
Journal of Computer Science 4 (11): 928-933, 2008
ISSN 1549-3636
© 2008 Science Publications

928

Calculate Sensitivity Function Using Parallel Algorithm

Hamed Al Rjoub

Irbid National University, Irbid, Jordan

Abstract: Problem statement: To calculate sensitivity functions for a large dimension control system
using one processor, it takes huge time to find the unknowns vectors for a linear system, which
represents the mathematical model of the physical control system. This study is an attempt to solve the
same problem in parallel to reduce the time factor needed and increase the efficiency. Approach:
Calculate in parallel sensitivity function using n-1 processors where n is a number of linear equations
which can be represented as TX = W, where T is a matrix of size n1xn2, X = T−1 W, is a vector of
unknowns and �X/�h = T−1 ((�T/�h)-(�W/�h)) is a sensitivity function with respect to variation of
system components h. The parallel algorithm divided the mathematical input model into two partitions
and uses only (n-1) processors to find the vector of unknowns for original system x = (x1,x2,…,xn)

T and
in parallel using (n-1) processors to find the vector of unknowns for similar system
(x')t = dtT−1 = (x1',x2',…xn')

T by using Net-Processors, where d is a constant vector. Finally, sensitivity
function (with respect to variation of component �X/�hi = (xi×xi') can be calculated in parallel by
multiplication unknowns Xi×Xi', where i = 0,1,…n-1. Results: The running time t was reduced to
O(t/n-1) and, The Performance of parallel algorithm was increased by 40-55%. Conclusion: Used
parallel algorithm reduced the time to calculate sensitivity function for a large dimension control
system and the performance was increased.

Key words: Sensitivity Function, parallel, linear equations, variation, running time, mathematical

model

INTRODUCTION

 The ability to develop mathematical models in
Biology, Physics, Geology and other applied areas has
pull and has been pushed by, the advances in High
Performance Computing. Moreover, the use of iterative
methods has increased substantially in many application
areas in the last years[9]. One reason for that is the
advent of parallel Computing and its impact in the
overall performance of various algorithms on numerical
analysis[1].The use of clusters plays an important role in
such scenario as one of the most effective manner to
improve the computational power without increasing
costs to prohibitive values. However, in some cases, the
solution of numerical problems frequently presents
accuracy issues increasing the need for computational
power. Verified computing provides an interval result
that surely contains the correct result. Numerical
applications providing automatic result verification may
be useful in many fields like simulation and modeling.
Finding the verified result often increases dramatically
the execution time[2]. However, in some numerical
problems, the accuracy is mandatory. The requirements
for achieving this goal are: interval arithmetic, high
accuracy combined with well suitable algorithms. The

interval arithmetic defines the operations for interval
numbers, such that the result is a new interval that
contains the set of all possible solutions. The high
accuracy arithmetic ensures that the operation is
performed without rounding errors and rounded only
once in the end of the computation. The requirements
for this arithmetic are: the four basic operations with
high accuracy, optimal scalar product and direct
rounding. This arithmetic's should be used in
appropriate algorithms to ensure that those properties
will be hold. There is a multitude of tools that provide
verified computing; among them an attractive option is
C-XSC (C for extended Scientific Computing)[3].
CXSC is a free and portable programming environment
for C and C++ programming Languages, offering high
accuracy and automatic verified results. This
programming Tool allows the solution of several
standard problems, including many reliable numerical
parallel algorithms. The need to solve systems of linear
algebraic equations arises frequently in scientific and
engineering applications, with the solution being useful
either by itself or as an intermediate step in solving a
larger problem. In practical problems, the order, n, may
in many cases be large (100-1000) or very large (many
tens or hundreds of thousands). The cost of a numerical

J. Computer Sci., 4 (11): 928-933, 2008

 929

procedure is clearly an important consideration-so too
is the accuracy of the method. Let us consider a system
of linear algebraic equations:

AX = B (1)

Where:
A = {aij} n i ,j = 1 is a given matrix
B = (b1, ..., bn)t is a given vector

 It is well known (for example[4,5]) that the solution,
x, x � Rn, when it exists, can be found using-direct
methods, such as Gaussian elimination and LU and
Cholesky decomposition, taking O(n3) time; -stationary
iterative methods, such as the Jacobi, Gauss- Seidel and
various relaxation techniques, which reduce the system
to the form:

x Lx f= + (2)

and then apply iterations as follows:

