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Abstract: Problem statement: Verification of correct functionality of semicondoc devices has
been a challenging problem. Given the device falino cost, it is critical to verify the expected
functionality using simulations of executable devioodels before a device manufactured. However,
typical industrial scale devices today involve Emumber of interactions between their components.
Complexity of verifying all interactions becomesnalst intractable even in simulation. The infeasible
interactions need to be eliminated from verificatamnsideration in order to reduce the complexity o
the problem. Also an empirical metric of completsnhef the verification of such interactions is
needed. This metric should provide measure of tyual verification as well as that of degree of
confidence in future correct behavior of the devibetric should guide stimulus generation for
simulation so that all aspects of the device fumetlity can be covered in verification. Existing
coverage metrics focus almost exclusively on wveatfon of individual component#&pproach: In

this study, interactions between device componantsdeled as independent processes, were
considered. The interactions considered betweetralofliow paths in different processes. Present
algorithm analyzed the dependency between the aofitw paths. It was also determined set of
feasible interactions between the control flow pathd pruned out the infeasible ones. Remaining set
of feasible interactions constituted our interacttmverage metric. Our metric handled device design
with an arbitrary number of processBesults; Number of interactions to be considered in simafati
based verification was significantly reduced by cawerage metric using our proposed algorithms.
This limited the complexity and scope of stimulusngration to coverage of only set of feasible
interactionsConclusion: Proposed coverage metric was able to providest@alheasure of degree of
verification of components interactions as welledfectively guide the test generation process for
device designs consisting of an arbitrary numberoafiponents.
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INTRODUCTION before signoff to the expensive manufacturing
processes. These interacting components are modeled
The advances in the manufacturing processn the simulation model as concurrently executing
technologies over the past two decades have made iiidependent processes. The standalone testingesé th
possible to produce extremely complex semiconductoindividual processes called Unit Testing is necgssa
devices. However, the ability to design such device but not sufficient to verify large systems. Verdimon
and verify their correct behavior still lags thevadces of interactions between these processes called
in the process technologies. The state of art téslay  Integration Testing is essential to ensure coressrof
develop abstract models of devices using specthlizethe system. It is possible that each componenttifums
Hardware Description Languages (HDLs), which arecorrectly but the system as a whole may fail. The
then simulated with real life stimuli. The simutats  problem of verification is solved in two distindeps.
put the device model into the states, as it woddrb  Unit-level testing of individual functional unitss i
real life. If the simulated model produces expectedperformed in the first step. The second step is the
output, it would be considered an indication of thetesting of the interactions between the individual
correct future behavior of the device. The deviadet  functional units and this is the problem addressed
would be considered verified and the design senfasu  this study. Industrial scale systems tend to hawe a
manufacturing. This problem becomes even moreéntractable number of such interactions. A notidn o
pronounced when devices with numerous interactingompleteness is required to measure the extenhichw
components need to be verified for their corre@nessuch interactions are covered in simulations.
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A measure of test effectiveness is typically nefdr processes are independent, but this is never Asi&
to as a coverage metric and many coverage metriagsult the cross-product machine will contain many
have been developed for both hardware and softwargtates and transitions, which can never be executed
testing"*. Coverage metrics define a set of criteria,Coverage values for a cross-product machine will be
which must be satisfied during simulation to ensuredeceptively low because the majority of the statece
detection of design errors. A range of differentcannot be explored.
coverage metrics have been developed for use at A behavioral coverage metric, which focuses on
different design abstraction levels, (e.g.,the interaction between processes, is needed lgut th
gate/register/state-machine/behavioral level) amd tcoverage computation must be tractable. The nuiber
describe different types of errors (e.g., physicalconsidered interactions has to be kept manageable t
control-flow, dataflow). A coverage metric at the enable fast analysis. The set of interactions caned
behavioral level together with an available exelslgga must be pruned to retain non-redundant and that are
design description allows evaluation of the devicemost likely to reveal design errors.
