
Journal of Computer Science 5 (2): 154-162, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Kiran Ramineni, Department of Computer Science, University of California Irvine, Irvine, CA 92697
154

Verifying Complex Interaction between Hardware Processes

Kiran Ramineni, Shireesh Verma and Ian G. Harris

Department of Computer Science, University of California Irvine, Irvine, CA 92697

Abstract: Problem statement: Verification of correct functionality of semiconductor devices has
been a challenging problem. Given the device fabrication cost, it is critical to verify the expected
functionality using simulations of executable device models before a device manufactured. However,
typical industrial scale devices today involve large number of interactions between their components.
Complexity of verifying all interactions becomes almost intractable even in simulation. The infeasible
interactions need to be eliminated from verification consideration in order to reduce the complexity of
the problem. Also an empirical metric of completeness of the verification of such interactions is
needed. This metric should provide measure of quality of verification as well as that of degree of
confidence in future correct behavior of the device. Metric should guide stimulus generation for
simulation so that all aspects of the device functionality can be covered in verification. Existing
coverage metrics focus almost exclusively on verification of individual components. Approach: In
this study, interactions between device components modeled as independent processes, were
considered. The interactions considered between control flow paths in different processes. Present
algorithm analyzed the dependency between the control flow paths. It was also determined set of
feasible interactions between the control flow paths and pruned out the infeasible ones. Remaining set
of feasible interactions constituted our interaction coverage metric. Our metric handled device designs
with an arbitrary number of processes. Results: Number of interactions to be considered in simulation-
based verification was significantly reduced by our coverage metric using our proposed algorithms.
This limited the complexity and scope of stimulus generation to coverage of only set of feasible
interactions. Conclusion: Proposed coverage metric was able to provide realistic measure of degree of
verification of components interactions as well as effectively guide the test generation process for
device designs consisting of an arbitrary number of components.

Key words: Simulation, verification, coverage metric, interaction coverage, unit/integration testing

INTRODUCTION

 The advances in the manufacturing process
technologies over the past two decades have made it
possible to produce extremely complex semiconductor
devices. However, the ability to design such devices
and verify their correct behavior still lags the advances
in the process technologies. The state of art today is to
develop abstract models of devices using specialized
Hardware Description Languages (HDLs), which are
then simulated with real life stimuli. The simulations
put the device model into the states, as it would be in
real life. If the simulated model produces expected
output, it would be considered an indication of the
correct future behavior of the device. The device model
would be considered verified and the design sent out for
manufacturing. This problem becomes even more
pronounced when devices with numerous interacting
components need to be verified for their correctness

before signoff to the expensive manufacturing
processes. These interacting components are modeled
in the simulation model as concurrently executing
independent processes. The standalone testing of these
individual processes called Unit Testing is necessary
but not sufficient to verify large systems. Verification
of interactions between these processes called
Integration Testing is essential to ensure correctness of
the system. It is possible that each component functions
correctly but the system as a whole may fail. The
problem of verification is solved in two distinct steps.
Unit-level testing of individual functional units is
performed in the first step. The second step is the
testing of the interactions between the individual
functional units and this is the problem addressed in
this study. Industrial scale systems tend to have an
intractable number of such interactions. A notion of
completeness is required to measure the extent to which
such interactions are covered in simulations.