(0) (k) (k 1)x f ,x Lx f ,k 1,2−= = + = (3)

until desired accuracy is achieved; this takes O(n2) time
per iteration. -Monte Carlo methods (MC) use
independent random walks to give an Approximation to
the truncated sum (3):

1

(1) k

k 0

x L f
=

=� (4)

 Taking time O(n) (to find n components of the
solution) per random step. Keeping in mind that the
convergence rate of MC is 1/ 2O(N)− , where N is the
number of random walks, millions of random steps are
typically needed to achieve acceptable accuracy. The
description of the MC method used for linear systems
can be found in[6-8]. Different improvements have been
proposed, for example, including sequential MC
techniques[5], resolve-based MC methods[1] and have
been successfully implemented to reduce the number of
random steps. In this study we study the Quasi-Monte
Carlo (QMC) approach to solve linear systems with an
emphasis on the parallel implementation of the
corresponding algorithm. The use of quasirandom
sequences improves the accuracy of the method and
preserves its traditionally good parallel efficiency.

MATERIALS AND METHODS

 Solution of large (dense or sparse) linear systems is
considered an important Part of numerical analysis and

often requires a large amount of scientific
computations[9,10]. More specifically, the most time
consuming operations in iterative methods for solving
linear equations are inner products, vector successively
updates, matrix-vector products and also iterative
refinements[11,7]. Tests pointed out that the Newton-like
iterative method presents a iterative refinement step and
uses a inverse matrix obtained through the
backward/forward substitution (after LU
decomposition), which are the most time consuming
operations. The parallel solutions for linear solvers
found in the literature explore many aspects and
constraints related to the adaptation of the numerical
methods to high performance environments[3].
However, the proposed solutions are not often realistic
and mostly deal with unsuitable models for high
performance environments of distributed memory as
clusters of workstations. In many theoretical models
(such as the PRAM family) the transmission cost to
data exchange is not considered[2], but in distributed
memory architectures this issue is crucial to gain
performance. Nevertheless, the difficulty in
parallelizing some numerical methods, mainly iterative
schemes, in an environment of distributed memory, is
the interdependency among data (e.g., the LU
decomposition) and the consequent overhead needed to
perform Inter Process Communication (IPC)[3]. Due to
this, in a first approach some modifications were done
in the backward/ forward substitution procedure[5] to
allow less Communications and independent
computations over the matrix. Another possible
optimization when implementing for such parallel
environments is to reduce communication cost through
the use of load balance techniques, as we can see in
some recent parallel solutions for linear systems
solvers[10]. Anyway, their focus was toward the issues
related to MPI implementation through a theoretical
performance analysis. Few works were found related to
numerical analysis of parallel implementations of
iterative solvers, mainly using MPI. Moreover, some
interesting papers found present algorithm, which allow
the use of different parallel environments[7]. However,
those papers (like others) do not deal with verified
computation. We also found some works which focus
on verified computing[5] and both verified computing
and parallel implementations[11], but these thesis
implement other numerical problems or use a different
Parallel approach. Another concern is the
implementation of self-verified numerical solvers,
which allow high accuracy operations. The researches
already made, show that the execution time of the

J. Computer Sci., 4 (11): 928-933, 2008

 930

algorithms using this kind of routines is much larger
than the execution time of the algorithms, which do not
use it[11,10]. The C-XSC library was developed to
provide functionality and portability, but early
researches indicate that more optimizations may be
done to provide more efficiency, due to additional
computational cost in sequential and consequently for
other environments as Itanium clusters. Some
experiments were conducted over Intel clusters to
parallelize self-verified numerical solvers that use
Newton-based techniques but there are more tests that
may be done.
 Sensitivity analysis defines the relative sensitivity
function for time independent parameters as:

i, j i iS x / h=∂ ∂ (5)