model with a notion of completeness of simulations. = We present a coverage metric, which evaluates the
Detecting design errors early in the design cycleextent of verification of the interactions between
reduces the expense of the redesign. processes. We model the behavior of each proceas as
All practical system designs are built from askt Control-Flow Graph (CFG) and assume that executing
interacting concurrent processes, but almost aditieg  all control-flow paths in a single process is suiéft to
behavioral coverage metrics consider the testing ovalidate that process. An interaction is describgda
processes individually. This is problematic becauseset of paths in different processes, executed in
design errors are most likely to be found in thesequence. In the worst case, the set of potential
interaction between multiple components, rathentha interactions could be as large as the cross prafube
any single component. A hierarchy is always imposedets of paths in the individual machines. This ptaé
on the design process in an effort to improveproblem is addressed by identifying elements of the
productivity by partitioning the responsibilitiesf o cross product of the set of paths, which confletduse
different designers. The use of intellectual prtyper the signal assignments of some member paths violate
exemplifies this practice by completely separating the control-flow conditions of other member paths.
design of a component, possibly outsourcing it to aAdditionally, cross product elements are only
different design house. considered as interactions if there is dependency
Partitioning the design provides an abstractionpetween shared paths via shared signals. Our sesult
potentially allowing the system designer to ignoreshow that when these restrictions are considered,
details of the components. The disadvantage ofilee process interactions can be validated with low time
of this abstraction is that it is difficult for oresigner  complexity. The commonly used fault mod&fs are
to understand the complex interactions between alihe state coverage model, which requires thattailes
components. This problem is most acute with theafise be reached and transition coverage, which reqtiivats
intellectual property because the detailed desigrall transitions be traversed.
information is likely to be hidden from the system A number of coverage metrics are based on the
designer. Design errors which appear as a resulieof traversal of paths through the CFG representing the
interaction between components are likely to oend  system behavior. Applying these metrics to the CFG
difficult to detect. representing a single process is a well-understaskl
Existing metrics are applied to multi-process The application of CFG metrics to the behavior of a
designs by first combining all processes into ajlsin  entire system would require that all component CFGs
complex behavioral description. For example, statdbe merged into one. For this reason, CFG metries ar
coverage is a state machine metric, which requdivas currently restricted to the testing of single prasms.
all states be entered during simulation. State mme The earliest CFG coverage metrics include statement
can be applied to a multi-process design by computi coverage, branch coverage and path covEtagedels
the cross-product machine of all of the processebs a used in software testing. There are many notatde af
then requiring that each state in the cross-produdEFG coverage metrics for hardware validdflomMany
machine be covered. The problem with this apprasich CFG coverage metrics consider the requirements for
not only that the cross-product machine is larg&t, b fault activation without explicitly considering flu
also that the vast majority of the cross-productimae  effect observability. Researchers have developed
is redundant in most castsUse of a cross-product observability-based behavioral coverage métfic8 to
machine implicitly assumes that the individual alleviate this weakness.
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This study is based on our initial investigafibn The set of interactions must describe all of the
where we considered only a pair of processesiatea t ways in which the behavior of a set of processes ca
We propose our metric, which considers interactionsaffect the behavior of another set of processee Th
among arbitrary number of processes. Also, weexecution of one process may alter the course of
formalize the algorithmic techniques for identifgin execution of another process by impacting the dloba
feasible interaction sets. state by affecting signals between communicating

. ] ] _processes. The global state can be seen as trextont
System overview: We propose an algorithm to identify \which a process is executed. We need to execute eac
feasible interactions between _mult|p_le concurrenteontrol-flow path of each process in a range dedént
processes. Our algorithm prunes infeasible int@m@st  ontexts in order to evaluate the interactions betw
while modeling feasible interaction8y using this  ,5cesses. An interaction between two processes is
method, we significantly reduce the number Ofsequence of control-flow path executions; one path

!nteract[ons to be considered thereby renderinqhe execution of the first process alters the odnbé
integration testing more tractable. the execution of the second

