
Journal of Computer Science 4 (10): 821-825, 2008 
ISSN 1549-3636 
© 2008 Science Publications 

Corresponding Author: P. Niranjan, Department of Computer Science and Engineering, 
 Kakatiya Institute of Technology and Science, Warangal, Andhra Pradesh, India-506 015 

821 

 
An Integrated Classification Scheme for Efficient Retrieval of Components 

 
C.V. Guru Rao and P. Niranjan 

Department of Computer Science and Engineering, 
Kakatiya Institute of Technology and Science, Warangal, Andhra Pradesh, India-506 015 

 
Abstract: Reuse is the key paradigm for increasing productivity and quality in software development. 
To be able to reuse software components, whether it is code or designs, it is necessary to locate the 
component that can be reused. Locating components, or even realizing they exist, can be quite difficult 
in a large collection of components. These components need to be suitably classified and stored in a 
repository to enable efficient retrieval. Four schemes had been previously employed, free text, 
enumerated, attribute value and faceted classification. Experiences revealed that individual 
classification schemes were unable to solve the problems associated with component classification. We 
required a combination of classification techniques to meet the problems with individual schemes and 
to improve retrieval efficiency. This research looked at each of the classification techniques above, and 
proposes a new method for classifying component details within a repository. 
 
Key words: Software reuse, component, classification techniques, reuse libraries 

 
INTRODUCTION 

 
 One of major impediments to realizing software 
reusability in many organizations is the inability to 
locate and retrieve existing software components. There 
often is a large body of software available for use on a 
new application, but the difficulty in locating the 
software or even being aware that it exists results in the 
same or similar components being re-invented over and 
over again. In order to overcome this impediment, a 
necessary first step is the ability to organize and catalog 
collections software components and provide the means 
for developers to quickly search a collection to identify 
candidates for potential reuse[2,16]. 
 Software reuse is an important area of software 
engineering research that promises significant 
improvements in software productivity and quality[4]. 
Software reuse is the use of existing software or 
software knowledge to construct new software[11]. 
Effective software reuse requires that the users of the 
system have access to appropriate components. The 
user must access these components accurately and 
quickly, and be able to modify them if necessary.  
 Component is a well-defined unit of software that 
has a published interface and can be used in 
conjunction with components to form larger units[3]. 
Reuse deals with the ability to combine separate 
independent software components to form a larger unit 
of software. To incorporate reusable components into 

systems, programmers must be able to find and 
understand them. Classifying software allows reusers to 
organize collections of components into structures that 
they can search easily. Most retrieval methods require 
some kind of classification of the components. How to 
classify and which classifications to use must be 
decided, and all components put into relevant classes. 
The classification system will become outdated with 
time and new technology. Thus the classification 
system must be updated from time to time and some or 
all of the components will be affected by the change 
and need to reclassified. 

 
MATERIALS AND METHODS 

 
Component classification: The generic term for a 
passive reusable software item is a component. 
Components can consist of, but are not restricted to 
ideas, designs, source code, linkable libraries and 
testing strategies. The developer needs to specify what 
components or type of components they require. These 
components then need to be retrieved from a library, 
assessed as to their suitability, and modified if required. 
Once the developer is satisfied that they have retrieved 
a suitable component, it can then be added to the 
current project under development. The aim of a good 
component retrieval system[13] is to be able to located 
either the exact component required, or the closest 
match, in the shortest amount of tie, using a suitable 



J. Computer Sci., 4 (10): 821-825, 2008 
 

 822 

query. The retrieved component (s) should then be 
available for examination and possible selection. 
 Classification is the process of assigning a class to 
a part of interest. The classification of components is 
more complicated than, say, classifying books in a 
library. A book library cataloguing system will 
typically use structured data for its classification system 
(e.g., the Dewey Decimal number). Current attempts to 
classify software components fall into the following 
categories: Free text, enumerated, attribute-value, and 
faceted. The suitability of each of the methods is 
assessed as to how well they perform against the 
previously described criteria for a good retrieval 
system, including how well they manage ‘best effort 
retrieval’. 
 