Where:
Xi = The i-th state variable
hj = The element of the parameter vector

 Hence the sensitivity is given by the so-called
sensitivity matrix S, containing the sensitivity
coefficient Si,j, Eq. 5 The direct approach of
numerically differentiating by means of numerical field
calculation software will lead to diverse difficulties[1,3].
Therefore, some ideas to overcome those problems aim
at performing differentiations necessary for sensitivity
analysis prior to any numerical treatment. Further
calculations are then carried out with a commercially
available field calculation program. Such approach has
already been practical successfully[7].
 We consider the linear system (1) where A is a
tridiagonal matrix of order n of the form shown in (6),

T
0 1 n 1x (x ,x ,..., x)−= is the vector of unknowns and

T
0 1 n 1d (d ,d ,...,d)−= is a vector of dimension n:

o o

1 1 1

2 2 2

n 1 n 1 n 1

n 1 n 1

b c

a b c

a b c
A

.. ..

a b c

a b
− − −

− −

� �
� �
� �
� �
� �=
� �
� �
� �
� �
� �

 (6)

 In the LU factorization A , is decomposed into a
product of two bidiagonal matrices L and U as A = LU,
where:

1

n

2

n 1

1

h 1

.. 1

L

h 1

h 1

−

−

� �
� �
� �
� �
� �
� �=
� �
� �
� �
� �
� �
� �

0 0

1 1

n 2 n 2

n 1

U C

U C

U

U C

U
− −

−

� �
� �
� �
� �− −
� �=
� �− −
� �
� �
� �
� �

 The LU algorithm to solve the linear system (1)
then proceeds to solve for y from Ly=d and then finds
vector X in parallel:

Step 1: Compute the decomposition of A given by:

0 0

i i i

i i i i 1

u b

h a / u 1,1 i n 1,

u b h *c 1 i n 1−

=

= − <= <= −

= − <= <= −

Step 2: Solve for y from Ly = d using:

0 0

i i i i 1

y d

y d h *y ,1 i n 1−

=

= − <= <= −

Step 3: Compute X by solving ux = y using:

n 1 n 1 n 1

i i i i 1 i

X Y / U ,

X (Y C *X) / U ,0 i n 2
− − −

+

=

= − <= <= −

 First we consider the parallelization of the LU
decomposition part of the LU algorithm to solve (1),
i.e., Step 1 above. Once the diagonal entries u0,u1,…,un
of U have been calculated, h1,h2,…,hn-1can
subsequently be computed in a single parallel step with
n-1 processors. Thus we concentrate on the
computation of the ui's.

RESULTS

 To calculate the accurate time and performance we
repeat the process m times then we divide the measured

J. Computer Sci., 4 (11): 928-933, 2008

 931

time on m for both single and multi thread versions, for
single thread we start basic multiplication division and
subtraction inside the Matrix until we get the upper of
that matrix, for multi threading we use R-1 threads
where R is the count of desired Matrix rows, we
measured the longest thread which is the last one in our
case, then every thread takes a part of the Matrix basic
operations and we do that in parallel for origin and
similar systems.
 Table 1 shows the time results done on Pentium
Due 1.8 GHZ processor with 1 GB Ram and shows the
time when we use one processor (single thread) and the
time when we use a multi processors in parallel (multi
thread) to calculate the unknowns vector. From the
Table 1, Fig. 1 and 2, we can see that performance
increase with respect to the size of matrix, which
represents the linear system.

Table 1: Comparison between single and multithread
Matrix Single thread, Multi thread,
dimension time/MS time/MS Performance
1 X 2 0.000005 0.000004 1.250
2 X 3 0.000119 0.000015 7.933
3 X 4 0.000425 0.000027 15.741
4 X 5 0.001073 0.000047 22.830
5 X 6 0.001718 0.000030 57.267

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

1×2 2×3 3×4 4×5

T
im

e/
M

s

Maximum size

Time comparison

Sin gle thread, time/M s

Multi thread, time/M s

Fig. 1: Time comparison between single and parallel to

calculate unknowns vector

Performance doubling

0.000

0.050

0.100

0.150

0.200

0.250

1×2 2×3 3×4 4×5

Sp
ee

d
do

ub
lin

g

Maximum size

Performance

Fig. 2: System performance chart

DISCUSSION

 The time to find in parallel unknown vector was
decreased with respect to the increased size of the
matrix, which represent the mathematical model of
physical system (Table 1),and with respect to the single
thread , the performance was increased (Fig. 1 and 2).
The main goal of Parallel algorithm is resolving in
parallel linear equations which represents as AX = W
and calculate sensitivity function of electric power
systems to obtain the result with respect to variation
any component of output function F with respect to any
component of electric power systems h(f / h)∂ ∂ .
Parallel algorithm contains the next stages: distribution
data (rows matrix T and components vector W) to the p
processors where p= n-1 (n is the number of equations)
which represents the mathematical model of electric
system and calculate in parallel unknown vector for
origin system T

