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Abstract: Granulometries are morphological image analysis tools that are particularly useful for 
estimating object sizes in binary and grayscale images, or for characterizing textures based on their 
pattern spectra. There are many applications that morphology can be applied to. Some morphological 
operations like dilation, erosion and open-close are used in image and video processing, but with no 
application to pre-processing for increasing a Codec's performance. These operations can be used as 
filters and if applied on an image, some information will be lost. In order to avoid information loose a 
sequence of morphological operation is suggested, this sequence can be used to separate low pass and 
high pass frequencies from the image without throwing any piece of data and the original image can 
always be reconstructed. 
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INTRODUCTION 

 
 Mathematical Morphology is the analysis of 
signals in terms of shape. This simply means that 
morphology works by changing the shape of objects 
contained within the signal. Mathematical morphology 
was developed in the 1970’s by Matheron[1] and 
Serra[2]. Morphology has several advantages over other 
techniques especially when applied to image 
processing. 
 Some morphological operations like dilation, 
erosion and open-close are used in image and video 
processing. For example, dilation extends the boundary 
of object by removing low valued regions. Erosion 
contracts the boundaries by removing high valued 
regions. Distortions can bee seen in some of these 
images. The distortion generated not only depends on 
the filter but also on the image. 
 Opening will remove high intensity points whilst 
keeping the rest of the image intact. Closing is doing 
the opposite of this, removing low valued points whilst 
keeping the rest of the image intact. Both Open-Close 
and Close-Open remove both high and low valued 
points while keeping the rest of the image intact. 
However, the last two operations do not give the same 
result due to the order of the erosions and dilations. 
 The above mentioned operations can be used as 
filters and applying these filters on an image can results 
in loose of some information. 
  In order to avoid information loose a sequence of 
morphological operation is suggested, this sequence can 

be used to separate low pass and high pass frequencies 
from the image without throwing any piece of data and 
the original image can always be reconstructed. 
 There are many more applications that morphology 
can be applied to. Morphology has been widely 
researched for use in image and video processing, but 
with no application to pre-processing for increasing a 
Codec's performance. 
 
Morphological operations: Morphology uses Set 
Theory as the foundation for many functions[8]. The 
simplest functions to implement are ‘Dilation’ and 
‘Erosion’. Dilation extends the boundary of object by 
removing low valued regions. Erosion contracts the 
boundaries by removing high valued regions. 
Distortions can be seen in some of these images. The 
distortion generated not only depends on the filter but 
also on the image. 
 Opening will remove high intensity points whilst 
keeping the rest of the image intact. Closing is doing 
the opposite of this, removing low valued points whilst 
keeping the rest of the image intact. Both Open-Close 
and Close-Open remove both high and low valued 
points while keeping the rest of the image intact. 
However, the last two operations do not give the same 
result due to the order of the erosions and dilations. 
 Dilation in 1D is defined as: 
 

  
^

x
x B

A B x : (B)x A A
∈

� �⊕ = ∩ ≠ ∅ =� �
� �

�  (1) 



J. Computer Sci., 4 (10): 857-863, 2008 
 

858 
 

where, A and B are sets in Z. This definition is also 
known as Minkowski Addition[6-9]. This equation 
simply means that B is moved over A and the 
intersection of B reflected and translated with A is 
found. Usually A will be the signal or image being 
operated on and B will be the Structuring Element. 
Equation 1 is used to process binary sets of data. 
Dilation has several interesting properties, which make 
it useful for image processing. These properties can be 
very useful in image processing and can result in some 
operations being simplified. 
 
Erosion: The opposite of dilation is known as erosion. 
This is defined as: 
 
   { }{ }

x B

A x : B x A Ax
⊂

= ⊆ =� �  (2) 

 
 This definition is also known as Minkowski 
Subtraction[6-8]. The equation simply says, erosion of A 
by B is the set of points x such that B translated by x is 
contained in A. Figure 2 shows how erosion works on a 
1D binary signal. This works in exactly the same way 
as dilation. However (6) essentially says that for the 
output to be a one, all of the inputs must be the same as 
the structuring element. Thus, erosion will remove runs 
of ones that are shorter than the structuring element. 
Erosion, like dilation also contains properties that are 
useful for image processing: 
 
