
Journal of Computer Science 4 (11): 897-902, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Mwaffaq A. Abu Al hija, Department of Computer Science, Hail University, Hail, Saudi Arabia
897

A Heapify Based Parallel Sorting Algorithm

1Mwaffaq A. Abu Al hija, 2Arwa Zabian, 3Sami Qawasmeh and 4Omer H. Abu Al haija

1Department of Computer Science, Hail University, Hail, Saudi Arabia
2Department of Computer Science, Jadara University, Irbid, Jordan

3Department of Computer Science, Irbid National University, Irbid, Jordan
4Department of Computer Science, Irbid, Jordan

Abstract: Quick sort is a sorting algorithm whose worst case running time is �(n2) on an input array
of n numbers. It is the best practical for sorting because it has the advantage of sorting in place.
Problem statement: Behavior of quick sort is complex, we proposed in-place 2m threads parallel
heap sort algorithm which had advantage in sorting in place and had better performance than classical
sequential quick sort in running time. Approach: The algorithm consisted of several stages, in first
stage; it splits input data into two partitions, next stages it did the same partitioning for prior stage
which had been spitted until 2 m partitions was reached equal to the number of available processors,
finally it used heap sort to sort respectively ordered of non internally sorted partitions in parallel.
Results: Results showed the speed of algorithm about double speed of classical Quick sort for a large
input size. The number of comparisons needed was reduced significantly. Conclusion: In this study
we had been proposed a sorting algorithm that uses less number of comparisons with respect to
original quick sort that in turn requires less running time to sort the same input data.

Key words: Parallel sorting, heap sort, Quick sort, in-place sorting

INTRODUCTION

 Sorting is one of the most well studied problems in
computer science because it is fundamental in many
applications. Quick sort [1] is typically the fastest sorting
algorithm, basically due to better cache behavior among
other factors. However, the worst case running time for
Quick sort is O (n2) for an input size n, which is
unacceptable for large data sets. In this study, we
propose PSA Partition and Swap Algorithm, which
reduces the time needed for sorting with respect to
Quiksort in the worst case. A comparison between
Quick sort and PSA algorithm in terms of running time
is performed; the simulation results show that PSA is
faster than Quick sort in the worst case for sorting the
same input data size. Our algorithm is based on
partitioning the input data to different partitions then
using Heapify procedure in parallel to sort each
partition. The heap is a very fundamental data structure
used in many application programs. A heap is a data
structure that stores an array in a binary tree
maintaining two properties: the first is that the value
stored in every node is smaller than or equal to the
value of its children. The second property is that the
binary tree must be complete. This implies that the

complete binary tree with height h has between 2h and
2h+1 -1 node. So, the height of a binary tree of n nodes is
O (log2 n). The basic operations of the heap are Build-
Heap and Heapify. Heapify operation arranges the heap
to restore its heap property.

MATERIALS AND METHODS

Partition and Swap Algorithm (PSA): Given an array
of size n, PSA divides the array into four sub-arrays in
two steps to facilitate the sorting and to reduce the
number of comparisons needed. The algorithm works in
three phases the first partition phase, the second
partition phase and finally the Heapify phase.
 In the first partition phase the algorithm divides the
array A[n] into two sub-arrays A1, A2 based on the
middle value midval, in a manner that all the elements
of A1 (or denoted left) are smaller than the midval and
all the elements of A2 (or denoted as right) are greater
than the (midval), if the data must be ordered in an
ascendant manner. (If the data must be ordered in
descendent manner, all the elements of A1 must be
greater than the midval and all the elements of A2 must
be smaller). In the second partition phase, the
partitioning in the first partition phase is repeated for
each of A1, A2. Where A1 is divided into two subarrays

J. Computer Sci., 4 (11): 897-902, 2008

 898

A1l, A1r and A2 is divided into two sub arrays A2l, A2r

then the elements of these four sub arrays are ordered as
in the previous phase. The third phase, is heavily phase
in which the resultant subarrays A1l, A1r, A2l, A2r are
organized using heavily procedure into sorted
subarrays.