J. Computer Sci., 5 (2): 154-162, 2009

155

 A measure of test effectiveness is typically referred
to as a coverage metric and many coverage metrics
have been developed for both hardware and software
testing[1-3]. Coverage metrics define a set of criteria,
which must be satisfied during simulation to ensure
detection of design errors. A range of different
coverage metrics have been developed for use at
different design abstraction levels, (e.g.,
gate/register/state-machine/behavioral level) and to
describe different types of errors (e.g., physical,
control-flow, dataflow). A coverage metric at the
behavioral level together with an available executable
design description allows evaluation of the device
model with a notion of completeness of simulations.
Detecting design errors early in the design cycle
reduces the expense of the redesign.
 All practical system designs are built from a set of
interacting concurrent processes, but almost all existing
behavioral coverage metrics consider the testing of
processes individually. This is problematic because
design errors are most likely to be found in the
interaction between multiple components, rather than in
any single component. A hierarchy is always imposed
on the design process in an effort to improve
productivity by partitioning the responsibilities of
different designers. The use of intellectual property
exemplifies this practice by completely separating the
design of a component, possibly outsourcing it to a
different design house.
 Partitioning the design provides an abstraction,
potentially allowing the system designer to ignore
details of the components. The disadvantage of the use
of this abstraction is that it is difficult for one designer
to understand the complex interactions between all
components. This problem is most acute with the use of
intellectual property because the detailed design
information is likely to be hidden from the system
designer. Design errors which appear as a result of the
interaction between components are likely to occur and
difficult to detect.
 Existing metrics are applied to multi-process
designs by first combining all processes into a single,
complex behavioral description. For example, state
coverage is a state machine metric, which requires that
all states be entered during simulation. State coverage
can be applied to a multi-process design by computing
the cross-product machine of all of the processes and
then requiring that each state in the cross-product
machine be covered. The problem with this approach is
not only that the cross-product machine is large, but
also that the vast majority of the cross-product machine
is redundant in most cases[4]. Use of a cross-product
machine implicitly assumes that the individual

processes are independent, but this is never true. As a
result the cross-product machine will contain many
states and transitions, which can never be executed.
Coverage values for a cross-product machine will be
deceptively low because the majority of the state space
cannot be explored.
 A behavioral coverage metric, which focuses on
the interaction between processes, is needed but the
coverage computation must be tractable. The number of
considered interactions has to be kept manageable to
enable fast analysis. The set of interactions considered
must be pruned to retain non-redundant and that are
most likely to reveal design errors.
 We present a coverage metric, which evaluates the
extent of verification of the interactions between
processes. We model the behavior of each process as a
Control-Flow Graph (CFG) and assume that executing
all control-flow paths in a single process is sufficient to
validate that process. An interaction is described by a
set of paths in different processes, executed in
sequence. In the worst case, the set of potential
interactions could be as large as the cross product of the
sets of paths in the individual machines. This potential
problem is addressed by identifying elements of the
cross product of the set of paths, which conflict because
the signal assignments of some member paths violate
the control-flow conditions of other member paths.
Additionally, cross product elements are only
considered as interactions if there is dependency
between shared paths via shared signals. Our results
show that when these restrictions are considered,
process interactions can be validated with low time
complexity. The commonly used fault models[6-8] are
the state coverage model, which requires that all states
be reached and transition coverage, which requires that
all transitions be traversed.
 A number of coverage metrics are based on the
traversal of paths through the CFG representing the
system behavior. Applying these metrics to the CFG
representing a single process is a well-understood task.
The application of CFG metrics to the behavior of an
entire system would require that all component CFGs
be merged into one. For this reason, CFG metrics are
currently restricted to the testing of single processes.
The earliest CFG coverage metrics include statement
coverage, branch coverage and path coverage[3] models
used in software testing. There are many notable uses of
CFG coverage metrics for hardware validation[9]. Many
CFG coverage metrics consider the requirements for
fault activation without explicitly considering fault
effect observability. Researchers have developed
observability-based behavioral coverage metrics[10,11] to
alleviate this weakness.

J. Computer Sci., 5 (2): 154-162, 2009

156

 This study is based on our initial investigation[5]
where we considered only a pair of processes at a time.
We propose our metric, which considers interactions
among arbitrary number of processes. Also, we
formalize the algorithmic techniques for identifying
feasible interaction sets.