Existing techniques: 
Free text classification: Free text retrieval performs 
searches using the text contained within documents. 
The retrieval system is typically based upon a keyword 
search[16]. All of the document indexes are searched to 
try to find an appropriate entry for the required 
keyword. An obvious flaw with this method is the 
ambiguous nature of the keywords used. Another 
disadvantage is that a search my result in many 
irrelevant components. A typical example of free text 
retrieval is the grep utility used by the UNIX manual 
system. This type of classification generates large 
overheads in the time taken to index the material, and 
the time taken to make a query. All the relevant text 
(usually file headers) in each of the documents relating 
to the components are index, which must then be 
searched from beginning to end when a query is made. 
Once approach to reducing the size of indexed data is to 
use a signature matching technique, however space 
reduced is 10-15% only. 
 
Enumerated classification: Enumerated classification 
uses a set of mutually exclusive classes, which are all 
within a hierarchy of a single dimension[6]. A prime 
illustration of this is the Dewey Decimal system used to 
classify books in a library. Each subject area, e.g., 
Biology, Chemistry etc, has its own classifying code. 
As a sub code of this is a specialist subject area within 
the main subject. These codes can again be sub coded 
by author. This classification method has advantages 
and disadvantages pivoted around the concepts of a 
unique classification for each item. The classification 
scheme will allow a user to find more than one item 
that is classified within the same section/subsection 
assuming that if more than one exists. For example, 
there may be more than one book concerning a given 
subject, each written by a different author. 

 This type of classification schemes is one 
dimensional, and will not allow flexible classification 
of components into more than one place. As such, 
enumerated classification by itself does not provide a 
good classification scheme for reusable software 
components. 
 
Attribute value: The attribute value classification 
schemes uses a set of attributes to classify a 
component[6]. For example, a book has many attributes 
such as the author, the publisher, it’s ISBN number and 
it’s classification code in the Dewey Decimal system. 
These are only example of the possible attributes. 
Depending upon who wants information about a book, 
the attributes could be concerned with the number of 
pages, the size of the paper used, the type of print face, 
the publishing date, etc. Clearly, the attributes relating 
to a book can be: 
 
• Multidimensional. The book can be classified in 

different places using different attributes 
• Bulky. All possible variations of attributes could 

run into many tens, which may not be known at the 
time of classification 

 
Faceted: Faceted classification schemes are attracting 
the most attention within the software reuse 
community. Like the attribute classification method, 
various facets classify components, however, there are 
usually a lot fewer facets than there are potential 
attributes (at most, 7). Ruben Prieto-Diaz[2,8,12,17] has 
proposed a faceted scheme that uses six facets. 
 
• The functional facets are: Function, Objects and 

Medium 
• The environmental facets are: System type, 

Functional area, Setting 
 
 Each of the facets has to have values assigned at 
the time the component is classified. The individual 
components can then be uniquely identified by a tuple, 
for example. 
 
<add, arrays, buffer, database manager, billing, book 
store> 
 
 Clearly, it can be sent that each facet is ordered 
within the system. The facets furthest to the left of the 
tuple have the highest significance, whilst those to the 
right have a lower significance to the intended 
component. When a query is made for a suitable 
component, the query will consist of a tuple similar to 
the classification one, although certain fields may be 
omitted if desired. For example: 
 
<add, arrays, buffer, database manager, *,*> 



J. Computer Sci., 4 (10): 821-825, 2008 
 

 823 

 The most appropriate component can be selected 
from those returned since the more of the facets from 
the left that match the original query, the better the 
match will be. 
 Frakes and Pole conducted an investigation as to 
the most favorable of the above classification 
methods[9]. The investigation found no statistical 
evidence of any differences between the four different 
classification schemes, however, the following about 
each classification method was noted: 
 
• Enumerated classification 
 Fastest method, difficult to expand 
• Faceted classification 
 Easily expandable, most flexible  
• Free text classification 
 Ambiguous, indexing costs 
• Attribute value classification 
 Slowest method, no ordering, number of attributes. 
 

RESULTS AND DISCUSSION 
 
Proposed classification: Whilst it is obvious that some 
kind of classification and retrieval is required, one 
problem is how to actually implement this, most other 
systems follow the same principle: Once a new 
component has been identified, a librarian is 
responsible for the classification must be highly 
proficient with the classification system employed for 
two reasons. Firstly, the librarian must know how to 
classify the components according to the schema. 
 Secondly, a lexicographical consistency is required 
across the whole of the system. The classification 
system is separate to the retrieval system, which is for 
all of the users. 
 Most established systems tend to rigidly stick with 
one classification and retrieval scheme, such as free text 
or faceted. Others tend to use one type of retrieval 
system with a separate classification system such as the 
Reusable Software Library, which uses an Enumerated 
classification scheme with Free Text search. 
 In this research, we propose a new classification 
scheme that incorporates the features of existing 
classification schemes. In this system (Fig. 1) the 
administrator or librarian sets up the classification 
scheme. The developers develop and put their 
components into library. The users who are also 
developers can retrieve components from the library. 
Query tracking system can be maintained to improve 
the classification scheme. The proposed system will 
provide the following functionality to the users. 
 
