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Abstract: Problem statement: In DNA based computation and DNA nanotechnology, the design of 
good DNA sequences has turned out to be an essential problem and one of the most practical and 
important research topics. Basically, the DNA sequence design problem is a multi-objective problem 
and it can be evaluated using four objective functions, namely, Hmeasure, similarity, continuity and 
hairpin. Approach: There are several ways to solve multi-objective problem, however, in order to 
evaluate the correctness of PSO algorithm in DNA sequence design, this problem is converted into 
single objective problem. Particle Swarm Optimization (PSO) is proposed to minimize the objective in 
the problem, subjected to two constraints: melting temperature and GCcontent. A model is developed to 
present the DNA sequence design based on PSO computation. Results: Based on experiments and 
researches done, 20 particles are used in the implementation of the optimization process, where the 
average values and the standard deviation for 100 runs are shown along with comparison to other 
existing methods. Conclusion: The results achieve verified that PSO can suitably solves the DNA 
sequence design problem using the proposed method and model, comparatively better than other 
approaches.  
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INTRODUCTION 

 
 A nucleic acid is a macromolecule composed of 
chains of monomeric nucleotide. In biochemistry, these 
molecules carry genetic information or form structures 
within cells. The most common nucleic acids are 
deoxyribonucleic acid (DNA) and ribonucleic acid 
(RNA). DNA, in particular, is universal in living things, 
as they are found in all cells and viruses. DNA is a 
polymer, which is strung together from a series of 
monomers. Monomers, which form the building blocks 
of nucleic acids, are called nucleotides. Each nucleotide 
contains a sugar (deoxyribose), a phosphate group and 
one of four bases: Adenine (A), Thymine (T), Guanine 
(G), or Cytosine (C). A single stranded DNA consist a 
series of nucleotides. The two of single-stranded DNA 
are held together by hydrogen bonds between pairs of 
bases, which called duplex or double stranded DNA 
based on Watson-Crick complement. A sequence of 
DNA can be read from 5’-end (the ribose end) of one 
sequence and the 3’-end (the phosphate end) of the 
other sequence. 
 DNA has certain unique properties such as self-
assembly and self-complementary, which makes it able 

to save an enormous amount of data and perform 
massive parallel reactions. With the view of the 
utilization of such attractive features for computation, 
DNA computation research field has been initiated[1]. 
Usually, in DNA computing, the calculation process 
consists of several chemical reactions, where the 
successful wet lab experiment depends on DNA 
sequences we used. Thus, DNA sequence design turns 
out to be one of the approaches to achieve high 
computation accuracy and become one of the most 
practical and important research topics in DNA 
computing. 
 The necessity of DNA sequence design appears not 
only in DNA computation, but also in other 
biotechnology fields, such as the design of DNA chips 
for mutational analysis and for sequencing[2]. For these 
approaches, sequences are designed such that each 
element uniquely hybridizes to its complementary 
sequence, but not to any other sequence. Due to the 
differences in experimental requirements, however, it 
seems impossible to establish an all-purpose library of 
sequences that effectively caters for the requirements of 
all laboratory experiments[3]. Since the design of DNA 
sequences is dependent on the protocol of biological 



J. Computer Sci., 4 (11): 942-950, 2008 
 

943 

experiments, a method for the systematically design of 
DNA sequences is highly required[4]. 
 The ability of DNA computer to perform 
calculations using specific biochemical reactions 
between different DNA strands by Watson–Crick 
complementary base pairing, affords a number of useful 
properties such as massive parallelism and a huge 
memory capacity[5]. However, due to the technological 
difficulty of biochemical experiment, the in vitro 
reactions may result in incorrect or undesirable 
computation. Sometimes, DNA computers fail to 
generate identical results for the same problem and 
algorithm. Furthermore, some DNA strands or 
sequences could be wasted because of the undesirable 
reactions. To overcome these drawbacks, much work 
has focused on improving the reliability (correctness) 
and efficiency (economy) of DNA computing[6]. 
 In this chapter, DNA sequences are designed based 
on Particle Swarm Optimization (PSO)[7]. Even though 
the DNA sequence design is a multi-objective problem, 
using weighted sum method, it is converted into single 
objective problem. Weighted sum method scalarized a 
set of objectives into a single objective by pre-
multiplying each objective with a user-supplied weight. 
This method is the simplest approach and the most 
widely used classical approach. However, the value of 
the weights is difficult to determine, it depends on the 
importance of each objective in the context of the 
problem and a scaling factor[8]. 
 