Opening and closing: Both dilation and erosion have 
interesting and useful properties. However, it would be 
useful to have the properties of both in one function. 
This can be done in two ways. The first method, 
‘Opening’, is defined as[5,8]: 
 
   { }A B A B B= ⊕� �  (3) 
 
 This simply erodes the signal and then dilates the 
result as shown in Fig. 1. As can be seen, the zeros are 
opened up. Any ones that are shorter than the 
structuring element are removed, but the rest of the 
signal is left unchanged. This is a very useful property 
as it means that if the filter is applied once, no more 
changes to the signal will result from repeated 
applications is known as ‘Idempotent’[8]: 
 
   { }A B B A BΟ Ο = Ο  (4) 
 
 The opposite of opening, is ‘Closing’ defined by: 
 
    ( )A B A B B• = ⊕ �  (5) 

 
 
Fig. 1: Example of how an opening works 
 

 
 
Fig. 2: Example of how a closing works  
 

 
 
Fig. 3: Example of how open close and close open 

work  
 
 Figure 2 shows how this study. It can be seen that 
this closes gaps in the signal in the same way as 
opening opened up gaps. Closing also has the property 
of being idempotent. 
 Both of these filters again have interesting 
properties that would be nice to have in one filter. The 
opening and closing can be combined to merge these 
properties (Fig. 3). There are two ways of combining 
these, the first of which is known as an ‘Open-Close’ 
filter and is defined by: 
 
    { }A B A B B= Ο •�  (6) 
 
 The signal is first opened and the result is then 
closed. The opposite can also be done by closing and 
then opening. This is called a ‘Close-Open’ filter and is 
defined by: 
 
    { }A B A B B= • Ο�  (7) 
 
Extending to grey scale: For morphology to be of use 
in image processing, it needs to be extended to non-
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binary signals. There are various ways in which this can 
be done[3]. The chosen method uses very simple 
functions, which allow them to be implemented in an 
efficient way[11]. The following sections describe one 
method of implementing grey scale morphology. 
 
Grey scale dilation: When applying dilation it should 
be clear that this is actually taking the maximum value 
lying within the structuring element. Hence, dilation 
can be redefined for grey scale as: 
 
    k ii B, x

A B max(A )+∈ ∀
⊕ =  (8) 

 
 This study in exactly the same way as before, but 
just takes the maximum value laying within the 1’s of 
the structuring element as shown in Fig. 4. This method 
of using the values where the structuring element is 1, 
is known as a Flat Structuring Element (FSE). There is 
another method[5] that is used in grayscale image 
processing. 
 As well as having the structuring element to choose 
the input elements to use, another set is used to allow a 
value to be added to the values used. This is sometimes 
written as one set as shown in Fig. 5: 
 
    { }k i i

i B, x
A B max A B+

⊂ ∀
⊕ = +  (9) 

 
Grey scale Erosion: Like dilation, from (6) it should 
be clear that all erosion is actually doing is taking the 
minimum value from within the structuring element. 
Thus, erosion can be redefined as: 
 
    { }k ii B, x

A B min A +⊂ ∀
=�   (10) 

 

 
 
Fig. 4: Example of how dilation works  
 

 
 
Fig. 5: Example of how a variation on standard dilation 

works  

 Both of these can still be applied to binary signals, 
but more importantly, they can be applied to real 
numbers. The rest of the functions, opening and closing 
and so on remain unchanged, but use the above 
definition for grey scale. 
 
Extending to two dimensions: Now to be able to use 
morphology in image processing, the definitions need 
to be applied in two Dimensions (2D). This can be done 
relatively easily as described below[12-14]. 
 
2D Dilation: The signal has now become a 2D signal, 
now called an image and hence the structuring element 
is changed to become 2D, where the first structuring 
element is known as the Four Nearest Neighbors (4 nn). 
This limits the operations to work only on horizontal 
and vertical components. To overcome this problem 
and allow diagonal components to also be used, the 
Eight Nearest Neighbors (8 nn) can be used. Dilation 
can now be redefined as: 
 
    

{ } { }x i,y ji, j B
A B max A + +⊂

⊕ =  (11) 

 
 This still works in the same way as before. The 
structuring element is moved across the image as 
before. The maximum value inside the structuring 
element is then set as the output. 
 