• Storing components 
• Searching components 
• Browsing components 

 
 

Fig. 1: Proposed system 
 
 The librarian task is to establish classification 
scheme. Each of the four main classification schemes 
has both advantages and disadvantages. The free text 
classification scheme does not provide the flexibility 
required for a classification system, and has too many 
problems with synonyms and search spaces. The 
faceted system of classification provides the most 
flexible method of classifying components. However, it 
can cause problems when trying to classify very similar 
components for use within different domains. The 
enumerated system provides a quick way to drill down 
into a library, but does not provide the flexibility within 
the library to classify components for use in more than 
one way. The attribute value system allows 
multidimensional classification of the same component, 
but will not allow any ordering of the different 
attributes. 
 Our solution to these problems would be to use an 
attribute value scheme combined with faceted 
classification scheme to classify the components 
details. The attribute value scheme is initially used to 
narrow down the search space. Among the available 
components in the repository only components 
matching with the given attributes are considered for 
faceted retrieval. Restrictions can be placed upon which 
hardware, vendor, O.S., type and languages attributes. 
This will be the restrictive layer of the classification 
architecture, by reducing the size of the search space. 
All, some or none of the attributes can be used, 
depending upon the required specificity or generality 
required. Then a faceted classification scheme is 
employed to access the component details within the 
repository. The proposed facets are similar to those 
used by Prieto-Diaz, but are not the same.  
 
• Behavior. What the component does. 
• Domain. To which application domain the 

components belong. 
• Version. The version of the candidate component 



J. Computer Sci., 4 (10): 821-825, 2008 
 

 824 

 
 
Fig. 2: Architecture of proposed System 
 

 
 
Fig. 3: Screen for browsing components 
 

 
 
Fig. 4: Screen for searching components 
 
 Figure 2 shows the architecture of proposed 
system. The repository is library of component 
information, with the components stored within the 
underlying platforms. Users are provided with interface 
through which they can upload, retrieve and browse 
components. User will provide the details of the 
components to upload components. While retrieving 

components the user can give his query or he can give 
details so that the system will find the matching 
components and give the results. Then the user can 
select his choice from the list of components. The user 
can select from versions of components also. In 
addition the descriptions of the components are stored 
along with components facilitate text searches also. 
 Figure 3 and 4 shows the experimental prototype 
screens. The user can browse components by developer, 
language or platform. In the search screen the user can 
give his requirement along with fields that are optional. 
 

CONCLUSION 
 
 This study presented the methods to classify 
reusable components. Existing four main methods (free 
text, attribute value, enumerated and faceted 
classification) are investigated and presented 
advantages and disadvantages associated with them. 
The proposed classification system takes advantage of 
the positive sides of each classification scheme. This 
classification scheme for different parts of a 
component. The attribute value scheme is initially used 
within the classification for specifying the vendor, 
platform, operating system and development language 
relating to the component. This allows the search space 
to be restricted to specific libraries according to the 
selected attribute values. Additionally, this method will 
allow the searches to be either as generic or domain 
specific as required. The functionality of the component 
is then classified using a faceted scheme. 
 In addition to the functional facets is a facet for the 
version of the component. The version of a component 
is directly linked to its functionality as a whole, i.e. 
what it does, what it acts upon and what type of 
medium it operates within. Future work involved with 
this classification scheme will be to refine the scheme, 
and formalize it for implementation. A prototyped 
system for presenting and retrieving software reusable 
components based on this classification schema is now 
under implementation. 
 