First partition phase:

• Given an array A of size n find the middle location

of the n elements the pivot can be find by �n/2�.
Step 1 in the flowchart

• For each part (left and right to the pivot) find the
max and min values (step 2 in the flowchart)

• Find the mid value midval that can be calculated as
following:

�Lmax + Lmin+ Rmax+Rmin /4�

• For each element in the two subarrays A1 (left), A2

(right) do the following comparisons (if the array is
ordered in an ascendant manner) For i, j are two
pointers,

A[0], A[n] denote the first and last element in the array

Swap procedure:

for i = 0 to n/2, j = n to n/2 do:

if A[0] = Lmax > midval and
 Rmin = A[n]< Lmax

 Swap (Rmin, Lmax)
 if i ≠ j
 i = i+1, j = j+1
 Return if
 Else End
Else
i = i+1 and Return if

 The procedure stops when i = j, that means the two
pointers are encountered and all the elements on the left
and on the right have been visited and compared. This
condition is important to ensure the correctness of the
algorithm and to ensure that all the elements have been
compared. In the case of n being an odd number, we
take �n/2� to find the mid location (pivot location),

Fig. 1: The flow chart of PSA algorithm

J. Computer Sci., 4 (11): 897-902, 2008

 899

Fig. 2: PSA algorithm/first partition phase

in which case the right will have more elements than
the left and the pointer i must continue to visit the
elements until it encounters j.

Second partition phase: The algorithm starts working
in parallel in dividing the two subarrays A1, A2 to four
consecutive partitions A1l, A1r, A2l, A2r and the swap
procedure will be repeated for the following counters in
A1 for i = 0 to n/4, j = n/2 to n/4 and for A2 the counter
will be: for i = n/2 to 3n/2, j = n to j = 3n/2.
 At the end of this phase we obtain four subarrays in
such a manner that:
All the elements of A1l < all the elements of A1r and all
the elements of A2l < all the elements of A2r

Heapify phase: In this phase, we use heavily procedure
on all the four resultant sub-arrays to organize them in
sorted subarrays.
 Figure 1 shows the flowchart that describes how
PSA work. In the first step of the flowchart the initial
array is divided into two sub-arrays and the midval-
location is found. In the second step, the min and max
values for each partition are found and a series of swap
operations are done. Step 3 indicates the last phase that
is heavily phase.

Example: Figure 2 shows a numerical example of how
PSA works in an array of size n = 12. In Fig. 2, A is
divided into two sub-arrays A1, A2 where the bold items

Fig. 3: PSA algorithm/merge in place

Fig. 4: PSA Algorithm/ Heapify Phase

represent the swapped elements. In part A of Fig. 3, the
sub-array A1 is divided, to left1 and right1. In part B,
A2 is divided into two sub-arrays left 2, right 2. In
Fig. 4, it is shown how the four sorted sub-arrays are
inserted in their location into the final sorted array.

RESULTS

 To study the effectiveness of our algorithm PSA
with respect to Quick sort and other sorting algorithms,
we have used turbo Delphi to implement both Quick
sort and PSA. Where we wrote a generic code that
could run on both programs. Turbo Delphi is an
integrated development environment that runs under
win 32 and is built based on object-oriented Pascal
language. Our simulator runs on Pentium 4, 2.66 GHZ,
512 Mb. We have implemented both Quick sort and
PSA on the same machine and we have performed
different simulations. Our simulation results show that
the performance of PSA is better than quick sort in
term of running time (Table 1).

J. Computer Sci., 4 (11): 897-902, 2008

 900

Input size

R
un

ni
ng

 ti
m

e
(m

s)

Fig. 5: The running time of both Quick sort and PSA

algorithms

Input size

of

 c
om

pa
ri

so
ns

Quicksort

Fig. 6: The number of comparisons needed to sort the

same input size in both Quick sort and PSA
algorithms

For an input size 1000-5000 the performance of PSA is
similar to that of Quick sort.
 However, for a large data size (100.000) PSA
outperforms Quick sort (Fig. 5). Figure 6, shows that
there a big difference in the number of comparisons
needed to sort the same input data between both Quick
sort and PSA, where PSA requires a less number of
comparisons with respect to Quick sort in all the input
data sizes tested.

DISCUSSION

 Our goal in this study is to propose an algorithm
that performs better than Quick sort in term of running
time. However the performance of quicksort is optimal
only for a large input size. Analyzing the results
presented in Table 1 we can see that the efficiency
of our algorithm is about 73% for a small input size

Table 1: Comparison between the running time of Quick sort and
PSA for different input size

 Quick sort running PSA running
Input size time (ms) time (ms)
1000 0.234 0.171
5000 1.640 0.829
10000 3.313 2.139
50000 20.485 12.203
100000 40.460 26.090

(1000 items), however the efficiency of our algorithm
respectively to Quick sort is about 64.56% for a large
input size and does not change if the input size
increased from n to 10 n (10000-100000 items). And
that is accorded with our goal is to propose an
algorithm simple that works in parallel and has a good
efficiency for all input size.