System overview: We propose an algorithm to identify
feasible interactions between multiple concurrent
processes. Our algorithm prunes infeasible interactions
while modeling feasible interactions. By using this
method, we significantly reduce the number of
interactions to be considered thereby rendering
integration testing more tractable.
 We have implemented a metric to compute
interaction coverage. The steps involved in the
computation are shown in Fig. 1. The inputs to our
method are a behavioral HDL description of the design
and stimulus to simulate it.
 The Path Analysis block in Fig. 1 extracts the set of
control-flow paths in each HDL process and the set of
feasible interactions between them by performing
dependency analysis followed by a feasibility check on
them.
 Design is simulated with randomly generated test
sequences and a trace of control flow paths executed at
each simulation time step is generated. The Trace
Analysis step evaluates the trace to determine which
paths and interactions were executed during simulation,
thereby computing interaction coverage and path
coverage for comparison.
 Interaction among a set of processes can be defined
as communication between processes by means of
shared signals in the HDL design description. An
interaction is said to occur between two processes when
one process writes to a signal and the other reads that
signal later and executes. It is possible to have a chain
of interactions spanning over multiple processes, e.g. if
there is a common writer/reader path between three
processes they will said to be having an interaction.
Each of the control-flow paths in the processes have to
be evaluated in different contexts with respect to each
other to determine interactions.

Fig. 1: Interaction coverage system

 The set of interactions must describe all of the
ways in which the behavior of a set of processes can
affect the behavior of another set of processes. The
execution of one process may alter the course of
execution of another process by impacting the global
state by affecting signals between communicating
processes. The global state can be seen as the context in
which a process is executed. We need to execute each
control-flow path of each process in a range of different
contexts in order to evaluate the interactions between
processes. An interaction between two processes is a
sequence of control-flow path executions; one path in
the execution of the first process alters the context of
the execution of the second.
 The set of control-flow paths in a process can be
assumed to represent full range of behavior of that
process. Say there is a set of concurrent processes T and
that each process t∈T has a set of control-flow paths Pt.
Each path p∈Pt is defined by the set of conditional
predicates encountered along the path in the CFG. The
set of conditional predicates which are encountered and
satisfied along a path p is Cp. Without loss of
generality, each conditional predicate c∈Cp is
expressed as satisfied along the path p. In Fig. 2a, let us
consider a path p defined by the predicates b<3 and
c>1, both of which evaluate to FALSE. Since is defined
to contain only positively asserted predicates, both of
the predicates are inverted, hence Cp = !(b<3), !(c>1).
 Each path p contains a set of signal assignments
a∈Ap, a set of signals r∈Rp whose values are used in
the path and a set of signals w∈Wp whose values are
assigned in the path. For example, refer to the path p in
Fig. 2a shown by the predicates Cp = !(b<3), !(c>1).
This path contains assignments Ap = (y ⇐ in), (x ⇐ 5),
it reads signals and writes signals . Since we are only
interested in interactions between processes, the sets
and only involve internal signals which are used to
communicate between processes.
 Let us consider a processes pair t1 and t2 as 1

2

t
tI . We

define an interaction between a pair of processes as a
sequence of paths, one in each process,

1

2 1 2

t
t 1 2 1 t 2 ti I (p ,p),p P ,p P∈ = ∈ ∈ . Similarly, an interaction

among multiple processes of size ’n’ can be defined as
1

1 2 n

n

t

2 1 2 n 1 t 2 t n t
..t

i I t (p ,p ,..p),p P ,p P ,..p P∈ = ∈ ∈ ∈ Processes in

behavioral hardware descriptions may contain
looping control flow constructs. All loops are assumed
to be of fixed length since variable length loops
cannot be synthesized efficiently. All loops are
unrolled to enumerate control flow paths for
interaction analysis.

J. Computer Sci., 5 (2): 154-162, 2009

157

Fig. 2: HDL example (a): Process 1 and (b): Process 2

Order of composition: Order of composition can be an
issue when dealing with multiple process sets. Our
approach composes processes to identify their
interactions and the order in which processes are
composed is important. Each interaction can be seen as a
directed acyclic graph, where each edge represents data
transfer between two control flow paths. So interactions
between two processes and can involve data transfer
from to, or from to. In order to identify all transactions,
we compose processes in all pairwise orders.

