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Abstract: There are many problems in science and engineering whose solution is applied in the design 
of Multi-Dimensional (MD) digital filters. Digital filtering finds an important position in the field of 
digital signal and image processing.�Recently there had been a great deal of interest in the design and 
stability analysis of Two-Dimensional (2-D) recursive digital filters. The design techniques for stable 
One Dimensional (1-D) digital filters are relatively well developed; but their extension to 2-D had been 
tried with difficulties. The stability problem of 2D filters had been the subject of intensive research 
during the recent decades. The trend is towards finding sufficient conditions, because necessary and 
sufficient conditions are difficult to find or to test. In this study, we make a detailed comparison of the 
various approaches available for testing the stability of 2-D recursive digital filters. Though researchers 
had done a lot on the stability testing methods, a comparative study by listing the computational 
complexities of various methods had not been done so far. This study would help the researchers to 
choose proper stability testing methods based on the computational complexities. 
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INTRODUCTION 

 
 The growing interest for the design of Two-
Dimensional (2-D) filters is due to a variety of 
applications in fields such as digital image processing, 
medical data processing, artificial vision, radar and 
sonar data processing, remote sensing, pattern 
recognition, numerical stereoscopy, astronomy, 
biomedical engineering, biochemistry and robotics[1]. 
For a given response characteristic, recursive filters 
have less hardware requirements and so, wherever 
linear phase is not a requirement, recursive filters are 
preferred over the nonrecursive filters. Recursive filters 
have lower sidelobes in the stopband than nonrecursive 
filters with the same number of parameters. Despite 
these merits, the problem of stability is associated with 
the design of recursive digital filters. In the design of 2-
D filters, the normal practice is to use first and/or 
second order sections and to cascade these realizations 
to obtain any higher order filter. The advantages of a 
cascade realization are reduction of quantization noise 
and sensitivity to coefficient truncation[2]. Even while 
designing a second order filter section from a given 

magnitude or phase specification using lp design 
technique[3], one has to check at the end of each 
iteration whether the resulting filter is stable or not.  
 A system is considered stable in the Bounded-Input 
Bounded-Output (BIBO) sense if and only if a bounded 
input always leads to a bounded output[4,10]. Stability is 
often a desirable constraint to impose, since an unstable 
system can generate an unbounded output, which can 
cause system overload or other difficulties. If a filter is 
unstable, any noise, including round-off errors to 
computation will propagate to the output and be 
amplified. In the spatial domain, the necessary and 
sufficient condition for a 2-D Linear Shift Invariant 
(LSI) system (or equivalently, the filter) to be stable is 
that its impulse response hij is absolutely 
summable[4,10,14]. Mathematically, the stability of a 2-D 
causal recursive filter is: 
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 Alternatively, in the frequency domain, the 
stability of 2-D recursive filter is determined by the 
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coefficients of the denominator polynomial B(z1, z2) of 
the transfer function H(z1, z2) described as follows[5]: 
 

m n i j
ij 1 2i 0 j 0 1 2

1 2 p q i j
1 2ij 1 2i 0 j 0

a z z A(z ,z )
H(z ,z )

B(z ,z )b z z
= =

= =

= =
� �

� �
 (2) 

 
 The stability of the designed digital filters is 
therefore essential for their practical implementation. 
However, most of the existing filter design algorithms 
may result in an unstable filter[1,3]. In 1-D recursive 
filters, determination of stability is quite 
straightforward. It is only necessary to locate a finite set 
of roots in the z-plane. As for 1-D, any higher-order 
polynomial can be factored as a product of lower-order 
polynomials, which is not feasible in the case of 2-D. 
This set back that occurs in 2-D has a major impact on 
many results in signal processing[4]. Therefore testing of 
2-D recursive filters for stability is extremely 
cumbersome. However, testing of recursive digital 
filters for stability is a very important at the design 
stage. Numerous approaches can be found in the 
literature for testing the 2-D recursive digital filters for 
stability[5,6-9,11,12,14]. In this study, we make a 
comparison of the various approaches for testing the 
stability of 2-D recursive digital filters which are 
devoid of Nonessential Singularities of the Second 
Kind (NSSK)[4].  
 The organization of this study is as follows. We 
first present the existing Theorems on stability and 
approaches for testing the stability of 2-D recursive 
digital filters. Then we briefly review the various 
approaches for testing the stability conditions of 2-D 
recursive filters. A summarized table with the 
computational complexities of the various stability 
testing methods is prepared.  
 