DNA sequence design: In DNA computing, perfect 
hybridization between a sequence and its base-pairing 
complement is important to retrieve the information 
stored in the sequences and to operate the computation 
processes. For this reason, the desired set of good DNA 
sequences, which have a stable duplex with their 
complement, are highly required. It is also important to 
ensure that two sequences are not complements of one 
another.  
 Various kinds of methods and strategies have been 
proposed to date to obtain good DNA sequences[1-6,9-23]. 
Seeman et al.[9,10] designed sequences using 
overlapping subsequences to enforce uniqueness. The 
approach is based on the "repairing" of sequences. 
Baum suggested a method to design unique sequences 
by avoiding multiple usages of subsequences, 
restricting the choice of nucleotides at the ends of the 
sequences[11]. 
 Hartemink et al.[12] designed sequences for the 
programmed mutagenesis, using the exhaustive search 
method, “SCAN”. Although the method is successful, it 
took much computational time. Penchovsky and 
Ackermann[13] implemented a random search algorithm 

to design DNA sequences. Binary information was 
encoded in DNA strands a twelve-bit DNA library was 
demonstrated.  
 Furthermore, Tanaka et al.[14] proposed some 
sequence fitness criteria and generated the sequences 
using simulated annealing[15]. The objective is to find 
proper combinations of the proposed fitness functions 
in   order  to  find  more   promising   solutions. 
Marathe et al.[16] chose a dynamic programming 
approach to design DNA sequences based on Hamming 
distance. A dynamic programming based algorithm for 
the selection of sequences with a given free energy was 
also presented. 
 Feldkamp et al.[17] used a directed graph to design 
DNA sequences. The nodes in the graph represent base 
strands, where each node can be extended into 4 strands 
that can appear as successors in a longer sequence. 
Then, by travelling the graph from root to leaf, DNA 
sequences are formed. This approach can also find a set 
of orthogonal DNA sequences within a predefined error 
rate quickly. 
 Frutos et al.[18] and Arita and Kobayashi[5] 
developed a template-map strategy to choose a huge 
number of dissimilar sequences while having to design 
only a significantly smaller number of templates and 
maps. Deaton et al.[19,20] used genetic algorithms to 
generate a set of unique DNA sequences using 
Hamming distance for measuring the uniqueness of 
DNA sequences and found better sequences than 
Adleman’s original sequences[3]. 
 Arita et al.[1] developed a DNA sequence design 
system using a genetic algorithm with three fitness 
criteria. Self-complementary sequences were designed 
for the Whiplash model and compared the results to that 
of a random generate-and-test algorithm. Shin et al.[21] 
developed NACST/Seq that implements multi-objective 
evolutionary optimization to generate sets of DNA 
sequences. NACST/Seq generated DNA sequences 
which satisfied all constraints which are Hmeasure, 
similarity, hairpin and continuity. 
 Guangzhou et al.[22] designed DNA sequences 
using PSO based on four fitness criteria. Twenty 
strands of DNA sequence with 20-mer were connected 
one by one in the same direction to form a strand of a 
400-mer DNA sequence. The strand is denoted as a 
particle, where 10 particles are created to form a 
swarm. However, the employed model cannot utilize 
high -dimensional search space and two of the fitness 
criteria, GCcontent and melting temperature are not 
suitable to be the objective functions. Zhao et al.[23] 

implemented a multi-objective PSO to design DNA 
sequences based on three fitness criteria. However, the 
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study failed to describe the modeling of DNA sequence 
design using PSO and several parameters in the 
algorithm also have not been explained. Pareto front 
solutions were not employed. 
 Compare to previous works[22,23] this chapter 
proposes different model of DNA sequence design 
problem. The length and number of sequences can be 
chosen by user and the particle in this model carries a 
set of DNA sequences. Dimensions in PSO 
computation represented strands of DNA sequences and 
the continuous search space are utilized. 
 