We have implemented a metric to compute Th f - hs i b
interaction coverage. The steps involved in the e set of control-flow paths in a process can be

computation are shown in Fig. 1. The inputs to ourdssumed to repres_ent full range of behavior of that
method are a behavioral HDL description of the giesi Process. Say there is a set of concurrent proc&saed
and stimulus to simulate it. that each proces§IT has a set of control-flow paths P
The Path Analysis block in Fig. 1 extracts theadet Each path piP; is defined by the set of conditional
control-flow paths in each HDL process and theafet predicates encountered along the path in the CF&. T
feasible interactions between them by performingset of conditional predicates which are encountered
dependency analysis followed by a feasibility cheok satisfied along a path p is,CWithout loss of
them. generality, each conditional predicatedQ, is
Design is simulated with randomly generated tesexpressed as satisfied along the path p. In FigeRas
sequences and a trace of control flow paths exeatte consider a path p defined by the predicates b<3 and
each simulation time step is generated. The Tracg>1 poth of which evaluate to FALSE. Since is aefi
Analysis step evaluates the trace to determine Wwhicig contain only positively asserted predicatesh buft
paths and interactions were executed during simoalat e predicates are inverted, henge=Q(b<3), I(c>1).
thereby computing interaction coverage and path ‘ggch path p contains a set of signal assignments

coverage for comparison. @A, a set of signals(iR, whose values are used in
Interaction among a set of processes can be defmq e path and a set of signal§]W, whose values are

as communication between processes by means Q signed in the path. For examplpe refer to the pah

shared signals in the HDL design description. AnFig. 2a shown by the predicate§,€ I(b<3), I(c>1).

interaction is said to occur between two procesgen . . . ,
: . This path contains assignments Ap =1yin), (x 5),

one process writes to a signal and the other rédwds . ; ; . .
it reads signals and writes signals . Since weoaig

signal later and executes. It is possible to hachan . . :
. : : ; . interested in interactions between processes, ¢fe s
of interactions spanning over multiple processes, i& . : ; .
and only involve internal signals which are used to

there is a common writer/reader path between three :
: . . . . “¢ommunicate between processes.

processes they will said to be having an interactio _ ) .

Each of the control-flow paths in the processeshav Let us consider a processes paartd pas |, . We

be evaluated in different contexts with respeceach define an interaction between a pair of processea a

other to determine interactions. sequence of paths, one in each process,
e e i01¢ =(py,p,),p,0PR, ,p0 R . Similarly, an interaction
atic Analysis ; Dynamic Analysis i i ,’ )
‘ ‘ among multiple processes of size 'n’ can be defiagd
Set :
Path ¢ | Interaction . ! .
Analysis L Coverage i01t, =(PyP,-P)p0O R ,p0 P ,.p0 P Processes in
_. Trace Aty
Set i Analysi: . .. .
© ~ [ — behavioral hardware  descriptions may contain
=\ looping control flow constructs. All loops are assd
Simulator _’(lnformation T to be of fixed length since variable length loops
Jesibench cannot be synthesized efficiently. All loops are

unrolled to enumerate control flow paths for
Fig. 1: Interaction coverage system interaction analysis.
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signal a, b, ¢, x, ¥y : integer;
1 ChemlnteractionPair {writer-path W_P_reader pathR P}
if (b < 3) then 2 {w/r} = All Statements in W_P/R_P path
a = b; 3 Lhs/Rhs = set of variables on the left/right hand side:
else . iE (e 2) 4 Foreach Wstmt = {w}
endyig ALy elszm: R 3 Foreach Tstmt = {r} .
if (¢ > 1) then ocut <= 1; 6 if (Var = (W, Lhs[| Rope Rhs) =)
x <= 1; 7 if (CheckFeasibility (Wi Ropt))
else 8 return build_interaction (Var. W, Ry
* B S 9  return NULL:
(@) (b)