Brief review of stability theorems and stability 
testing approaches on 2-D recursive digital filters: In 
this research, we review the various stability testing 
Theorems on 2-D recursive digital filter and approaches 
for testing its stability.  
 A 2-D causal recursive digital filter is characterized 
by the two-dimensional z-transform function as in (2). 
In this, aij and bij are real constants. Without loss of 
generality, we can assume that b00>0. The variables z1 
and z2 are defined as 1 1s T

1z e−=  and 2 2s T
2z e−= , where s1 

and s2 are horizontal and vertical spatial complex 
frequency variables and T1 and T2 are the constants 
representing the sampling period. In (2), we assume 
A(z1, z2) and B(z1, z2) are mutually prime and also the 
transfer function H(z1, z2) has no nonessential 
singularities of the second kind. A variety of Theorems 

relate the stability of a recursive filter to the zero region 
of the polynomial B(z1, z2). Most of these Theorems 
have two parts in general[2]. The first step usually 
consists of checking the zero distribution of a one-
dimensional polynomial. The second step consists of 
determining whether B(z1, z2) is zero free on some 
higher dimensional surface. In certain Theorems, this 
surface has two Euclidean dimensions, three in some 
and four in other Theorems[2,4]. The popular 2-D 
recursive filter stability Theorems available in the 
literature are mainly due to Shanks and Huang[4,10]. 
 Shanks’ theorem is historically one of the first 
Theorems developed, which is conceptually very 
simple and has led to other stability Theorems. 
According to this theorem: 
 
Stability 1 2B(z ,z ) 0⇔ ≠  for any 1z 1≤ , 2z 1≤  (3) 
 
 This means that if there are any values (real or 
complex) of z1 and z2 for which B(z1, z2) is zero and for 
which z1 and z2 are simultaneously less than or equal to 
one in magnitude, then the filter described by the 
transfer function H(z1, z2) will be unstable, or else, the 
filter will be stable. The condition in (3) suggests a 
procedure in which B(z1, z2) is evaluated in the 4-D 
space. This stability condition implies that there are no 
pole surfaces for any 1z 1≤ , 2z 1≤ . The search in the 
4-D space is of course a tremendous work and hence 
this procedure cannot be used in practice. In this, one 
way to test the stability is to map the unit disk d1 � (z1, 
|z1| � 1) in the z1 plane into the z2 plane by the implicit 
mapping relation B(z1, z2) = 0. The filter is stable if and 
only if the image of d1 in the z2 plane does not overlap 
the unit disk d2 � (z2, |z2| � 1).  
 Shanks’ Theorem is simplified considerably by[12]. 
According to Huang’s Theorem[11], the system (filter) 
described by the transfer function H(z1, z2) as in (2) is 
stable if and only if:  
 
(Condition 1): 

 
1 2 1B(z ,z ) 0, | z | 1≠ ≤  (4) 

 
(Condition 2)[1,2,4,5,7,17]: 
 

1 2 1 2B(z ,z ) 0 | z | 1,| z | 1≠ = ≤  (5) 
 