Objectives and constraints in DNA sequence design: 
The objective of the DNA sequence design problem is 
basically to obtain a set of DNA sequences where each 
sequence is unique or cannot be hybridized with other 
sequences in the set. In this work, two objective 
functions, namely Hmeasure and similarity are chosen to 
estimate the uniqueness of each DNA sequence. 
Another two additional objective functions, hairpin and 
continuity, are used to prevent the secondary structure 
of a DNA sequence. GCcontent and melting temperature 
are used as the constraints, which the ranges for these 
constraints are set by user preference. The formulations 
for all objectives and constraints can be referred to[24]. 
 DNA sequence design is actually a multi-objective 
optimization problem. However, in this chapter, the 
problem is converted into a single objective problem, 
formulated as follows: 
 

DNA i i
i

min f f= ω�  (1) 

 
subjected to Tm and GCcontent constraints, where fi are 
the objective function for each i∈ (Hmeasure, similarity, 
hairpin, continuity) and wi are the weights for each fi In 
this study, the weights are defined by the user. 
 
Particle swarm optimization: Particle Swarm 
Optimization (PSO) is a population-based stochastic 
optimization technique developed by Kennedy and 
Eberhart in 1995[7]. This method finds an optimal 
solution by simulating social behavior of bird flocking. 
The PSO algorithm consist of a group of individuals 
named “particles”. Each particle is a potential solution 
to an n-dimensional problem. The group can achieve 
the solution effectively by using the common 
information of the group and the information owned by 
the particle itself. The particles change their state by 
“flying” around in an n-dimensional search space based 
on the velocity updated until a relatively unchanging 

state has been encountered, or until computational 
limitations are exceeded. 
 PSO has been successfully applied to solve many 
optimization problems, such as power system design[25], 
data classification[26], robotic applications[27], decision 
making for stock market[28] and simulation and 
identification of emergent systems[29]. 
 With reference to the original PSO, each particle 
knows its best value so far (pbest), velocity and 
position. Additionally, each particle knows the best 
value in its neighborhood (gbest). A particle modifies 
its position based on its current velocity and position. 
The velocity of each particle is calculated using: 
 

k 1 k k
i i 1 1 i i

k k
2 2 i

v v c r (pbest s )

c r (gbest s )

+ = ω + −

+ −
 (2) 

 
Where: 

k
iv , k 1

iv +  and k
is  = The velocity vector, modified velocity 

vector and positioning vector of 
particle i at generation k, respectively 

k
ipbest  = The best position found by particle i  

gbestk = The best position found by the 
particle’s neighborhood or the entire 
swarm 

c1 and c2 = The cognitive and social coefficients, 
respectively, used to bias the search of 
a particle toward its own best 
experience (pbest) and the best 
experience of the whole swarm (gbest) 

� = The inertia weight, which is employed 
to control the impact of the previous 
history of velocities on the current 
velocity of each particle 

 
 The parameter regulates the trade-off between the 
exploration and exploitation ability of the swarm. Large 
values of � facilitate exploration and searching new 
areas, whereas small values of � navigate the particles 
to more refined search. The velocity equation includes 
two different random parameters, represented by a 
variable, r1 and r2, to ensure good exploration of the 
search space and to avoid entrapment in local optima.  
 The modified position vector, k 1

is +  is obtained 
using: 

 k 1 k k 1
i i is s v+ += +  (3) 

 
 The standard PSO algorithm to find the best 
positioning vector in PSO using i number of particles 
can be summarized as: 
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• Randomly initialize all position vectors, si = [s1, s2, 
s3,…,sn] and velocity vector, vi = [v1, v2,v3,…,vn] 
can be initialized to zero 

• Velocity vector k 1
i

+v  of particle i is calculated 
using Eq. 25 

• New positioning vector k
is of particle i is calculated 

using Eq. 26 
• If F ( k

is ) is better than the F ( k
ipbest ), the k

ipbest  is 
set to position vector k

is   
• If F ( k

ipbest ) is better than the F (gbestk), the k
ipbest is 

set to gbestk 
• If a pre-determined number of generations is 

reached or a sufficiently good fitness is obtained, 
the process stops. Otherwise, the process continues 
to step 2 