) Fig. 3: Algorithm for interaction definition
Fig. 2: HDL example (a): Process 1 and (b): Pro2ess

and therefore form interactions with pathip Fig. 2b

Qrder of composit_ion: O_rder of gomposition canbe an \;pnare G2 = (x>2). If the execution sequence of paths
issue when dealing with multiple process sets. Ou

; . Buring testing is p ps, p. then the interaction ¢pp,) is
approach ~composes processes to identify theig, ereq but the interaction () is not covered since
interactions and the order

in which processes arg \yas executed closer to 1 sequence. Equation 2

composed is important. Each interaction can be 88@0  oy4onds the idea of dependency in equation 1 across
directed acyclic graph, where each edge represktis multiple processes:

transfer between two control flow paths. So intéoas
between two processes and can |_nvolve data tranSfﬁependency check:
from to, or from to. In order to identify all traaxgtions,
we compose processes in all pairwise orders.

Dependency checkcan be
illustrated as the algorithm shown in Fig. 3:

Figure 3 show an algorithm for determining an
interaction between two control flow paths. The
algorithm consists of two main parts in finding alat
- y . : dependency and finding feasibility of a given
set of all interactions between a pair of processesis i iaraction.” In finding data dependency, first die
a subset of the cross-product betwegnand R, . The  rgjeyant statements are extracted from both theraon
set of all interactions should be a small subsethef flow paths as shown in lines 2 and 3. All Left Hadd
cross-product because many path pairs are nobfeasi Side (Lhs) variables assigned in the writer path ar
Each interaction captures a functional dependencgnumerated while all Right Handed Side (Rhs)
between the interacting processes. To captureperands in assignments in the reader path arerexpl
dependencies, the second path involved in ams shown in lines 4 and 5. Then the common vasable
interaction must be dependent on the first patthe in both Lhs and Rhs are checked for data dependsncy
sequence via a set of signals. This requiremesthied  line 6. If a data dependency is detected, the mmitader
formally in Equation 1. An example of dependency ca pair is passed to feasibility check routine at lfnd.ine 9
be seen between path in Fig. 2a whepe € (b<3), returns NULL if the CheckFeasibility() fails if the
I(c>1) and path in Fig. 2b wher€, =(x>2). Path interaction is infeasible and as a result is prumesy.

depends on the mutual access of signal x:

Path analysis: Path analysis is an important step in
identifying feasible interactions among proces3dse

Interaction feasibility: Interaction feasibility needs to
checked in addition to the dependency requirement
between the paths of an interaction since thedot&m
must also be feasible in terms of the possibilify o
DEP(ZH: P )= [W,N DEPEn: P) (2)  executing the interacting paths in sequence. @densi

i=0 =) an interaction involving the path in Fig. 2a sholbn

Cp1 = (b<3), (c>1) and the path in Fig. 2b shown by

An interaction is considered to be covered duringC,, = (x>2). This interaction is infeasible becauséhpa
verification if associated paths and are executed icannot be executed immediately prior to the exeauti
sequence and no path {® executed in between the of path . The path sequence p, is infeasible because
paths which assigns a value to a signal which it bo assigns signal x to 1 while requires signal x>2.
assigned by pand read by por vice versa. This can be In general, an interaction between two paths and i
described using paths in Fig. 2a and b. Consider twinfeasible if the set of signal assignments, A
paths in Fig, 2a, pand p, where G, = !(b<3), !(c>1) collectively imply the inverse of one or more ofth
and Gg = !(b<3), !(c>1). Both paths and assign signal x conditional predicates in & Identifying this condition
157
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in the most general way is intractable becausarithe Process pair: Interactions can be identified by
formulated as the SATISFIABILITY problem. Instead, algorithm in Fig. 5.

we simplify the problem to identify infeasible Figure 5 shows an algorithm for finding feasible
interactions in most practical designs. interactions between two processes. Initially,

