstract execution on the code based on the typing 
rules and initial annotations one function at a time. 
The verification condition generator begins the 
execution of the program code starting from function 
“main”. The execution continues until the return 
instruction is encountered or the VCG reaches an 
already executed instruction. For each instruction, the 
VCG builds an abstract state. VCG produces 
verification conditions for the actions: function calls 
and returns, memory write instructions. The 
verification conditions and their assumptions are 
represented as LF terms and saved in a file. 
 
Checker module: The Twelf system[18] is the checker 
module. The object logic is encoded as an LF signature. 
The signature is loaded along with a verification 
condition file produced by the verification condition 
generator module. The Twelf theorem prover generates 
the proof’s derivations that are to be type-checked later 
on by Twelf type-checker. If all proofs are well typed, 
untrusted program can be executed safely in the code 
consumer’s computing system. 
 

 
 
Fig. 1: High-level  structure  of  secure  information 

flow tool 
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Fig. 2: (a): An example source program; (b): The corresponding SPARC program; (c): The typing specification  
 
 SPARC PCC-SIF makes several assumptions about 
the target programs. For example, SPARC PCC-SIF 
assumes that: (1) Program behavior is insensitive to null 
operations e.g., no-ops instructions; (2) The last 
instruction in the program is return instruction; (3) 
Calling conventions. For example a caller function 
passes parameters to the called function through a set of 
registers %o0-%o6 and receives the result value 
through %o0 register. A register %o7 is reserved for the 
return address.  
 The inputs of SPARC PCC-SIF are two text files: 
the SPARC assembly program file and the 
specifications file. The source C program (Fig. 2a) 
consists of one function, main. The program modifies 
the value of the variable m based on the value of 
variables i and k and returns the modified value. The 
corresponding SPARC assembly program text file is 
shown in Fig. 2b. The content of specifications file, 
shown in Fig. 2c, states that the function main has no 
input parameters, has security signature Low and 
returns a low-security value. The global variables i, j, k, 
l and m have respectively the security levels Low, Low, 
High, Low and Low.  
 Figure 3 shows the window interface of SPARC 
PCC-SIF with the input file (Fig. 2b) and specifications 
file (Fig. 2c). The code window shows the program 
being verified and specification window shows the 
contents of specification file given by the user. The 
abstract execution window contains an abstract state for 
each instruction of the code. Each line the information 
that describes the execution state: The instruction id, 
the basic block, the security level of the program 

counter (security context), the label (if any), the op-
code and the operands. Abstract state window shows 
the final security levels of registers, stack locations and 
memory locations. 
 IFD tree window shows the control dependence 
regions of each function in the program. IPD stack 
window shows the addresses of the branches of 
conditional jump instructions. Global offset window is 
for tracing the security levels of global variables and for 
tracing the pointers. To trace the order of the execution 
in step by step verification mode the user can use the 
execution traces window. The last window is 
verification conditions window, which shows the 
results of the verification process. Upon completing the 
verification process the content of the verification 
conditions window can be saved into “.elf” file and 
submitted to Twelf system.     
 The general information Panel gives some 
information about the code, the number of different 
conditions generated, the time elapsed for the 
verification process. The user can performs step-by-step 
verification process and can also traces the intermediate 
states. 
 Figure 4 shows the results of the verification of 
SPARC assembly program (Fig. 2b). Note that the 
results are intermediate and thus not sufficient enough 
to decide whether the program being verified is secure 
or not. In fact, the task of this step of verification is to 
collect the verification conditions that will be delivered 
to Twelf system to verify. Figure 5 shows the 
verification conditions to be submitted to Twelf 
theorem prover to generate their proofs. 
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Fig. 3: User interface of the SPARC PCC-SIF tool  
 

 
 
Fig. 4: Verification of SPARC assembly program of Fig. 2b 
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Table 2: Characteristics of test cases and number of security conditions 
 Program 1 Program 2 Program 3 Program 4 Program 5 Program 6 Program 7 Program 8 Program 9 Program 10 
LOC 52 63 76 80 139 169 172 261 428 779 
Verification condition 0.016 0.016 0.015 0.016 0.031 0.078 0.094 0.079 0.156 0.344 
generation 
Proof generation 0.030 0.025 0.016 0.032 0.015 0.024 0.045 0.026 0.420 0.630 
and checking 
Total (sec) 0.046 0.041 0.031 0.048 0.046 0.102 0.139 0.105 0.576 0.974 

 

 

 
 
Fig. 5: Verification conditions file of SPARC 

assembly program file of Fig. 2b 
 
 The inputs of the Twelf tool are two files: an LF 
signature for reasoning about secure information flow 
in SPARC assembly programs and the file containing 
the verification conditions generated by SPARC PCC-
SIF tool. Based on the signature given, the Twelf 
theorem prover attempts to verify the verification 
conditions and generates their detailed proofs. 