CONCLUSION

 In this study we have been proposed a sorting
algorithm that uses less number of comparisons with
respect to original Quick sort that in turn requires less
running time to sort the same input data. Our algorithm
is based on dividing the initial array in four partitions in
a manner that during the partitioning process the sub-
arrays are organized from the smaller to the bigger
elements reducing in that the number of comparisons
for the final merging operation. In addition it is used the
heavily procedure that organize the nodes of each
partition in a data structure useful for the searching
operation. Our results show that PSA algorithm
performs better than original Quick sort for the input
data size tested.
 Sorting algorithms can be classified into three
categories: the first category is based on the number of
comparisons in the worst and average and best case.
The second category is based on the memory usage and
the last category is based on the difference in behavior
in the worst case and the average case.
 In[2], a comparison between three sorting
algorithms (Heap sort[4], Quick sort[3] and Merge sort[5])
is done and a new algorithm is proposed that is a
variant of heap sort (modified heap sort). The new
algorithm requires nlogn-0.788928 comparisons in the
average case. The algorithm uses only one comparison
at each node. With one comparison, the algorithm can
decide which child of a node contains a larger element
and this child is promoted to its parent position.
 The four previous algorithms (heap sort, mergesort,
quicksort, modified heap sort) were implemented to
study their performance in term of execution time. For
an input size 1000 the performance of heap sort is better

J. Computer Sci., 4 (11): 897-902, 2008

 901

than the other algorithms. However, for an input size
from 5000-50000 quicksort outperforms the other
algorithms in terms of execution time. However, for
input size 100000 the modified heap sort requires a less
running time to sort this input data. In[6], a heap
traversal algorithm is proposed that visits the node of a
heap and stores its value in an auxiliary data structure
with size �n/2�, in a manner that the time for locating
the next node for traversal is O (log n) in the worst
case. The main advantage of the algorithm is that the
data structure used is small, which consequently helps
in the searching operation. The algorithm takes a min-
heap as input and visits the heap in ascending order of
the value stored in the nodes without making any
changes to the structure or contents of the heap. The
nodes that are being traversed are copied into another
list, producing an ordered list of the values stored in the
original heap. The algorithm is similar to an in-order
traversal of a binary search tree. A comparison between
the running time of generic Quicksort, optimized
quicksort (optquicksort), heap sort, heap traversal of a
binary tree (heapbt) and the proposed algorithm heap
traversal using binary heap (heapbh) is done. The
comparison results show that for an input size of 30000
the heapbh performs slightly better than heap sort. An
another sorting algorithm that reduces the cache size is
proposed in[7], the proposed dualheap sort algorithm
partitions recursively the subheaps in half until the
subheaps become small to partition any more, then the
array is sorted. The algorithm has different advantages
in term of more operations and cache size. In the best
case where the input is already sorted the dualheap sort
performs no move operations and nlogn comparisons.
In addition, the continued partitioning of the subheaps
decreases the cache size needed in each step. The
algorithm constructs two opposing subheap and then
exchanges values between them until the larger values
are in one subheap and the smaller values are in the
other. The results presented in[7] show that dualheap
sort performs about (50%) more comparisons and move
operations than heap sort but the memory size needed is
smaller. In[8], a variant of heap sort is proposed that
uses a new data structure for pairs of nodes of which
can be simultaneously stored and processed in a single
register. The algorithm sorts pair of elements in
ascending order. By n/2 comparisons, all larger
elements of each pair 2i, 2i+1 can be brought to even
positions. To construct the new data structure of size
n/2 elements it needs (1+�/2) n comparisons where
�>0, in contrast to weak heaps[9], that takes n-1
comparisons. In this data structure, during swapping it
must swap nodes containing pair of elements with
similar nodes at no extra cost. After constructing the
heap, in the sorting phase the active elements (the even
elements are called active and the other ones dormant)