Path analysis: Path analysis is an important step in
identifying feasible interactions among processes. The
set of all interactions between a pair of processes and is
a subset of the cross-product between

1t
P and

2t
P . The

set of all interactions should be a small subset of the
cross-product because many path pairs are not feasible.
Each interaction captures a functional dependency
between the interacting processes. To capture
dependencies, the second path involved in an
interaction must be dependent on the first path in the
sequence via a set of signals. This requirement is stated
formally in Equation 1. An example of dependency can
be seen between path in Fig. 2a where Cp1 = (b<3),
!(c>1) and path in Fig. 2b where

2pC (x 2)= > . Path

depends on the mutual access of signal x:

DEP(p1, p2) ⇒ | Wp1 I Rp2| (1)

n n

i p0 i
i 0 i 1

DEP(P) | W DEP(P) |
= =

⇒∑ ∑I (2)

 An interaction is considered to be covered during
verification if associated paths and are executed in
sequence and no path p3 is executed in between the
paths which assigns a value to a signal which is both
assigned by p1 and read by p2 or vice versa. This can be
described using paths in Fig. 2a and b. Consider two
paths in Fig, 2a, p1 and p3, where Cp1 = !(b<3), !(c>1)
and Cp3 = !(b<3), !(c>1). Both paths and assign signal x

Fig. 3: Algorithm for interaction definition

and therefore form interactions with path p2 in Fig. 2b
where Cp2 = (x>2). If the execution sequence of paths
during testing is p1, p3, p2 then the interaction (p3, p2) is
covered but the interaction (p1, p2) is not covered since
p3 was executed closer to p2 in sequence. Equation 2
extends the idea of dependency in equation 1 across
multiple processes:

Dependency check: Dependency check can be
illustrated as the algorithm shown in Fig. 3:
 Figure 3 show an algorithm for determining an
interaction between two control flow paths. The
algorithm consists of two main parts in finding data
dependency and finding feasibility of a given
interaction. In finding data dependency, first all the
relevant statements are extracted from both the control
flow paths as shown in lines 2 and 3. All Left Handed
Side (Lhs) variables assigned in the writer path are
enumerated while all Right Handed Side (Rhs)
operands in assignments in the reader path are explored
as shown in lines 4 and 5. Then the common variables
in both Lhs and Rhs are checked for data dependency at
line 6. If a data dependency is detected, the writer-reader
pair is passed to feasibility check routine at line 7. Line 9
returns NULL if the CheckFeasibility() fails if the
interaction is infeasible and as a result is pruned away.

Interaction feasibility: Interaction feasibility needs to
checked in addition to the dependency requirement
between the paths of an interaction since the interaction
must also be feasible in terms of the possibility of
executing the interacting paths in sequence. Consider
an interaction involving the path in Fig. 2a shown by
Cp1 = (b<3), (c>1) and the path in Fig. 2b shown by
Cp2 = (x>2). This interaction is infeasible because path
cannot be executed immediately prior to the execution
of path . The path sequence p1, p2 is infeasible because
assigns signal x to 1 while requires signal x>2.
 In general, an interaction between two paths and is
infeasible if the set of signal assignments Ap1
collectively imply the inverse of one or more of the
conditional predicates in Cp2. Identifying this condition

J. Computer Sci., 5 (2): 154-162, 2009

158

in the most general way is intractable because it can be
formulated as the SATISFIABILITY problem. Instead,
we simplify the problem to identify infeasible
interactions in most practical designs.
 A conditional expression can be easily evaluated if
all of its signals and/or variables are bound to constant
values. If all of the unbound signals o p1f c ∈ Cp2 are
assigned to constant values by some assignment a ∈ Ap1
then path p1 is said to uniquely determine conditional
expression c. If a conditional is uniquely determined the
evaluation of the conditional expression is trivial. We
determine if an interaction between two paths p1 and p2
is infeasible by substituting the assigned signal values
of into each conditional expression in p2. If a
conditional in p2 is uniquely determined and evaluates
to FALSE then the interaction is infeasible an vice
versa. This computation is stated formally in Eq. 3:

1 2 p2 p1IF(p ,p) c C ,SUB(c,A)⇒ ∃ ∈ (3)

In Eq. 3, the function SUB(c, Ap1) evaluates to TRUE if
the conditional expression c is uniquely determined by
path p1 and c computes to TRUE upon substitution of
its unbound signals with relevant assignments in Ap1.
 Feasibility check as shown in Fig. 4 is important in
pruning the interactions which would never occur. If
the reader statement in the interaction is a conditional
whose condition depends on the value written by writer
statement, then there is a way to check feasibility of the
condition by replacing the value in the condition.