1 2 nX (x ,x ,..., x)= . Distribution data (at
the same time) to p processors and calculate unknown
vector for similar system I t t 1 I I T

1 2 n(x) d T (x ,x ,...,x)− Ι=− = .
Multiplication operation for unknown's xi × x|

i
respectively using p processors to find in parallel
sensitivity function for a large dimension system.

Distribution data stage: In this stage, given first row
matrix T and the first component of right side linear
equation TX = W (w1)to the first processor p1 ,and first
row with component w1 to second processor p2 and first
row with component w1 to third processor ,and first row
with component w1 to the pn-1 processor. Figure 3
shows this stage.
 Given p1 second row matrix T with component w2,
p2 third row matrix T with component w3 and pn-1 last
row matrix T with component wn (Fig. 4).

Fig. 3: Distribution first row matrix T and w1

Fig. 4: Distribution rows stage matrix T, where p = n-1,

(working in parallel)

J. Computer Sci., 4 (11): 928-933, 2008

 932

Fig. 5: Multiply first rows (p1, p2, pn-1) by Constants

c1,c2,cn-1 respectively

Fig. 6: Distribution rows between processors, where

p = n-2 (working in parallel)

Fig. 7: Representation of the final step on processor p1

Multiplication Stage: Multiply the first row processors
p1, p2, pn-1 by constants c1,c2,cn-1 respectively and
subtract second row components from the result to
obtain zero in the first component of the second rows
Fig. 5.
 The second row processor p1 become the first row
for all processors, where the number of processors is
equal n-2 (Fig. 6).
 After n-1 cycles of multiplication operation and
distribution rows between processors, just on p1 we
obtained a system, which contains tow rows. Figure 7
shows the final step.
 Finally we get the mathematical model for original
system as triangular equations:

11 12 1n 1 1

22 2n 2 2

3n 3

(n 1)n n n

t t ... t X W

0 t ... t X W

0 0 ... t ... W

0 0 0 tt X W−

′ ′ ′× =
′ ′′

′′′

 The above triangular equations are solved by back
substitution. From the last equation, we immediately
have n n (n 1)nx W / tt −′′′= . By substituting this value in the

n-1 equation, we find xn-1 and so on we find unknown
vector for original system T

1 2 nX (x ,x ,..., x)= .

Distribution data for similar system: Distribute data
to p = n-1 processors and calculate unknown vector for
similar system I t t I I I I

1 2 n(x) d T (x ,x ,...,x)= = , (we do that at
the same time when we calculated unknown vector for
original system T

1 2 nX (x ,x ,..., x)= as mentioned above).

Calculate in parallel sensitivity function algorithm:
Step 1: Compute unknown vector for similar system

| | | |
1 2X (x ,x ,...,x)= using next equation:

| 1(x)t dT−=− (7)

Step 2: Multiplicate Eq. (7) from the right side by
matrix T and transpose left and right side to obtain a
system with respect to |x :

t |T X d=− (8)

Step 3: Calculate:

X / h T 1(T / h)X (W / h)∂ ∂ =− − ∂ ∂ − ∂ ∂ (9)

Step 4: Find sensitivity Function f with respect to h:

t 1j / h d T (T / W / h)−∂ ∂ =− ∂ ∂ ∂ (10)

Step 5: Put the expression (6) in (9) then:

| t | tj / h (x) T / hX (x) W / h∂ ∂ = ∂ ∂ − ∂ ∂ (11)

 To use the expression (11) we just need to resolve
in parallel the tow linear systems (1) and (8) by using
parallel algorithm.

