
Journal of Computer Science 4 (9): 729-740, 2008 
ISSN 1549-3636 
© 2008 Science Publications 

729 

 
Extending the Concepts of Normalization from Relational Databases 

 to Extensible-Markup-Language Databases Model 
 

Hosam Farouk El-Sofany 
Department of Computer Science and Engineering, 

College of Engineering, Qatar University, Qatar 
 

Abstract: In this study we have studied the problem of how to extend the concepts of Functional 
Dependency (FD) and normalization in relational databases to include the eXtensible Markup 
Language (XML) model. We shown that, like relational databases, XML documents may contain 
redundant information and this redundancy may cause update anomalies. Furthermore, such problems 
are caused by certain functional dependencies among paths in the document. Our goal is to find a way 
for converting an arbitrary XML Schema to a well-designed one, that avoids these problems. We 
introduced new definitions of FD and normal forms of XML Schema (X-1NF, X-2NF, X-3NF and X-
BCNF). We shown that our normal forms are necessary and sufficient to ensure all conforming XML 
documents have no redundancies. 
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INTRODUCTION 

 
 Although many XML documents are views of 
relational data, the number of applications using native 
XML documents is increasing rapidly. Such 
applications may use native XML storage facilities[2] 
and update XML data[3]. Updates, like in relational 
databases, may cause anomalies if data is redundant. In 
the relational world, anomalies are avoided by 
developing a well-designed database schema. XML has 
its version of schema too; such as DTD and XML 
Schema[1]. Our goal is to find the principles for good 
XML Schema design. We believe that it is important to 
do this research now, as a lot of data is being put on the 
web. Once massive web databases are created, it is very 
hard to change their organization; thus, there is a risk of 
having large amounts of widely accessible, but at the 
same time poorly organized legacy data.  
 Normalization is a process which eliminates 
redundancy, organizes data efficiently and improves 
data consistency. Whereas normalization in the 
relational world has been quite explored, it is a new 
research area in native XML databases. Even though 
native XML databases mainly work with document-
centric XML documents and the structure of several 
XML document might differ from one to another, there 
is room for redundant information. This redundancy in 
data may impact on document updates, and efficiency 
of queries. Figure 1 show an overview of the XML 
normalization process that we propose. 

 
 
Fig. 1: An overview of the XML normalization process 
 
 This study is focus on dependency and normal 
form theory. This theory concerns with the well-
designed databases and it connected with dependencies 
such as keys, functional dependencies (FDs), weak 
functional dependencies, multi-valued dependencies, 
inclusion dependencies, and join dependencies. All 
these classes of dependencies have been deeply 
investigated in the context of the relational data 
model[4,5]. The study now requires its generalization to 
XML (trees like) model. 
 
Motivating example: Through an example, we show 
that, like relational databases, XML documents may 
contain redundant information and this redundancy may 
cause update anomalies. 
 
Example 1: Consider the following XML Schema that 
describes a part of a "university" database. For every 
course, we store its number (cno), its title and the list of 
students taking the course. For each student taking a 
course, we store the student number (sno), name and 
the grade in the course.  
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<?xml version = “1.0” encoding = “IS0-8859-1”?> 
<xs:schema xmlns:xs “http://www.w3.org/2001/ 
SMLSchema”> 
<xs:element name = “courses”> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name = “course” type = “course” 

max0ccurs = “unbounded”/> 
   </xs:sequence> 
  </xs:complextType> 
</xs:element> 
<xs:element name = “course”> 
  <xs:complextType> 
   <xs:sequence> 
    <xs: element name = “title” type = “xs:string”/> 
    <xs:element name = “taken_by” type = 
“taken_by” max0ccurs = “unbounded”/> 
  </xs:sequence> 
   </xs:attribute name = “cno” type = “xs:string” use 

= “required”/> 
 <xs:complexType> 
</xs:element> 
<xs:element name = “taken_by”> 
  <xs:complesType> 
   <xs:sequence> 
    <xs:element name = “student” type = “student” 

max0ccurs = “unbounded:/> 
   </xs:sequence> 
  </xs:complexType> 
<xs:element> 
<xs:element name = “student”> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name = “name” type = “sx:string”/> 
    <xs:element name = “grade” type = “sx:string”/> 
  <xs:sequence> 
    <xs:attribute name = “sno” type = “xs:string” use 
= “required”/> 
 </xs:complexType> 
</xs:element> 
 
</xs:schema> 
 
 An example of an XML document (tree) that 
conforms to this XML Schema is shown in Fig. 2[13]. 
This document satisfies the following constraint:  
"any two student elements with the same sno value 
must have the same name" 
 This constraint (which looks very much like a FD), 
causes the document to store redundant information: for 
example, the name Deere for student st1 is stored twice, 
as in relational databases, such redundancies can lead to 
update anomalies: for example, updating the name of 

st1 for only one course results in an inconsistent 
document and removing the student from a course may 
result in removing that student from the document 
altogether. 
 In order to eliminate redundant information, we use 
a technique similar to the relational one and split the 
information about the name and the grade. Since we 
deal with just one XML document, we must do it by 
creating an extra element of complex Type, called info, 
for student information, as shown: 
 