Feasibility analysis: Feasibility analysis can be
formalized with the algorithm shown in Fig. 4.
 If the condition never holds true, the interaction
can be pruned. Subroutine ’findValue’ finds value of an
expression that is passed as argument. The expression
can be as simple as a variable or it can be a complex
nested expression. Writer statement Lhs is evaluated
and the value ’Val’ is stored as shown in line 2. If the
reader statement is a conditional then ’Val’ is
substituted for the writer Lhs expression used in
reader’s Rhs expression and the value of reader’s Rhs
expression is found as depicted at line 5. Line 6 returns
1 in case the reader statement is not a conditional as
there is no pruning possible.

Fig. 4: Algorithm for checking feasibility

Process pair: Interactions can be identified by
algorithm in Fig. 5.
 Figure 5 shows an algorithm for finding feasible
interactions between two processes. Initially,
Interaction set is empty at line 2. All the control flow
paths in Process 1 and 2 are enumerated at line 3 and 4.
Each pair of paths between process 1 and 2 are checked
for feasible interactions using CheckInteractionPair
algorithm shown in Fig. 3. The algorithm in Fig. 3
returns an interaction if feasible and the interaction set
defined at line 2 is updated accordingly at line 7 to
include it. Finally, this algorithm returns all the possible
sets of Interactions at line 8.

N-process interactions: Valid ’n’ process interactions
can be derived from ’n-1’ pairs of process interactions.
 Figure 6 shows two feasible triple interaction set.
Triple interaction 1 is a chain of interaction between a1,
b1 and c1 processes. Process ’a1’ writes to a common
signal that is read by process ’b1’. In the same control
path that is used by process ’b1’ that interacted with
process ’a1’, there is a write to a common signal that is
read by process ’c1’. Triple interaction 2 depicts a
different scenario when process ’a2’ writes to common
signal that is being read by process ’b2’ and ’c2’. The
signals used by ’b2’ and ’c2’ might be different but the
control flow path (writer path) used by ’a2’ is unique.
In triple interaction 3, the scenario is different as the
processes ’a3’ and ’b3’ write on to signals in a common
reader control path in process ’c3’.

Fig. 5: Algorithm for process interactions

Fig. 6: Types of triple interactions

J. Computer Sci., 5 (2): 154-162, 2009

159

Fig. 7: Multiple process interactions algorithm

 Figure 7 shows an algorithm for finding
interactions between multiple processes. The
algorithm accepts a process list of ’n’ size. P1, P2 are

the first two processes in
n

ii 0
P

=∑ as depicted in lines 2-4.

All the control flow paths in P1, P2 are enumerated in
lines 4 and 5. The lines 6 and 7 explore all the paths in
P1, P2. If the size of the list is 2, then the algorithm just
returns ’CheckInteractionPair(pi)’. This subroutine
returns the feasible interaction set related to , . If the
size of the input list is more than 2, then the function is

called recursively with a pruned set
n

ii 2
{I} P

=∑U where

{I} is the list of interactions from
CheckInteractionPair(pi, qi). The recursion continues till
’n’ equals to 2 where it returns a set of interactions.

MATERIALS AND METHODS

 We use Verilog Procedural Interface (VPI)
extensively to interact with the simulator (Cadence
Verilog-XL) from a C application while running a
simulation. We have evaluated our coverage metric by
applying it to the examples from the ITC99 benchmark
suite[12].