A conditional expression can be easily evaluated ilnteraction set is empty at line 2. All the contflw

all of its signals and/or variables are bound tostant  paths in Process 1 and 2 are enumerated at lind 3.a
values. If all of the unbound signals ¢ p 0 C,, are  Each pair of paths between process 1 and 2 aréethec
assigned to constant values by some assignniémta  for feasible interactions using CheckinteractionPai
then path pis said to uniquely determine conditional aigorithm shown in Fig. 3. The algorithm in Fig. 3
expression c. If a conditional is uniquely detereaithe  yetyrns an interaction if feasible and the intdoacset
evaluation of the conditional expression is trividle  yefined at line 2 is updated accordingly at lindo7

determine if an interaction between two pathamd R jncjude it. Finally, this algorithm returns all tpessible
is infeasible by substituting the assigned sigraues sets of Interactions at line 8

of into each conditional expression in,. plf a
conditional in p is uniquely determined and evaluates
to FALSE then the interaction is infeasible an vice
versa. This computation is stated formally in Eq. 3

N-process interactions: Valid 'n’ process interactions
can be derived from 'n-1’ pairs of process intamatg.
Figure 6 shows two feasible triple interaction. set
3) Triple interaction 1 is a chain of interaction beem a1,
bl and cl1 processes. Process 'al’ writes to a cammo
signal that is read by process 'bl’. In the sametrod
path that is used by process 'bl’ that interacteith w
process 'al’, there is a write to a common sighat ts
read by process 'cl’. Triple interaction 2 depiets
different scenario when process 'a2’ writes to camm
signal that is being read by process 'b2’ and 'dte
signals used by 'b2’ and 'c2’ might be different ltle
control flow path (writer path) used by 'a?2’ is goe.
In triple interaction 3, the scenario is differeag the
processes ‘a3’ and 'b3’ write on to signals in ancwon
reader control path in process 'c3'.

IF(p,,p,)= Oc G,, ,SUB(C,A, |

In Eqg. 3, the function SUB(c, A evaluates to TRUE if
the conditional expression c is uniquely determibgd
path p and ¢ computes to TRUE upon substitution of
its unbound signals with relevant assignmentsgjn A
Feasibility check as shown in Fig. 4 is important
pruning the interactions which would never occtr. |
the reader statement in the interaction is a cimmdit
whose condition depends on the value written byewri
statement, then there is a way to check feasililitthe
condition by replacing the value in the condition.

Feasibility analysis. Feasibility analysis can be
formalized with the algorithm shown in Fig. 4.

If the condition never holds true, the interaction
can be pruned. Subroutine ‘findValue’ finds valdean
expression that is passed as argument. The expnessi
can be as simple as a variable or it can be a @mpl
nested expression. Writer statement Lhs is evaluate
and the value 'Val' is stored as shown in line f2the
reader statement is a conditional then ‘'Val' is
substituted for the writer Lhs expression used in Fig. 5: Algorithm for process interactions
reader’s Rhs expression and the value of readérs R
expression is found as depicted at line 5. Linetérns wiple #1 rriple £2 triple £3
1 in case the reader statement is not a conditiagal _ _

. . . - = y 3 .
there is no pruning possible. al L b3 ) (a3 )

CheckProcessPairInteractions(Process 1. Process 2)
1=/
{P} = All control flow paths in Process 1;
{Q} = All control flow paths in Process 2;
Foreach p; = {P}
Foreach q; = {Q}

I =ICheckInteractionPair(p;. q;)

retum {I};
return NULL;

[ R o N R

Lhs/Phs = Set of variables on the left/right hand side; l \, Z

1 CheckFeasibility(Statement wr, statement rd) b1 o 4 I
2 Let Val = findValue(wr.Lhs) L o

3 if{rd.type == conditional)

4 substitute val for wr.Lhs inre.Rhs

5 return findValue(rd. Rhs)

6 else return 1 2

Fig. 4: Algorithm for checking feasibility Fig. 6: Types of triple interactions
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1 Chemlnteraction(ProcessList _T‘“]P) )
— L

(]