 Condition-1 in (4) is relatively easy to check using 
any 1-D stability test[5]. Condition-2 in (5) is more 
difficult since it includes two variables.  
 In general, the 2-D recursive filter stability 
conditions can be tested with algebraic and mapping 
methods[4,5-9,11,12]. Theoretically, only algebraic methods 
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can exactly determine the stability conditions in (5) in a 
finite number of steps, while mapping methods lead to 
approximate results and need an infinite number of 
steps to acquire that reliability. However, there are 
some difficulties which limit applications of algebraic 
methods. In algebraic methods, the stability tests rely 
on certain algebraic properties of complex polynomials. 
Huang developed the first algebraic procedure[12] to test 
the stability conditions based on double bilinear 
transformation and Ansell method. In a while, a number 
of other algebraic procedures were developed. Maria 
and Fahmy used the table form to test the stability of 
two-dimensional filters. The positivity of self-inverse 
polynomial is checked for the stability. Two schemes 
employed for checking the positivity of such 
polynomials are Sturm’s and Cohn’s methods. 
Anderson and Jury came up with a new algebraic 
procedure[11] for testing the stability conditions. This 
method does not involve the use of bilinear 
transformations. In this method, the 2-D polynomial is 
considered as a 1-D polynomial and then Schur-Cohn 
method is employed. Siljak[16] has modified the method 
given by[11] proving that only one self inverse 
polynomial need to be tested for positivity in the course 
of testing condition instead of ‘q’ such polynomials as 
required in Anderson and Jury method.  
 In[5], an alternative necessary and sufficient 
condition for the stability of a class of 2-D recursive 
digital filters is discussed. This method makes use of 
Schur-Cohn Hermitian matrix formulation and bilinear 
transformation in a single variable. A new necessary 
stability conditions for 2-D recursive digital filter are 
given in[6]. It has been shown here that the inversion of 
the necessary conditions gives sufficient conditions. 
This approach uses the minimal delay property of 2-D 
polynomials. In[15], an improved stability test algorithm 
for two-dimensional digital filters is discussed. It has 
been shown the tabular algorithm given by Jury for 
obtaining inner determinants with numerical entries is 
also valid for the case of polynomial entries. A 
parametric algorithm is suggested here for the 
construction of stability array for 2-D systems that 
avoids the exponentially growth in the order of 
polynomial entries.  
 A new form for the Jury’s tabular test was 
proposed by[13]. It is shown that it is possible to 
telescope the last polynomial of the table by 
interpolation and circumvent the construction of the 2-
D table. In[8], a computationally simpler algebraic 
procedure is proposed. The stability of a two or 
multidimensional digital filter can be analyzed using 
the simple and straightforward approach of Routh’s 

stability test. This method involves testing one 
necessary condition and the sufficient condition 
involves testing four polynomials using Routh test for 
2-D recursive filters.  
 Most of the algebraic methods need to deal with 
polynomial entries in their procedures. The orders of 
those polynomials increase very rapidly as the order of 
the system under test increases. In[18], a modified 
polynomial array is developed for testing the stability 
conditions, which eliminates redundant information 
introduced in the ordinary table technique and leads to a 
greater reduction in the order of polynomial entries of 
the array.  
 
Comparison of stability theorems and stability 
testing approaches on 2-D recursive digital filters: In 
this research, we compare the stability Theorems and 
various approaches to test the stability conditions of 2-
D recursive filters.  
 According to Shanks’ Theorem, stability implies 
that the denominator polynomial of the transfer 
function, 1 2B(z ,z ) 0≠  for any 1z 1≤  and 2z 1≤ . This 
requires a 4-D search. The search in the 4-D space is, of 
course, a tremendous amount of work and the 
procedure is not used in practice. The modified Shank’s 
Theorem again by Shanks’ requires two 3-D searches 
which is considerably simpler than the 4-D search as 
required by Shanks’ first Theorem. In Huang’s 
Theorem, condition (1) is a 3-D search problem which 
can be solved by solving many 1-D stability tests. To 
satisfy condition (2), we require a 2-D search. In De-
Carlo-Strintzis’ Theorem, three 2-D searches are 
required[4]. From the search perspective, this Theorem 
is considerably simpler than Huang’s Theorem which 
requires a 3-D search. The Huang’s Theorem which has 
been restated by Anderson and Jury, says that the 
system is stable if and only if conditions-1 and 2 are 
satisfied. All these tests rely on certain algebraic 
properties of 1-D complex polynomial and therefore 
they will be called algebraic methods. In 2-D algebraic 
testing methods, the 2-D denominator polynomial B(z1, 
z2) is viewed as a 1-D polynomial with respect to one 
variable say, z2 and the complex coefficients of the 
polynomial are themselves 1-D real polynomials with 
respect to the other variable z1. Then applying 1-D 
algebraic tests to this case result in a sequence of real 
polynomials that contain the stability information. This 
sequence of real polynomials must be checked as a 
function of z1 to determine the system stability.  
 Huang developed the first algebraic procedure for 
testing stability conditions. Soon after this, a number of 
other algebraic procedures were developed. Testing the 
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stability of a two-dimensional recursive filter using 
Huang Theorem is much simpler than using Shanks’ 
original Theorem. However, this procedure too is still 
infinite. Huang Theorem can be reduced to a result due 
to Ansell[12]. Ansell’s result enables us to test the 
stability in a finite number of steps, which can still be 
very tedious. The procedure of Huang with Ansell’s 
result though finite, requires the application of two 
bilinear transformations. In essence, Ansell’s main 
contribution is to couple the use of a Hermite test for 
checking stability with a series of Sturm tests. This test 
involves the construction of a Schur-Cohn matrix and 
checking for positivity on the unit circle of a set of self-
inverse polynomials, but the computation of 
coefficients of the determinant of a polynomial matrix 
is very difficult. On the other hand, the 1-D s-plane 
procedure of Routh can be modified so that they give 
the same information as the Hermite test in a much 
more programmable manner. In this procedure a series 
of polynomials are iteratively computed and tested for 
positivity. The disadvantage of this approach being the 
order of the polynomials to be checked for positivity 
doubles for each row so the last polynomial has order 
approximately 2MM, where M is the order of the 
polynomial. Hence, even a tenth order filter will present 
a substantial computational burden. In order to 
efficiently implement the bilinear transformation, 
Huang method requires O(M3) calculations. It is 
worthwhile to note that methods such as Maria and 
Fahmy anderson and Jury and Siljak and Bose avoid the 
bilinear transformation and they seem to be more 
straightforward way of attacking the problem.  
 Maria and Fahmy method tests the stability 
conditions by employing the Marden-Jury table. This 
table performs the same functions for determining a 
complex polynomial’s root distribution with respect to 
the unit circle as Routh array does for the left-half 
plane. In fact, an Mth order complex polynomial has all 
its zeros outside the unit circle if and only if the first 
column of the table is positive. In this method, two 
schemes can be employed for checking the positivity of 
self inversive polynomials. They are Sturm’s and 
Cohn’s methods and they both require approximately 
O(N2) operations where N is the order of the self-
inverse polynomials. In order to carry out Maria and 
Fahmy test completely, the positivity of M polynomials 
of order M to 2M-1M must be checked. Therefore, it 
takes less than O(M2 4M) real calculations to guarantee 
that a given Mth order filter is stable. This means a 
16×16 2-D causal recursive digital filter stability test 
requires over a trillion calculations to guarantee 