Interaction example: We describe application of our
coverage metric to the example b12 step by step. The
example has 656 lines of Verilog code with seven
signals shared between four concurrent processes. Only
signals which are used to communicate between
processes are considered, so input and output ports are
not taken into account.
 Table 1 shows the input and output signals in the
processes in b12. Each of these processes corresponds
to a Finite State Machine (FSM). F1 is the smallest
state machine with only one state and its output signal
is connected to F3. F2 has two states and it has one
output signal connected as input to F3 and three input
signals connected from F3. F3 is the biggest process of
all with 26 states with two output signals connected to

Fig. 8: Interconnected signals in b12

Table 1: Interconnection of processes in b12
 No. of
Process paths Signal in Signal out
FSM1 1 {-} {num}
FSM2 2 {data_in, wr, address} {data_out}
FSM3 70 {data_out, num} {data_in, wr, address, play, sound}
FSM4 18 {play, sound} {-}

Table 2: Interaction pairs in b12
Pair Max paths Feasible

F1→F3 1*70 2
F3→F2 70*2 2
F2→F3 2*70 36
F3→F4 70*18 364
Total 1610 404

F4 and one input signal each from F1 and F2. Figure 8
shows high level interconnection of signals shared
among four FSMs in the design.

Process pairs: A single process pair can yield many
interactions since each of the process pair can have
multiple control flow paths and there are many
interactions possible between any two of the paths
taken from each of the process pair. There can be more
than one interaction between two path pairs if multiple
data dependent variables are involved.
 Since b12 has 4 processes, it means that there are
12 possible combinations of process pairs for
interactions. But in reality, there only 4 feasible pairs in
F1→F3, F3→F2, F2→F3 and F3→F4 as evident
from the Fig. 8, pairing of F3→F1 is not feasible since
there is no signal being written in F3 that is read in F1.
Table 2 shows feasible interaction p airs among the
4 processes in b12.
 Column 1 shows type of interaction involved.
Column 2 gives information on total number of paths
possible for the given pair. This is a product of control
flow paths available in the given pair of processes. For
example, F1 has 1 control f low path and F3 has
70 control flow paths. So, F1 F3→ can have maximum
of 70 interactions possible. Third column shows the
actual feasible paths after pruning based on data
dependency and condition feasibility. For example, data

J. Computer Sci., 5 (2): 154-162, 2009

160

dependency analysis yields 4 feasible interactions in the
pair F3 F2→ but 2 of them are pruned out after doing
condition feasibility analysis. In F3, there is one
statement that assigns ’0’ to signal ’wr’. This signal
’wr’ is being read in F2 in a conditional statement
which decides whether or not the condition is satisfied.
When ’wr’ is assigned to ’0’ in F3, the condition fails
and the subsequent paths (2) are pruned. The last row
indicates total number added up from the previous
rows. There are total 1610 control flow paths but out of
them there are only 404 feasible interactions possible.
The pruned process pair interactions are 75%.

Process triples: A Valid triple process can be defined
as a chain of valid interactions between process1,
process2 and process3. There are 424 possible
combinations of process triples for interactions.
However, the valid triples set would be much less than
that. There are 7 feasible triplets as shown in Table 3.
Second column indicates maximum possible
interactions in the given triplet interaction. For the
chain type interactions, the first pair dictates the
maximum possible interactions. For example, in this
chain of reaction, F1→F3→F2, maximum possible
interactions is determined by number of F1→F3
interactions possible (2 according to Table 2) multiplied
by total number of control flow paths in F2 (2 according
to Table 1).
 The final row indicates total sum of the data from
the previous rows. Out of 1000 possible total paths,
there are 244 feasible triple process interactions
possible. So, the effective pruning of interactions is
nearly 75%. Figure 9 shows different combinations of
triplets possible for the b12 design.

Process quartets: A valid quartet process can be
defined as a chain of valid interactions between
process1, process2, process3 and process4. Figure 10
lists combinations of quartet processes in the example
b12. The sequence order is depicted along with the
shared signal on each arrow connecting two different
processes. Since there are both read and write shared
signals between processes F2 and F3, there are a lot of
combinations possible which result in quartet
interactions. Table 4 summarizes different quartet
interactions possible in example b12. Quartets are
possible because of possible loop interactions among
processes. There is a loop between processes F2 and
F3. There are only three quartet interactions possible as
listed in the Table 4. Final row summarizes the total
sum and the effective pruning of quartets interactions is
about 93%.