REFERENCES 
 
1. Henninger, S., 1997. An evolutionary approach to 

constructing effective software reuse repositories. 
ACM Trans. Software Eng. Methodol., 2: 111-150. 
DOI: 10.1145/248233.248242 

2. Ruben Prieto-Diaz, 1991. Implementing faceted 
classification for software reuse. Commun. ACM, 
34: 88-97. DOI: 10.1145/103167.103176 



J. Computer Sci., 4 (10): 821-825, 2008 
 

 825 

3. Gerald Kotonya, Ian Sommerville and Steve Hall, 
2003. Towards a classification model for 
component based software engineering research. 
Proceeding of the of the 29th EUROMICRO 
Conference, Sep. 1-6, IEEE Computer Society  
Washington, DC, USA., pp: 43. 
http://portal.acm.org/citation.cfm?id=943278 

4. William B. Frakes and Thomas. P. Pole, 1994. An 
empirical study of representation methods for 
reusable software components. IEEE Trans. 
Software Eng., 20: 617-630. DOI: 
10.1109/32.310671  

5. Sorumgard, L.S. G. Sindre and F. Stokke, 1993. 
Experiences from application of a faceted  
classification   scheme. Proceedings of the2nd 
International Workshop on Advances in Software 
Reuse., Selected Papers from the Mar. 24-26, IEEE 
Xplore, USA., pp: 116-124. DOI: 
10.1109/ASR.1993.291711 

6. Jeffrey, S. Poulin and Kathryn P. Yglesias 1993. 
Experiences with a faceted classification scheme in 
a large Reusable Software Library (RSL).  
Proceedings of the 7th Annual International 
Conference on Computer Software and  
Applications Conference, Nov. 1-5, IEEE Xplore, 
Phoenix, AZ, USA.,  pp: 90-99. DOI: 
10.1109/CMPSAC.1993.404220 

7. De Jr Lucena, V.F., Facet-Based Classification 
Scheme for Industrial Automation Software 
Components. http://research.microsoft.com/en-
us/um/people/cszypers/events/wcop2001/lucena.pdf 

8. Ruben Prieto-Diaz, 1990. Implementing faceted 
classification for software reuse. Proceedings of the 
12th International Conference on International 
Conference on Software Engineering, Mar. 26-30, 
IEEE Computer Society Press,  Los Alamitos, CA., 
USA pp: 300-304. 
http://portal.acm.org/citation.cfm?id=100296.100338 

9. Klement, J. Fellner and Klaus Turowski, 2000. 
Classification framework for business components. 
Proceedings of the 33rd Hawaii International 
Conference on System Sciences, Jan. 4-7, IEEE 
Xplore, USA.  

 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=927009 

 
 
 
 
 
 
 

10. Vitharana, Fatemeh, Jain, 2003. Knowledge based 
repository scheme for storing and retrieving 
business components: A theoretical design and an 
empirical  analysis.  IEEE  Trans. Software Eng., 
29: 649-664. DOI: 10.1109/TSE.2003.1214328 

11. William B. Frakes and Kyo Knag, 2005. Software 
reuse research: status and future. IEEE Trans. 
Software Eng., 31: 529-536. DOI: 
10.1109/TSE.2005.85  

12. Prieto-Diaz, R. and P. Freeman, 1987. Classifying 
software for reuse. IEEE Software, 4: 6-16. DOI: 
10.1109/MS.1987.229789 

13. Rym Mili, Ali Mili, and Roland T. Mittermeir, 
1997. Storing and retrieving software components 
a refinement based system. IEEE Trans. Software 
Eng., 23: 445-460. DOI: 10.1109/32.605762 

14. Hafedh Mili, Estelle Ah-Ki, Robert Godin and 
Hamid Mcheick, 1997. Another nail to the coffin 
of faceted controlled vocabulary component 
classification and retrieval. Proceedings of the 
Symposium on Software Reusability May 1997, 
Boston USA., pp: 89-98. 
http://portal.acm.org/citation.cfm?doid=258368.25
8393 

15. Hafedh Mili, Fatma Mili and Ali Mili, 1995. 
Reusing software: issues and research directions. 
IEEE Trans. Software Eng., 21: 528-562. DOI: 
10.1109/32.391379 

16. Gerald Jones and Ruben Prieto-Diaz, 1998. 
Building and managing software libraries. 1988. 
COMPSAC 88. Proceedings of the 12th 
International Conference on Computer Software 
and Applications,  Oct. 5-7, IEEE Xplore, Chicago, 
IL, USA pp: 228-236. DOI: 
10.1109/CMPSAC.1988.17177 

17. Prieto-Diaz, Freeman, 1997. Classifying software 
for reuse. IEEE Software, 4: 6-16. 