5 = Nt E
_'.1-UP1 =R U ;.mpi :
N n 5
? Sx-upl =R UER US:—IPU
{P} = All control flow paths in Py
{Q} = All control flow paths in Py;
Foreach pi € {P}
Foreach qi = {Q}
ifiln=2)
return CheckInteractionPair(p. q:):
else
{I} = CheckInteractionPair(p:. q:);
return CheckInteraction( {I} uThE )i

[=S R0 R N Y

el

11
12

data_in

data out "~ @
m num F 3\ ¥
&j -\_‘:'Elilress

play

sound
v

Fig. 8: Interconnected signals in b12

. . . . ) Table 1: Interconnection of processes in b12
Fig. 7: Multiple process interactions algorithm No. of
Process paths  Signalin Signal out
Figure 7 shows an algorithm for finding FSM1 1 S {num}
. . . FSM2 2 {data_in, wr, address} {data_out}
interactions between multiple processes. Thegws 7o {data_out, num} {data._in, wr, address, playund}

algorithm accepts a process list of 'n’ size, P, are
the first two processes iEi":oPi as depicted in lines 2-4.

All the control flow paths in B P, are enumerated in
lines 4 and 5. The lines 6 and 7 explore all thiagpan
P, P.. If the size of the list is 2, then the algoritlust
returns ’'CheckinteractionPaitfp This subroutine
returns the feasible interaction set related tdf,the
size of the input list is more than 2, then thecfion is

called recursively with a pruned s{@tuzi”:fi where

{1} is the list of interactions  from
CheckinteractionPair(pg). The recursion continues till
'n’ equals to 2 where it returns a set of interacsi.

MATERIALSAND METHODS

We use Verilog Procedural Interface (VPI)

extensively to interact with the simulator (Cadence

Verilog-XL) from a C application while running a

simulation. We have evaluated our coverage metric b

applying it to the examples from the ITC99 benchmar
suité>iz].

Interaction example: We describe application of our

coverage metric to the example b12 step by step. THF1-F3, F3-F2, F2-F3 and

FSM4 18 {play, sound} {-}

Table 2: Interaction pairs in b12

Pair Max paths Feasible
F1-F3 1*70 2

F3-F2 70*2 2

F2-F3 2*70 36

F3-F4 70*18 364

Total 1610 404

F4 and one input signal each from F1 and F2. Figure
shows high level interconnection of signals shared
among four FSMs in the design.

Process pairs. A single process pair can yield many
interactions since each of the process pair care hav
multiple control flow paths and there are many
interactions possible between any two of the paths
taken from each of the process pair. There candre m
than one interaction between two path pairs if iplat
data dependent variables are involved.

Since b12 has 4 processes, it means that there are
12 possible combinations of process pairs for
interactions. But in reality, there only 4 feasipkgrs in
F3.F4 as evident

example has 656 lines of Verilog code with severfrom the Fig. 8, pairing of F3F1 is not feasible since

signals shared between four concurrent processegg. O

there is no signal being written in F3 that is r@aé1.

signals which are used to communicate betweedable 2 shows feasible interaction p airs agnaine

processes are considered, so input and output @igts
not taken into account.

4 processes in b12.
Column 1 shows type of interaction involved.

Table 1 shows the input and output signals in th&Column 2 gives information on total number of paths
processes in b12. Each of these processes cordssporpossible for the given pair. This is a product oftrol
to a Finite State Machine (FSM). F1 is the smallesflow paths available in the given pair of processes

state machine with only one state and its outpgrnadi

example, F1 has 1 control flow path anglhBs

is connected to F3. F2 has two states and it has oryO control flow paths. SofFl - F3 can have maximum

output signal connected as input to F3 and thrpatin of 70 interactions possible. Third column shows the
signals connected from F3. F3 is the biggest poés actual feasible paths after pruning based on data
all with 26 states with two output signals cocteel to  dependency and condition feasibility. For examgéga
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dependency analysis yields 4 feasible interactionke St guts
pair F3 - F2 but 2 of them are pruned out after doing N\ data in
condition feasibility analysis. In F3, there is one S
statement that assigns '0’ to signal 'wr’. This reg DEN S N s g
'wr' is being read in F2 in a conditional statement i FISF3E2