Fig. 9: Triples in b12

Fig. 10: Quartets in b12

J. Computer Sci., 5 (2): 154-162, 2009

161

Table 3: Interaction triples in b12
Pair Maximum Feasible

F1→F3→F2 2*2 4
F1→F3→F4 2*18 0
F2→F3→F2 36*2 0
F2→F3→F4 36*18 104
F3→F2→F3 2*70 108
F1→F3 and F2→F3 2*36 0
F3→F2 and F3→F4 2*364 28
Total 1000 244

Table 4: Interaction of quartets in b12
Pair Maximum Feasible

F1→F3→F2→F3 4*70 72
F3→ F2→F3→F4 108*18 120
F3→F2→F3→F2 108*2 0
Total 2440 192

RESULTS

 The simulations were performed on a sun ultra
sparc machine with 1 GB memory running Solaris 5.8.
A total of 20,000 random test sequences were applied to
test the coverage metric. It took about 1.72 sec to run
the simulation whereas coverage computation and
analysis using our metric could be performed during
simulation in about 2.4 sec.
 Table 5 shows the coverage results obtained in
different categories. First column describes the type of
interaction while second column gives the total paths
possible.
 Third column lists total feasible interactions while
fourth column gives percentage of pruning of infeasible
interactions obtained. The last column gives the final
Interaction Coverage. Doubles interactions were covered
by 61.4% while triples were covered by 37.8%. Quartets
were covered by 14.6% and this number is low compared
to others as quarter interaction is harder to achieve.
 Table 6 shows the ITC ’99 benchmark examples
used for our experiments. We specifically choose
examples with complex control flow. Column 1
corresponds to the benchmark name while subsequent
columns depict number of lines of code (column 2),
number of processes (column 3) and number of shared
signals (column 4) among the processes respectively.
 Table 7 summarizes the coverage results obtained
in different categories. First column describes the type
of interaction while second column gives the total paths
possible. Third column lists total feasible interactions
obtained after our methodology. Percentage of pruning
of infeasible interactions obtained is presented in
column 4 and CPU time taken is shown in column 5.
The last column gives the final Interaction Coverage
achieved after simulating the design and observing
the trace for the identified feasible interaction set.

Table 5: Coverage results for interactions in b12
Type max Feasible Pruning (%) IC (%)
Doubles 1610 404 7409 61.4
Triples 1000 244 75.6 37.8
Quartets 2440 192 92.1 14.6

Table 6: Summary of benchmark examples used
BM LOC No. processes No. signals
b12 656 4 7
b13 312 5 9
b15 741 3 7

Table 7: Results for interaction coverage
BM Maximum Feasible Pruning CPU (%) Cov. (%)
b12 5050 840 83.3 1.72 95.3
b13 379 47 87.5 0.33 100.0
b15 1836 267 85.4 0.77 98.8

As it is evident from the results, we had achieved very
efficient pruning for all three examples. The time
taken by our algorithm is dependent on total number
of control flow paths in the processes. As the number
of control flow paths, the total time needed for
pruning may increase.

DISCUSSION

 Verification of interacting processes in executable
device models as well as their simulation coverage
computation is complex. We propose algorithmic
techniques for identifying feasible interaction sets for
an arbitrary number of processes. This was a significant
improvement from our initial investigation[5] where the
metric was limited to only a pair of processes.
 Our metric pruned infeasible interactions while
modeling feasible interactions among multiple
processes. By using this metric, we considerably
reduced the number of interactions across multiple
processes for analysis which reduced the complexity
integration testing. We obtained pruning of up to 93%
of interactions in our experiments. This was a
significant achievement compared to traditional metrics
where each of the infeasible paths (extra 93% paths that
were pruned in our technique) is also considered and as
a result, the coverage results become not practical. Our
metric fared much better than traditional metrics like
path coverage in terms of simulation and tractability.
 With the cross-product machine[4] it would be
impossible to get 100% coverage on interaction sets
since a lot of them are infeasible combinations. Our
metric identifies and eliminates infeasible interactions
and makes 100% coverage a reality on the feasible set
of interactions. It would be more appropriate to see
which interactions are covered with our metric.