stability. It is slightly easier to implement as no bilinear 
transform is needed.  
 The procedure presented by[11] is much simpler 
than by[12,14]. The procedure by Anderson and Jury, like 
Huang procedure is finite. It requires no bilinear 
transformation and replaces the Hermite test component 
of the main part of Ansell’s procedure by Schur-Cohn 
matrix. Then it allows either a series of Sturm tests, or, 
what turns out to be equivalent, a series of tests for 
establishing the root distribution polynomial. The 
checking of stability conditions falls into two distinct 
phases. First, we apply a Schur-Cohn test, after a 
fashion. Secondly, we check the positivity of a number 
of polynomials on |z1|. Anderson and Jury method is 
really to be compared against that of Huang. In general, 
these methods involve the same sort of calculations, 
save that we avoid the bilinear transformation 
component of Huang method[12]. Undoubtedly, this 
represents a substantial computational load for any but 
the simplest two-variable polynomials. On the other 
hand, as soon as the two variable polynomials under 
test become at all complex, presumably powerful 
computers will be used to do the checking and it might 
well prove the case that programming considerations 
determine which is the better method.  
 In the method by Reddy et al.[5], the computational 
complexity is further reduced. It is because this method 
makes use of both Schur-Cohn Hermitian matrix 
formulation and bilinear transformation in a single 
variable. Compared to Huang Anderson and Jury and 
Siljak methods this method is found to be 
computationally superior in all cases except a special 
case when no Sturm test is performed. The minimal 
delay property that gives the useful necessary 
conditions for 1-D polynomial, when extended to 2-D 
gives the necessary conditions for testing the stability of 
2-D polynomial[6]. In a method proposed by[7], the 
results of Barnett have been used to test the stability 
conditions. It is shown here that for the computation of 
the polynomial matrix, C, we find that the total cost 
involved is O(3n2) multiplications and additions. On the 
other hand, the method of Schur-Cohn includes O(n3) 
multiplications and O(n3/2) additions. From this it is 
evident that the method given in[7] is better than the 
classical Schur-Cohn method with respect to 
computational complexity.  
 In the algorithm proposed by[15], there is a greater 
reduction in the polynomial entries of the array from 