*

play

which decides whether or not the condition is §atis e €20
When 'wr’ is assigned to '0’ in F3, the conditioails e
and the subsequent paths (2) are pruned. Thedast r S
indicates total number added up from the previous ‘/F*{F G s ?f;\
rows. There are total 1610 control flow paths hutt@f N~ N\
them there are only 404 feasible interactions jpbessi — \\add'm -
The pruned process pair interactions are 75%. e

Toodate_our 752 Eid: T F3—>F2-F3
Process triples: A Valid triple process can be defined F2>FioF4 _
as a chain of valid interactions between processl, B )
process2 and process3. There are 424 possibl S ot PN
combinations of process triples for interactions. - dm .

| num

However, the valid triples set would be much ldsmt
that. There are 7 feasible triplets as shown inld&b . _
Second column indicates maximum possible [ 2
interactions in the given triplet interaction. Ftre z
chain type interactions, the first pair dictates th

2D,

Wr . / :
R i F2
N F2

. address o=

F3 )

data_out_gi\\ > JJ 1)
— N\~

N F3—F2 and F3—F4
F1—F3 and F2—F3

maximum possible interactions. For example, in this e data_in_

. . . . =i F3 wr g2
chain of reaction, F4F3-F2, maximum possible ' 5 i &
interactions is determined by number of -FE3 Eialial

interactions possible (2 according to Table 2) iplidd

by total number of control flow paths in F2 (2 awling Fig. 9: Triples in b12

to Table 1_). o P i

The final row indicates total sum of the data from '\ ™ ///
the previous rows. Out of 1000 possible total paths /;_',_ oo Gataim?
there are 244 feasible triple process interactions (1:1\} mum. 1 (f 2 j data_out, 3 1<P2>
possible. So, the effective pruning of interactidas ~—r \—/H\addz;' = 4
nearly 75%. Figure 9 shows different combinatiofhs o e
triplets possible for the b12 design. F1F3F2F4

d;{t_a_gugi;

Process quartets. A valid quartet process can be e . T -
defined as a chain of valid interactions between ’( Pﬁj:*—“—“f—/@_j%&:(%)

processl, process2, process3 and process4. Figure 1 S
lists combinations of quartet processes in the @am )
b12. The sequence order is depicted along with the &-J/

shared signal on each arrow connecting two differen

processes. Since there are both read and writedhar

signals between processes F2 and F3, there ateof lo )
combinations possible which result in quartet Satsou?
interactions. Table 4 summarizes different quartet

interactions possible in example bl2. Quartets are
possible because of possible loop interactions gmon
address, 1,3

processes. There is a loop between processes F2 and
F3. There are only three quartet interactions pbssis
listed in the Table 4. Final row summarizes thaltot e

sum and the effective pruning of quartets intecadiis
about 93%.

~_address. 1 __~

F3—F2—=F3F4

Fig. 10: Quartets in b12
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Table 3: Interaction triples in b12 Table 5: Coverage results for interactions in b12
Pair Maximum Feasible  Type max Feasible Pruning (%) IC (%)
F1-F3-F2 2*2 4 Doubles 1610 404 7409 61.4
F1_F3_F4 2*18 0 Triples 1000 244 75.6 37.8
F2_LF3_.F2 36*2 0 Quartets 2440 192 92.1 14.6
F2-F3-F4 36*18 104
F3-F2-F3 2*70 108 Table 6: Summary of benchmark examples used
F1-F3and F2.F3 2*36 0 BM LOC No. processes No. signals
F3-F2 and F3.F4 2*364 28 b12 656 2 7
Total 1000 244 b13 312 5 9
b15 741 3 7