J. Computer Sci., 5 (2): 154-162, 2009

162

 In order to check the scalability aspect for our
proposed metric, we applied our methodology to ITC
benchmarks b12, b13 and b15, which have a multitude
of interaction sets. We effectively pruned away
infeasible interactions and thus reduce verification
consideration to a limited feasible set of interactions.
We presented results for triples and quartet process
interactions to support our method.

CONCLUSION

 We have presented a coverage metric to model the
interactions between multiple concurrent processes.
Interactions between complex components are difficult
for any one designer to understand, making design errors
related to component interaction difficult to detect. Our
coverage metric models the meaningful interactions
between components, while ignoring those interactions
which are infeasible or unlikely to reveal errors. In this
way, the number of interactions for evaluation is
reduced, making coverage computation tractable. The
research presented in this study can be applied to
interactions between an arbitrary number of processes.

REFERENCES

1. Tasiran and Keutzer, 2001. Coverage metrics for

functional validation of hardware designs. Des.
Test, 18: 36-45. DOI: 10.1109/54.936247

2. Harris, I.G., 2003. Fault models and test generation
on hardware-software covalidation. IEEE Des.
Test, 20: 40-47. DOI:
10.1109/HLDVT.2001.972822

3. Beizer, B., 1990. Software Testing Techniques.
2nd Edn., Van Nostrand Reinhold, New York,
ISBN: 0-442-20672-0, pp: 550

4. Hasan, Z. and M. Ciesielski, 1993. Functional
verification and simulation of FSM networks.
Proceeding of the 11th Annual 1993 IEEE VLSI
Test Symposium on Digest of Papers, Apr. 6-8,
Atlantic City, New Jersey, USA., pp: 326-332.
DOI: 10.1109/VTEST.1993.313371

5. Harris, I.G., 2006. A coverage metric for the
validation of interacting processes. Proceeding of
the Design, Automation and Test in Europe,
Mar. 6-11, IEEE Xplore Press, Munich, pp: 1-6.
DOI: 10.1109/DATE.2006.243900

6. Cheng, K.T. and J.Y. Jou, 1992. A functional fault
model for sequential machines. Trans. Comput.
Aided Des. Integrat. Ciru. Syst., 11: 1065-1073.
DOI: 10.1109/43.159992

7. Moundanos, D. et al., 1998. Abstraction techniques
for validation coverage analysis and test
generation. Trans. Comput., 47: 2-14. DOI:
10.1109/12.656068

8. Malik, N. et al., 1997. An autonomous coverage-
based multiprocessor system verification
environment. Proceeding of the 8th IEEE
International Workshop on Rapid System
Prototyping, Shortening the Path from
Specification to Prototype, June 24-26, IEEE
Xplore Press, Chapel Hill, NC., pp: 168-172. DOI:
10.1109/IWRSP.1997.618893

9. Hajjar, A. et al., 2000. On statistical behavior of
branch coverage in testing behavioral VHDL
models. Proceeding of the IEEE International
Workshop on High-Level Design Validation and
Test, Nov. 8-10, Berkeley, CA., pp: 89-94. DOI:
10.1109/HLDVT.2000.889565

10. Devadas, S., A. Ghosh and K. Keutzer, 1996. An
observability-based code coverage metric for
functional simulation. Proceeding of the
IEEE/ACM International Conference on
Computer-Aided Design, Digest of Technical
Papers, Nov.10-14, IEEE Xplore Press, San Jose,
CA. USA., pp: 418-425.

 DOI: 10.1109/ICCAD.1996.569832
11. Verma, S., K. Ramineni and I.G. Harris, 2005. An

efficient control-oriented coverage metric.
Proceeding of the Conference on Asian-Pacific
Design Automation, Jan. 18-21, IEEE Xplore
Press, USA., pp: 317-322.

 DOI: 10.1109/ASPDAC.2005.1466181
12. Corno, F. et al., 2000. RT-level ITC 99

benchmarks and first ATPG results. IEEE Des.
Test Comput., 17: 44-53. DOI: 10.1109/54.867894