 
Optimization of DNA sequence based on PSO: For 
DNA sequence design application, the proposed 
approach is based on basic PSO algorithm. A DNA 
sequence is represented in binary, where A, C, G and T, 
are encoded as 002, 012, 102 and 112, respectively. A 
sequence contains of several bases, where one sequence 
represents one dimension. For each dimension, the 
length is depended on the length of DNA sequence (l) 
with the general formula of (4l -1). For 5-mer nucleic 
acid sequence, the range of the search space is (45-1), 
from 0 to 1023, in decimal, which represents sequence 
AAAAA to TTTTT. For a 10-mer DNA sequence, the 
range of the search space is (410-1), from 0 to 1048576 
and for 20-mer DNA sequence, the range is (420−1), 
from 0 to 1099511627776. 
 To obtain a set of 3 DNA sequences, for example, 
3 dimensions should be used in a search space. 
Therefore, each particle in the search space carries 3 
DNA sequences. In this study, 20 particles are 
employed and randomly initialized in the search space.
 The basic PSO has been developed for continuous-
valued search spaces. In order to eliminate the floating 
point in the computation, caused by the random values 
and coefficient factors, the floating values are 
approximated to the nearest decimal numbers. The 
decimal numbers are converted to binary and binary 
representations are converted into sequences. For 
example, the decimal number of 908.8 is approximated 
to 90910, which is equals to 11100011012, in binary and 
is converted into “TGATC” DNA sequence. The values 
of the constraints are 30%-80% for GCcontent and 50oC-
80oC for Tm. The Tm was computed based on the 
Nearest-Neighbor (NN) method[30]. Table 1 shows the 
values of PSO control parameters used in the 
experiments.  In  this  study, a decreasing inertia weight 

Table 1: The value of PSO control parameters 
Parameter Value 

Cognitive factor, c1 1.4 
Social factor, c2 1.4 
Inertia weight,  0.9-0.4 
Random values: r1, r2 [0,1] 
No. of particles 20 
Max iteration 1000 

 
(Eq. 4) is used, where a large starting value of � is used 
to initially accommodate more exploration and is 
dynamically reduced to speed the convergence to the 
global optimum at the end of the search process[31]. 
 

max min
max

max

k ' k
k

� �ω − ωω = ω − ×� �� �
� �

 (4) 

 
RESULTS 

 
 The results of the proposed approach are compared 
with existing approaches, taken from Deaton et al.[19], 
Guangzhou et al.[22] and Zhao et al.[23]. For each 
comparison, 100 runs have been performed by PSO and 
the average performance is exhibited in terms of the 
mean value and the standard deviation of the objective 
function evaluations. Results for all of the 
aforementioned comparisons are reported in Table 3, 4 
and 5. 

Table 2 summarizes parameter values for the 
objectives and constraints of the DNA sequence design 
problem. Since there are several ways to determine the 
weights in Eq. 1 and the weights depended on user 
preference, in this experiment, the weights are all set to 
default value, which is 1. 

The PSO method is first compared with results 
given in[19], which were obtained using a genetic 
algorithm. The method produced 7 good sequences with 
the length of 20-mer. Results of the two algorithms are 
compared in Table 3 and Fig. 1. PSO reached lower 
values in the total objectives, compared to the GA. The 
sequences generated by PSO surpassed the sequences 
from the GA in three objectives.  
 Sequences designed by PSO show lower values of 
Hmeasure, continuity and similarity, while sequences from 
Deaton et al. [19, 20] are better than PSO in the hairpin 
objective. Fig. 2 demonstrates that the fitness function 
of fDNA leads to convergence after 390 iterations. 
 The PSO method is then compared with results 
given in Guangzhou et al.[22], which were obtained also 
using PSO. 
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Table 2: The parameters for objectives and constraints 
Parameter Value 
Hcon, Scon 6 
Hdis, Sdis 17% 
t (for continuity) 2 
p, r (for hairpin)  6 
Na+ 1 M 
CT 10 nM 
 
Table 3: Comparison of the sequences in[19] and the sequences 

generated by PSO 
Sequences C1 Ha2 Hm3 S4 Total 
ATAGAGTGGATAGTTCTGGG 9 0 57 55 121 
CATTGGCGGCGCGTAGGCTT 0 0 65 44 109 
CTTGTGACCGCTTCTGGGGA 16 0 67 60 143 
GAAAAAGGACCAAAAGAGAG 41 0 58 40 139 
GATGGTGCTTAGAGAAGTGG 0 0 54 51 105 
TGTATCTCGTTTTAACATCC 16 4 72 41 133 
TTGTAAGCCTACTGCGTGAC 0 0 71 47 118 
   GA 
 --------------------------------------------- 
Fitness value 11.71 0.57 20.43 13.14 45.85 
Standard deviation 14.80 1.51 7.14 7.43 - 
   PSO 
 --------------------------------------------- 
Average 1.773 0.456 21.742 12.156 36.127 
Standard deviation 1.366 0.342 1.408 1.096 - 
1C, 2Ha, 3Hm and 4S are continuity, hairpin, Hmeasure and similarity 
objectives values, respectively 
 