Table 4: Interaction of quartets in b12
Pair Maximum Feasible  Table 7: Results for interaction coverage
F1-F3-F2-F3 4*70 72 BM Maximum  Feasible Pruning CPU (%) Cov. (%)
F3- F2-F3-F4 108*18 120 b12 5050 840 83.3 1.72 95.3
F3-F2-F3-F2 108*2 0 b13 379 47 87.5 0.33 100.0
Total 2440 192 b15 1836 267 85.4 0.77 98.8

RESULTS As it is evident from the results, we had achievedy

efficient pruning for all three examples. The time

The simulations were performed on a sun ultrataken by our algorithm is dependent on total number
sparc machine with 1 GB memory running Solaris 5.80f control flow paths in the processes. As the nemb
A total of 20,000 random test sequences were appie of control flow paths, the total time needed for
test the coverage metric. It took about 1.72 sewito  pruning may increase.
the simulation whereas coverage computation and
analysis using our metric could be performed during DISCUSSION
simulation in about 2.4 sec.

Table 5 shows the coverage results obtained in  Verification of interacting processes in executabl
different categories. First column describes theetgf  device models as well as their simulation coverage
interaction while second column gives the totalhpat computation is complex. We propose algorithmic
possible. techniques for identifying feasible interactionssébr

Third column lists total feasible interactions tehi an arbitrary number of processes. This was a $ognif
fourth column gives percentage of pruning of infleles  improvement from our initial investigatifhwhere the
interactions obtained. The last column gives tmalfi metric was limited to only a pair of processes.
Interaction Coverage. Doubles interactions weree ey Our metric pruned infeasible interactions while
by 61.4% while triples were covered by 37.8%. Qatart modeling feasible interactions among multiple
were covered by 14.6% and this number is low coggar processes. By using this metric, we considerably
to others as quarter interaction is harder to aehie reduced the number of interactions across multiple

Table 6 shows the ITC '99 benchmark examplesyrgcesses for analysis which reduced the complexity
used for our experiments. We specifically Choosemtegration testing. We obtained pruning of up 8%
examples with complex control flow. _Column of interactions in our experiments. This was a
corresponds to the benchmark name while subsequegl,ifieant achievement compared to traditionalriost

columns depict number of lines of code (column 2), : X o
number of processes (column 3) and number of sharev(\fhere each of the infeasible paths (extra 93% pthis

signals (column 4) among the processes respectively were pruned in our technique) is also consideretaen
ined result, the coverage results become not practnal

in different categories. First column describes tiyee metric fared much better than traditional metrige |

of interaction while second column gives the tpiths ~ Path coverage in terms of simulation and tractgbili

possible. Third column lists total feasible intéimes ~ With the cross-product machifle it would be

obtained after our methodology. Percentage of pgini impossible to get 100% coverage on interaction sets

of infeasible interactions obtained is presented irfince a lot of them are infeasible combinationsr Ou

column 4 and CPU time taken is shown in column 5metric identifies and eliminates infeasible int¢i@mts
The last column gives the final Interaction Coverag and makes 100% coverage a reality on the feasttle s
achieved after simulating the design and observin@f interactions. It would be more appropriate t@ se
the trace for the identified feasible intdéi@e set.  which interactions are covered with our metric.
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In order to check the scalability aspect for our6.

proposed metric, we applied our methodology to ITC
benchmarks b12, b13 and b15, which have a multitude
of interaction sets. We effectively pruned away

infeasible interactions and thus reduce verifigatio 7.

consideration to a limited feasible set of intei@at.
We presented results for triples and quartet psoces
interactions to support our method.

8.

CONCLUSION

We have presented a coverage metric to model the
interactions between multiple concurrent processes.
Interactions between complex components are difficu
for any one designer to understand, making desigmse
related to component interaction difficult to dete@ur

coverage metric models the meaningful interaction®.

between components, while ignoring those interastio
which are infeasible or unlikely to reveal errdrs.this

way, the number of interactions for evaluation is
reduced, making coverage computation tractable. The
research presented in this study can be applied to
interactions between an arbitrary number of praess
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