A numerical example: Figure 8 shows the electric
circuit, in which we wont to calculate in parallel the
sensitivity function of the output potential vout with
respect to resistance g2, condensers c1 and c3,

respectively, the mathematical model for this circuit is:

1 2 S 1 S 2 2 S 2 1

2 S 2 2 3 S 2 S 3 2

1G G C C G C V
0G C G G C C V

+ + + −
× =

− + + +

J. Computer Sci., 4 (11): 928-933, 2008

 933

Fig. 8: Electric circuit to calculate sensitivity function

for vout with respect to variation parameters (C1,
G2, C3)

 Using PNPA algorithm in parallel, we find
unknowns vector X for original system:

1

2

(3 j) / 5v
x

(2 j) / 5v

−
= =

+

 At the same time we find unknowns vector X| for
similar system:

|
| 1

|
2

(2 j) / 5v
x

(3 j) / 5v

− +
= =

− +

 Finally we just do the multiplication operation to
find the sensitivity function as follows:

|
out 1 1 1

| |
out 2 1 2 1 2

|
out 3 2 2

V / C sV v 1 j7 / 25

V / G (V v)(V v) 3 j4 / 25

V / C sV v 1 j7 / 25

∂ ∂ = = −

∂ ∂ = − − =− −

∂ ∂ = = −

CONCLUSION

 The parallel algorithm to find the vector of
unknowns for calculated in parallel sensitivity function
and one thread was simulated and proved that parallel
algorithm is more efficient. The running time was
reduced to O(t/n-1) and the efficiency was increased by
40-55%.

ACKNOWLEDGMENT

 The researcher acknowledge the financial support
(Fundamental Research Scheme) received from Irbid
National University, Irbid, Jordan.

REFERENCES

1. Duff, I.S. and H.A. van de Vorst, 1999.

Developments and trends in parallel solution of
linear systems. Paral. Comput., 25: 1931-1970.
DOI: 10.1016/S0167-8191(99)00077-0

2. Ogita, T., S. M. Rump and S. Oishi, 2005.
Accurate sum and dot product. SIAM. J. Sci.
Comput., 26: 1955-1988. http://www.ti3.tu-
harburg.de/paper/rump/OgRuOi05.pdf

3. Li, G. and T.F. Coleman, 1989. A new method for
solving triangular system on distributed memory
message-passing multiprocessors. SIAM J. Sci.
Stat. Comput., 10: 382-396. DOI:
10.1137/0910025

4. Duff, I.S., 2000. The Impact of High Performance
Computing in the solution of linear systems: Trend and
proplems. J. Comput. Applied Math., 123: 515-530.
DOI: 10.1016/S0377-0427(00)00401-5

5. Liu, Z. and D.W. Cheung, 1997. Efficient parallel
algorithm for dense matrix LU decomposition with
pivoting on hypercubes. J. Comput. Math. Appl.,
33: 39-50. DOI: 10.1016/S0898-1221(97)00052-7

6. Pan, V. and J.Reif, 1989. Fast and efficient parallel
solution of dense linear system. Comput. Math.
Appl., 17: 1481-1491.
http://cat.inist.fr/?aModele=afficheN&cpsidt=7227240

7. Eisentat, S.C. and M.T. Heath, 1988. Modified
cyclic algorithm for solving triangular system on
distributed-memory multiprocessor. SIAM J. Sci.
Stat. Comput., 9: 589-600. DOI: 10.1137/0909038

8. Holbig, C.A. and P.S. Morandi, 2004. Selfverifying
solvers for linear systems of equations in C-XSC.
Lecture Notes Comput. Sci., 3019: 292-297.
http://cat.inist.fr/?aModele=afficheN&cpsidt=15811200

9. Singer, M.F., 1988. Algebraic relations among
solutions of linear di-erential equations: Fano's
theorem. Am. J. Math., 110: 115-143.
http://www.jstor.org/pss/2374541

10. Saad, Y., 1996. Iterative methods for sparse linear
systems. Proceeding of the Symposium on FPGAs,
(FPGAs’96), ACM Press, New York, USA.,
pp: 157-166.

11. Feng, T., 2002. A message-passing distributed-
memory newton-GMRES parallel power flow
algorithm. Proceeding of the Summer Meeting
Power Engineering Society, July 25, IEEE Computer
Society, Washington DC., USA., pp: 1477-1482.
DOI: 10.1109/PESS.2002.1043638