2D Erosion: Erosion can also be redefined in exactly 
the same way, as dilation was to give a new 2D erosion 
definition: 
 
    

{ } { }x i,y ji, j B
A B min A + +⊂

=�  (12) 

 
 This study in the same way as dilation with the 
exception of erosion takes the minimum instead of the 
maximum. Again, the other definitions of opening, 
closing, etc. remain unchanged. To use them in 2D, 
they must use the above methods for erosion and 
dilation.  
 
Extension to three dimensions: For video processing, 
it is beneficial to filter spatio-temporally (i.e., in Three 
Dimensions, 3D). This is done because noise is 
uncorrelated which means that if a pixel in the current 
frame is noise, then there is a strong chance that the 
pixel will be of a different value in other frames[13]. 
Hence, by using the other frames to process the current 
frame, the noise can be filtered out. 
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3D Dilation: As before, dilation can be easily extended 
to process in 3D as defined by: 
 
    

{ } { }x i y jz ki jk B
A B max A + +⊂

⊕ =  (13) 

 
 Now the image is 3D (i.e., a sequence) and the 
structuring element is now 3D. This is applied in the 
same way as before. The structuring element is placed 
on the first pixel of the first frame. The output is set to 
the maximum value lying within the structuring 
element. The structuring element is then moved across 
the current frame until the entire frame has been 
processed. Then the next frame is done in exactly the 
same way. The process is repeated until all the frames 
have been processed. 
 
Erosion: Again, erosion can be redefined in the same 
way to give: 
 
   

{ } { }x i,y j,z ki j.k B
A B min A + + +⊂

=�  (14) 

 
 The other filters, open, close, etc. are still the same 
as before, but just use the above definitions for 3D. 
 3D processing can remove more noise and smooth 
the images more because of the correlation between 
frames. This is good for compression as high frequency 
information is removed.  
 The proposed sequence of morphological 
operations: The concept of granulometries, introduced 
in the late sixties by Matheron[15], provides a consistent 
framework for analyzing object and structure sizes in 
images.  
 A granulometry can simply be defined as a 
decreasing family of openings[2]. 
 Though this definition was originally meant in the 
context of binary image processing, it directly extends 
to grayscale. Moreover, granulometries by closings can 
also be defined as families of increasing closings. 
 The filters described so far have interesting 
properties. However, one of the properties not 
mentioned so far is that of ‘Granules’. A granule is an 
element that falls through a ‘Sieve’ in the same way 
that small stones fall through a sieve. If a set of 
structuring elements is used with increasing size, 

{ }{ }B r : r �Ο with the property that B(t) is B(r) opened 

for t�r. This just means that each structuring element is 
bigger than the previous. Using this, an opening can be 
defined to use these structuring elements: 

    { } { }y X X B rα = Ο  (15) 
 
 If this satisfies the ‘semi-group’ property (24), then 
the openings are called a 'Granulometry’. If all αr are 
translation invariant (7) and scale compatible (10), then 
it is called ‘Minkowski Granulometry’: 
 
    t t t t rγ γα α =α α =α ≥  (16) 

 
1D Grey scale granulometry: It is difficult to see from 
the above definition, exactly what Granulometry does. 
As stated above, a set of increasing size structuring 
elements are used. The opening used above is good, but 
a more useful method would be to use and Open-Close, 
which will remove both dark and light spots. Thus, 
using the previous definitions, an Open-Close can be 
redefined for a sieve as: 
 
    { } { }m m mS A,B A B B= •�  (17) 

 
where, m is the given size to use. From this it should be 
clear that the size will determine the data that is 
removed. For example, if r = 2, the corresponding 
structuring element will remove runs of length 2. 
However, for a true sieve, this must be done in order. 
For example, for a target size of 4, the input would first 
be processed to a size of 1. The result would then be 
processed to 2 and so on until the target is reached. This 
is defined as: 
 

  { } { }{ }{ }{ }t t t 1 1 1 t 1 tR A S S S A,B ,B ,B− −= ⋅⋅⋅ ⋅⋅⋅  (18) 

 
where, t is the target size. The granules of the system 
are simply the result subtracted from the input as given 
by:  
 
   { } { } { }m m m 1G A S A S A−= −  (19) 

 
 Here is an example of how to get law pass 
frequencies (S1, S2, S3) and high pass frequencies (G1, 
G2, G3) from the original signal S0 using mat lab. 
 