in the root will be placed in the last unsorted position
and perform heavily or heap adjustment. This is to find
out the larger or smaller key between the 2nd key of the
1st pair and the 1st key of the last pair. In the new data
structure each key require three movements. The
experimental results indicate that the new data structure
for heaps results in better performance of heap sort
algorithm in term of number of comparisons. In[10], is
proposed ultimate heap sort that is a variant of heap sort
that sorts n elements in �(nlog2 (n+1)) time in the worst
case by performing at most nlog2n+θ(n) key
comparisons and nlog2n+θ(n) element moves. The
algorithm transforms the heap on which it operates into
two-layer heap which keeps small elements at the
leaves. The two layer heap works as follow: first it
finds 2d the largest key of the elements in the array
where denoted as x. x is the largest power of 2 smaller
than or equal to n. Then, it partitions the array A[1..n]
into three pieces: A[1…r], A[r+1…….r+e] and
A[r+e+1,…….n], in a manner that the key of every
element in the three partitions is larger than, equal to
and smaller (respectively) to x. Then the array A[1….r]
is arranged into a heap using standard heap construction
algorithm. In ultimate heap sort, the input array to be
sorted of size n is sorted in d-1 rounds. Where d = �log2
(n+1)�. In each round one half of the elements are
sorted. In the first phase of the ith round, I = {1….d-1}
the remaining ni elements are built into a two layer
heap. In the second phase of the ith round, the ri
elements with a key larger than x are removed from the
heap. The removed elements are exchanged with the
last ri elements of the heap. In the third phase of the ith
round, ni-2di-ri of the elements with a key equal to that
of x are gathered together and moved at the end of the
sub-array containing the remaining elements. The
computations carried out in each round are the
following:

• Rearrange A[1..n] into a two layer heap
• For n steps-1 →j until n-l do: exchange A[1] and

A[j], remake A[1………j-1] into heap

REFERENCES

1. Cormen, T., C.E. Leiserson, R.L. Rivest and

C. Stein, 2001. Introduction to Algorithms. 2nd
Edn., MIT Press and McGraw-Hill. ISBN 10: 0-
262-03293-7.

2. Sharma, V., S. Singh and K.S. Kahlon, 2008.
Performance study of improved HeapSort
algorithm and other sorting algorithms on different
platforms. Int. J. Comput. Sci. Network Secur.,
8: 101-105.
http://paper.ijcsns.org/07_book/200804/20080415.
pdf.

J. Computer Sci., 4 (11): 897-902, 2008

 902

3. Hoare, C.A.R., 1962. Quick sort. Comput. J.,
5: 10-15. DOI: 10.1093/comjnl/5.1.10.

4. Wegener, I., 1990. Bottom-up heap sort a new
variant of heap sort beating on average quicksort.
Proceeding of the Mathematical Foundations of
Computer Science, Aug. 27-31, Springer-Verlag
Inc., Banska´ Bystrica, Czechoslovakia, New York
USA., pp: 516-522.
http://portal.acm.org/citation.cfm?id=90256.

5. Knuth, D.E., 1998. The Art of Programming
Sorting and Searching. 2nd Edn., Addison-Wesley
Professional, pp: 780. ISBN: 0-201-89685-0.

6. Mao, L.J. and S.D. Lang, 2003. An empirical study
of heap traversal and its applications. Proceedings of
the 7th World Multi Conference on Systematic,
Cybernatics and Informatics, July 27-30, Orlando-
Florida, USA., pp: 167-171.
http://www.cs.ucf.edu/csdept/faculty/lang/pub.html.

7. Sepesi, G., 2007. DualHeap sort algorithm: An
inherently parallel generalization of heapsort.
http://adsabs.harvard.edu/abs/2007arXiv0706.2893S

8. Shahjala and M. Kaykobad, 2007. A new data
structure or heap sort with improved numbers of
comparisons. Proceedings of the 1st Workshop on
Algorithms and Computation, Feb. 12-12, Dhaka,
Bangladesh, pp: 88-96.
http://teacher.buet.ac.bd/saidurrahman/walcom200
7/proceedings/shahjalal.pdf.

9. Duton, R.D., 1993. The weak heapsort. BIT
Numer. Math. J. Part I Comput. Sci., 33: 372-381.
http://www.springerlink.com/content/x442k4973j5
242p0/.

10. Katajainen, J., 1998. The ultimate heapsort.
Proceedings of the Computing: The 4th Australian
Theory Symposium Australian Computer Science
Communications, Springer-Verlag. Singapore, pp:
87-95.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=1
0.1.1.33.4727.