 
 
Fig. 6: Verification conditions file of SPARC assembly 

program file of Fig. 2b 
 
tool are two files: An LF signature for reasoning about 
secure information flow in SPARC assembly programs 
and the file containing the verification conditions 
generated by SPARC PCC-SIF tool. Based on the 
signature given, the Twelf theorem prover attempts to 
verify the verification conditions and generates their 
detailed proofs.  
 Figure 6 shows the result of proving the 
verification conditions by Twelf theorem prover. We 
can see that the program is insecure as the theorem 
prover fails to generate its security proofs and aborts 
the theorem proving. By a visual inspection of the 
corresponding source program we can see that a low-
security variable m has been assigned values in high-
security region which may reveal information about the 
value of high-security variable k.  
 SPARC PCC-SIF tool is applied to few case 
studies. The programs that are used as test cases are 
written to reflect the desired program property for 
which the security tool verifies the assembly programs 
for (i.e., non-interference property). All case study 
programs are written in C language and compiled with 
GCC compiler (Version 2.95.3)[7].       
 Table 2 summarizes the time required to verify 
each program for secure information flow on a 2.4 GHz 
Intel machine with 1GB memory. The times include the 
time for scanning the program and producing 
verification condition for it, generating the proofs and 
checking the proofs. The time to verify these case 
studies ranges from 31 milliseconds to 1 sec. All proofs 
are obtained within fractions of a second.  
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For the case studies programs 3, 5 and 9 the time for 
generating and checking the proofs are also shown even 
though the theorem prover fails to generates proofs for 
them. The Twelf theorem prover aborts the theorem 
proving operation once it encounters a security 
predicate for which there is no proof derivation within 
the given logic program. 
 

DISCUSSION 
 
 In absence of a reliable protection mechanism that 
can verify if a piece of downloaded code maintains 
confidentiality end-users may avoid executing the 
code due to the concern that it may leak confidential 
data. While it protects end-users, this strategy; 
however prevents them to benefit from the richness of 
the web. 
 There are two ideas for utilizing secure information 
flow analysis for protecting data confidentiality. 
 
Idea 1: Developing Secure Software. In this idea secure 
information flow analysis is used to help in detecting 
unauthorized information flows when writing the 
program and thus helps in developing secure software. 
It could be used as a static analysis tool that spots the 
potential leakage and alerts the programmer who will 
respond by rewriting the program in such that it obeys 
the information flow policy. Here, secure information 
flow analysis can be carried out on source code.  
 
Idea 2: Preventing Malicious Programs. The idea here 
is to use the secure information flow analysis as an 
analyzer to verify the security of untrusted mobile 
programs. A piece of untrusted code is analyzed with 
the goal of establishing its security. If the mobile 
program has been proved secure, then it is allowed to 
execute, otherwise its execution is stopped. Here, 
secure information flow analysis is carried out on the 
machine code (assembly code). Our research work 
subsumes under this category. It is obvious that 
analyzing machine code is much more difficult than 
analyzing the source code. 
 
Issues with information flow checking of assembly 
programs: To perform information flow analysis of 
assembly programs, the issues we face include: (1) 
Reuse of registers: a register holds values of different 
variables at different program points; registers cannot 
be assigned fixed security levels; (2) Assembly 
programs lack the high-level control flow structures, 
which may present in source programs and are 
necessary for tracking implicit information flows; this 
calls for a mechanism to retrieve such structures; (3) 

Memory aliasing between memory locations cannot be 
easily reason about. Memory aliasing refers to the 
situation in which two pointers point to same memory 
location. 
 
Implications: An important feature of the proposed 
tool is that it certifies assembly programs generated by 
general-purpose off-the-shelf compilers. This gives the 
code producers flexibility in the choice of the high-level 
language, in which programs are written and allows 
end-users to check a wide variety of programs and thus 
the tool can be used effectively for protecting 
confidentiality. As our technique checks only the output 
of the compiler, it eliminates the dependence of security 
checking results on the correctness of the compiler. In 
addition, it leads to separating of security policy from 
the source language, which in turn, enables the code 
consumer to extend the security properties against 
which the untrusted code is checked.  
 

CONCLUSION 
 
 We have presented a security technique that allows 
the verification of assembly programs for secure 
information flow. The tool SPARC PCC-SIF was 
developed and is based on the concept of proof-carrying 
code and provides an automatic verification of SPARC 
assembly programs for secure information flow. To 
perform the secure information flow verification it is 
required that all variables in the program are associated 
with security levels. The presence of explicit proofs that 
are generated and checked provides distrustful users 
with a strong guarantee of protecting confidentiality 
making them more confident in the security technique 
and the tool.  
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