1n 1
2n 2 −

 to n1n2. The proposed algorithm is used to 
construct a polynomial array, whose degrees are 
comparatively lower than the established methods and 
hence lower in complexity. The telepolation of the 
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tabular test by[13] replaces the table by n1n2+1 stability 
tests of 1-D polynomial of degree n1 and n2 of certain 
form. The resulting new 2-D stability testing reduces 
the count of operations to O(N4). A new algebraic test 
procedure reported in[8] relies on Routh criterion for 
testing the stability conditions. It has been shown that 
the number of necessary condition to be tested for the 
stability of 2-D filter is only one and the sufficient 
condition involves 4 different cases.  
 Most of the stability testing methods need to deal 
with polynomial entries in their procedures. The orders 
of those polynomials increase very rapidly as the order 
of the system under test increases. For example, to test 
a 10th order filter, the table technique involves 
computing and positivity testing of a sequence of 
polynomials up to 5120th order. Many proposed 
methods, however, are too complicated to program. 
Furthermore, both round-off error and coefficient 
quantization effects may rise to affect the accuracy of 
the result because of such a large number of 
calculations. In[18], a modified polynomial array is 
developed which leads to a great reduction in the order 
of the polynomial entries from 1n 1

2n 2 −  to n1n2. Bose test 
requires approximately O(6M4) operations.  
 Anderson and Jury stability test with Siljak 
simplification is more efficient algebraic stability test 
for 2-D causal recursive digital filters. However, it is 
stressed that this and any other algebraic methods are 
infeasible for all but low-order filters. The algorithms 
that are needed for this test are complicated and 
difficult to program. Although algebraic methods can, 
in theory, determine the stability of any recursive 
filter, there exist a number of practical difficulties in 
their implementation. Since even a low-order filter 
requires a large number of calculations, a powerful 
digital computer must be utilized to implement the 
algorithm. Therefore, the computer’s finite work 
length restriction means that both round-off error and 
coefficient quantization effects must be considered. 
Mapping algorithms are superior to the algebraic 
techniques as they are easy to program and are able to 
handle virtually any order filter without any 
modifications. 
 
Computational complexities: Based on the above 
review, a shown in Table 1 with the computational 
complexities of the various stability testing methods is 
prepared which, could be used by researchers as a quick  
reference. Table 1 shows the various approaches 
available for testing the stability of 2-D recursive digital 
filters, the techniques/procedures used and the 
computations involved. 
 

Table 1: Computational Complexities of various Stability testing 
methods  

 Techniques/ Overall 
 procedures computational 
Method used complexity  
Huang[12] Double bilinear O(n24n)1 
 transformation with 
 Ansell’s result 
Maria and Sturm procedure O(n24n) 
Fahmy[3] Schur-cohn procedure 
Anderson and Schur-cohn procedure O(n24n) 
Jury[11] (Bilinear transformation 
 eliminated) 
Reddy et al.[5] Bilinear transformation O(n24n) 
 in a single variable with 
 Schur-cohn hermitian 
 procedure 
Mastorakis[6] Barnett results O(3n2) (for 
  computation 
  of polynomial 
  matrix alone) 
Yang and Parametric algorithm O(n6) 
Hwang[15] developed based on 
 Jury’s modified table 
Bistritz[13] Reformulated Jury’s Testing last polynomial 
 2-D tabular test alone requires O(n4)  
  computations while 
  overall complexity 
  is O(n6) 
 Telepolation technique Overall complexity 
  is O(n4) 
Sivanandam and Routh Criterion  O(n6) 
Sivakumar[8] 

Hu and Jury[18] 2- D Tabular test O(n6) 
Bose[9] Local positivity testing O(6n4) 
1: It is assumed that the degrees of two variable polynomial in both 
the directions are n and n 
 

CONCLUSION 
 
 In this study we have presented in detail the 
various stability theorems available in the literature on 
2-D recursive digital filters and the approaches 
available for testing 2-D filters for stability. The 
algebraic method available in the literature is not 
efficient particularly when the order of the filter 
polynomial is greaten than four. This is because of the 
complexity of computations involved and also the 
inaccuracies that creep in a big way because of the 
finite precision involved in the computers. It has been 
concluded that for lower filters, algebraic methods offer 
advantages, whereas for higher order filters 
approximation methods are efficient.  
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