Table 4: Comparison of the sequences in[22] and the sequences 

generated by PSO 
Sequences C1 Ha2 Hm3 S4 Total 
GTCAAATTCCCTCTATCGTC 18 0 67 37 122 
AGCGATAGTAGATCACCTGA 0 0 66 39 105 
CACGATATAGCTTCGAGCCG 0 0 60 51 111 
AATACACCGCTCACCAAGGA 0 0 72 42 114 
AACAGGGAAGAATGCAGAGG 9 0 60 34 103 
CCTCTACCAGCCAATGATGC 0 0 64 33 97 
TTAGGACTCGACGCCACTCC 0 0 67 39 106 
CCATGACCGAGGATCCACGT 0 0 49 43 92 
CGCCATTATCAGGCCTTTAC 9 0 60 46 115 
ACACAGTGGACGCACATACA 0 0 58 38 96 
TTATCCCGCCTCTTCTCCGT 9 0 60 48 117 
AATACGGTTCAAGCGGCTTC 0 4 68 38 110 
TAAAGGCGCGTGATCGGAAG 9 0 56 41 106 
TTGTTCGGGATTGAGCAACT 9 5 60 43 117 
GTCACTGAGTCAGCACTCAT 0 4 68 46 118 
CCATAAACTGCCAGCTCGCG 9 0 63 41 113 
CAACATAGAGTCAGGCGCTG 0 0 61 53 114 
CCAATGAGTCACCTCGTTCG 0 9 61 49 119 
GGGGTGGAGGCCCAACTATT 25 0 59 39 123 
CAGCGGTCTGAACCTCCATA 0 0 65 45 110 
   PSO[22] 

 ----------------------------------------------------------- 
Average 13.86 3.14 177.71 120.71 315.42 
Standard deviation 7.125 2.447 5.146 5.428 - 
   PSO 
 -------------------------------------------------- 
Average 21.25 0.57 203.44 117.31 342.57 
Standard deviation 2.331 0.115 1.736 1.842 - 
1C, 2Ha, 3Hm and 4S are continuity, hairpin, Hmeasure and similarity 
objectives values, respectively 
 
 However, the model was different from the 
proposed model in this chapter, while the weights for the 
fitness  functions  were  obtained  from Tanaka et al.[32]. 

 
 
Fig. 1: Average fitness comparison results between[19] 

and the proposed approaches, with 7 sequences 
and length of 20 mer 

 

 
 
Fig. 2: Convergence pattern of fDNA for the PSO 

algorithm, with 7 sequences and length of 20 
mer 

 
The method from [22] produced 20 good sequences with 
the length of 20-mer. Results of the two algorithms are 
compared in Table 4 and Fig. 3. The total values for all 
the objectives for the proposed approach were not 
satisfying, where PSO [22] obtained better values. 
However, the sequences generated by PSO surpassed 
the sequences from the PSO[22] in two objectives. 
Sequences designed by PSO show lower values of 
hairpin and similarity, while sequences from PSO[22] are 
better than PSO in the Hmeasure and continuity 
objectives. Fig. 4 demonstrates that the fitness function 
of fDNA leads to convergence after 307 iterations. 
 Table 5 and Fig. 5 compares the results of the PSO 
with Multi-Objective PSO (MOPSO) as given[23]. The 
sequences generated by MOPSO also have 7 DNA 
sequences   of   20  mer  length, similar   to    sequences 
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Table 4: Comparison of the sequences in[22] and the sequences 
generated by PSO 