Let the input (original signal) S0 be: 7 7 0 1 3 3 3 0 0 0 0 
 
Start with structuring element se1 = 1 1 1. 
 
Find S1 and G1: S1 = imclose (imopen (S0, se1), se1), 
this can be done by performing the following sequence 
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of morphological operations: Erosion, Dilation, 
Dilation and Erosion using the same structuring 
element: 
 
Erosion: 7 0 0 0 1 3 0 0 0 0 0 
 
Dilation: 7 7 0 1 3 3 3 0 0 0 0 
 
Dilation: 7 7 7 3 3 3 3 3 0 0 0 
 
Erosion: (S1 = 7 7 3 3 3 3 3 0 0 0 0 
 
G1 = S0-S1 = 0 0 3 2 0 0 0 0 0 0 0 
 
Find S2 and G2 using se2 = 1 1 1 1 
 
S2 = imclose (imopen (S1, se2), se2) 3 3 3 3 3 3 3 0 0 0 
0 
 
G2 = S1-S2 4 4 0 0  0 0 0 0 0 0 0 
 
Find S3 and G3 using se3 = 1 1 1 1 1 
 
S3 = imclose (imopen (S2, se3), se3) = 3 3 3 3 3 3 3 0 0 
0 0 
 
G3 = S2-S3 = 0 0 0 0 0 0 0 0 0 0 0 
 
 It should be clear to see that the outputs on Sm, are 
the low-pass filtered signal whilst the outputs of Gm, are 
the high-passed signal. Provided no data is thrown 
away, the original signal can be reconstructed exactly.  
 
2D Grey scale granulometry: The previous techniques 
have proven that morphology is a good for filtering. 
However, some images show a more noticeable 
degradation than others. This is due to the fact that the 
filters described so far all operate on the entire image 
with no knowledge of the image statistics. This is 
especially noticeable when sequences with a lot of 
motion are used. This section describes a filter that will 
act on the entire image, but that only changes local 
minimum and maximum points. 
 The method used is known as ‘Area Morphology’. 
This is an extension of 1D grey scale granulometry. For 
a detailed analysis and theory behind area morphology, 
the reader is directed to the definition for a grey-scale 
Area-Opening is given as: 
 

   ( ) ( ) ( )
S A S A

X X S X
α

⊂ λ ⊂ λλ
γ = ν = ν �  (20) 

where, Aλ is the set of subsets which are connected and 
whose area is greater or equal to λ. This essentially 
looks at all possible openings that give a certain area-
size and uses the maximum found as the result. The 
opposite can also be applied, that is to perform an Area-
Closing: 
 

  ( ) ( ) ( )sS A S A
X ^ X ^ S X

α

⊂ λ ⊂ λλ
ϕ = ϕ = •  (21) 

 
Area sieves: Area morphology can be used to create 
2D and 3D sieves. The basic sieve structure is used, 
except that an Area-OpenClose is used. An Area-
OpenClose is just an Area-Open followed by an Area-
Close (Fig. 6). Figure 7 shows an example of a 2D 
sieve. This clearly shows how a sieve works and how 
the granules fall through the sieve. 
 

 
 
Fig. 6: Example of a 2D sieve structure using area 

morphology 
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Fig. 7: Example of how a sieve works on images 
 

CONCLUSION 
 
 A sequences of morphological operations using a 
structuring element with increasing size was discussed 
and analyzed, this sequence of operations can separate 
the image into low pass (Sieve) and high pass 
(Granules) frequencies without losing any piece of 
information, making the reconstruction of the original 
image very easy. This method can again be applied to 
images and sequences as shown above and will cope 
better with motion in sequences, as the growing will 
actually track objects. It should also be clear that this 
method could also be described as a sieve. Again 
provided that no data is thrown away, then the original 
image can always be reconstructed. However, the idea 
is to remove parts of the image that the viewer will not 
notice. Hence there is little point in keeping any data 
other than the filtered image. 
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