Sequences C1 Ha2 Hm3 S4 Total 
GTCAAATTCCCTCTATCGTC 18 0 67 37 122 
AGCGATAGTAGATCACCTGA 0 0 66 39 105 
CACGATATAGCTTCGAGCCG 0 0 60 51 111 
AATACACCGCTCACCAAGGA 0 0 72 42 114 
AACAGGGAAGAATGCAGAGG 9 0 60 34 103 
CCTCTACCAGCCAATGATGC 0 0 64 33 97 
TTAGGACTCGACGCCACTCC 0 0 67 39 106 
CCATGACCGAGGATCCACGT 0 0 49 43 92 
CGCCATTATCAGGCCTTTAC 9 0 60 46 115 
ACACAGTGGACGCACATACA 0 0 58 38 96 
TTATCCCGCCTCTTCTCCGT 9 0 60 48 117 
AATACGGTTCAAGCGGCTTC 0 4 68 38 110 
TAAAGGCGCGTGATCGGAAG 9 0 56 41 106 
TTGTTCGGGATTGAGCAACT 9 5 60 43 117 
GTCACTGAGTCAGCACTCAT 0 4 68 46 118 
CCATAAACTGCCAGCTCGCG 9 0 63 41 113 
CAACATAGAGTCAGGCGCTG 0 0 61 53 114 
CCAATGAGTCACCTCGTTCG 0 9 61 49 119 
GGGGTGGAGGCCCAACTATT 25 0 59 39 123 
CAGCGGTCTGAACCTCCATA 0 0 65 45 110 
 PSO[22] 

 ----------------------------------------------------- 
Average 13.86 3.14 177.71 120.71 315.42 
Standard deviation 7.125 2.447 5.146 5.428 - 
 PSO 
 --------------------------------------------- 
Average 21.25 0.57 203.44 117.31 342.57 
Standard deviation 2.331 0.115 1.736 1.842 - 
1C, 2Ha, 3Hm and 4S are continuity, hairpin, Hmeasure and similarity 
objectives values, respectively 
 

 
 
Fig. 3: Average fitness comparison results between[22] 

and the proposed approach, with 20 sequences 
and length of 20 mer 

 
generated by SA. PSO significantly outperformed 
MOPSO for two objectives, namely, Hmeasure and 
continuity. However, the sequences obtained from 
MOPSO showed lower values in similarity and hairpin. 
For the total overall objectives, PSO achieved better 
minimum value than MOPSO. The convergence pattern 
of PSO is illustrated in Fig. 6. The particles converge 
within 800-820 iterations. 

Table 5: Comparison results of the sequences in[23] and the sequences  
by PSO method 

Sequences C1 Ha2 Hm3 S4 Total 
CATCAGCCGGACTCGTCAGT 0 0 24 12 36 
AGATCGCATGTAAAGGAGTG 9 0 26 13 48 
AAAGCAGGGTGTATCAGTCA 18 0 26 14 58 
TACAGGCGCTAATTAGCTCC 0 0 18 10 28 
GCGGACCCAACACATATGAG 9 0 23 12 44 
ATCATCATTTCATGGGGCAA 25 0 20 9 54 
GGGATCGACGTATATTAACG 9 0 20 8 37 
   MOPSO[23] 

 ----------------------------------------------------------------------- 
Average 10.000 0.00 22.43 11.14 43.57 
Standard Deviation 14.795 1.512 7.138 7.432 - 
  PSO 
 --------------------------------------------- 
Average 1.773 0.456 21.742 12.156 36.127 
Standard Deviation 1.366 0.342 1.408 1.0964 - 
1C, 2Ha, 3Hm and 4S are continuity, hairpin, Hmeasure and similarity 
objectives values, respectively 
 

 
 
Fig. 4: Convergence pattern of fDNA for the PSO 

algorithm, with 20 sequences and length of 20 
mer 

 

 
 
Fig. 5: Average fitness comparison results between 

Zhao et al.[23] and PSO method with 7 
sequences and length of 20. 
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Fig. 6: Convergence pattern of fDNA for the PSO 

algorithm, with 7 sequences and length of 20 
mer 

 
CONCLUSION 

 
 This study presented an application of particle 
swarm optimization in DNA sequence design. PSO was 
implemented with four objectives, namely Hmeasure, 
similarity, continuity and hairpin and subjected to two 
constraints, GCcontent and Tm. However, the problem is 
converted to single objective problem, using weight 
aggregation. 
 A model to implement PSO for DNA sequence 
design was presented, where each particle searches for 
the minimum value of the objective function in an n-
dimensional search space. Each particle carries n 
sequences, where the sequences are represented by 
binary strings. 
 The results of the PSO were compared to results 
from a GA, MOPSO and other PSO model. It was 
shown that PSO can generate better or comparative 
sequences in several objectives than other systems. 
However, the proposed approach has to be improved 
and explored further. Future research will include 
improvements of the method by considering a multi-
objective PSO such as the Vector Evaluated PSO 
(VEPSO). 
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