<?xml version = “1.0” encoding = “IS0-8859-1”?> 
<xs:schema xmlns:xs “http://www.w3.org/2001/ 
SMLSchema”> 
<xs:element name = “courses”> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name = “course” type = “course” 

max0ccurs = “unbounded”/> 
    <xs:element name = “info” type = “info” 

max0ccurs = “unbounded”/> 
   </xs:sequence> 
  </xs:complextType> 
</xs:element> 
<xs:element name = “course”> 
  <xs:complextType> 
   <xs:sequence> 
    <xs: element name = “title” type = “xs:string”/> 
    <xs:element name = “taken_by” type = 

“taken_by” max0ccurs = “unbounded”/> 
  </xs:sequence> 
   </xs:attribute name = “cno” type = “xs:string” use 
= “required”/> 
 <xs:complexType> 
</xs:element> 
<xs:element name = “taken_by”> 
  <xs:complesType> 
   <xs:sequence> 
    <xs:element name = “student” type = “student” 

max0ccurs = “unbounded:/> 
   </xs:sequence> 
  </xs:complexType> 
<xs:element> 
<xs:element name = “student”> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name = “name” type = “sx:string”/> 
    <xs:element name = “grade” type = “sx:string”/> 
  <xs:sequence> 
    <xs:attribute name = “sno” type = “xs:string” use 
= “required”/> 
 </xs:complexType> 
</xs:element> 
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<xs:element name = “info”> 
 <xs:complexType> 
  <xs:sequence> 
    <xs:element name = “number” type = “xs:string” 
max0ccurs = “unbounded:/> 
    <xs:element name = “name” type = “xs:string”> 
  </xs:sequence> 
    <xs:element name = “sno” type = “xs:string” use 
= “required”/> 
 </xs:complexType> 
</xs:element> 
 
</xs:schema> 
 

 
 
Fig. 2: A document containing redundant information 
 

 
 
Fig. 3: A well-designed document 

 Each info element has (as children) one name and a 
sequence of number elements, with sno as an attribute. 
Different students can have the same name and we 
group all student numbers sno for each name under the 
same info element. A restructured document that 
conforms to this XML Schema is shown in Fig. 3, [13]. 
Note that st2 and st3 are put together because both 
students have the same name.  
 This example remembers us with the bad relational 
design caused by nonkey FDs and how the database 
designer solve this problem by modifying the schema. 
 

MATERIALS AND METHODS 
 

To extend the notions of FDs to the XML model, we 
represent XML trees as sets of tuples[13] and find the 
correspondence between documents and relations that 
leads to the definition of functional dependency. 
 We first describe the formal definitions of XML 
Schema (XSchema) and the conforming of XML tree to 
XSchema. The definition of XSchema is based on 
regular tree grammar theory that introduced in[22]. 
Assume that we have the following disjoint sets: 
 
• Ê: set of element names 
• Â: set of attribute names 
• DΤ: set of atomic data types (e.g., ID, IDREF 

IDREFS, string, integer and date, …) 
• Str: set of possible values of string-valued 

attributes 
• Vert: set of node identifiers 
 
 All attribute names start with the symbol @. The 
symbols φ and S represent element type declarations 
EMPTY (null) and #PCDATA, respectively. 
 
Definition 1 (XSchema): An XSchema is denoted by 
6-tuple: X = (E, A, M, P, r, ∑), where: 
 
• E ⊆ Ê, is a finite set of element names.  
• A ⊆ Â, is a finite set of attribute names. 
• M is a function from E to its element type 

definitions: i.e., M(e) = α, where e ∈ E and α is a 
regular expression: 

 α ::= ε | t | α + α | α, α | α* | α? | α+ 
 
 where, ε denotes the empty element, t ∈ DΤ, "+" 

for the union, "," for the concatenation, α* for the 
Kleene closure, α? for (α + ε) and α+ for (α, α*) 

• P is a function from an attribute name a to its 
attribute type definition: i.e., P(a) = β, where β is a 
4-tuple (t, n, d, f), where: 
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 t ∈ DΤ 
 n = Either "?" (nullable) or "¬?" (not nullable) 
 d = A finite set of valid domain values of a or ε if 

not known  
 f = A default value of a or ε if not known 
• r ⊆ E is a finite set of root elements 
• ∑ is a finite set of integrity constraints for XML 

model. The integrity constraints we consider are 
keys (P.K, F.K,…) and dependencies (functional 
and inclusion) 

 
Definition 2 (path in XSchema): Given an XSchema 
X = (E, A, M, P, r, ∑), a string p = p1 …pn, is a path in 
X if, p1 = r, pi is in the alphabet of M(pi −1), for each i ∈ 
[2, n − 1] and pn is in the alphabet of M(pn−1) or pn = @l 
for some @l ∈ P(pn−1).  
 
• We define length(p) as n and last(p) as pn 
• We let paths(X) stand for the set of all paths in X 

and EPaths(X) for the set of all paths that ends with 
an element type (rather than an attribute or S), that 
is: EPaths(X) = { p ∈ paths(X) | last(p) ∈ E } 

• An XSchema is called recursive if paths(X) is 
infinite 

 
Definition 3 (XML Tree): An XML tree T is defined 
to be a tree, T = (V, lab, ele, att, root) 
Where: 
 
• V ⊆ Vert is a finite set of vertices (nodes) 
• lab : V → Ê 

• ele : V → Str ∪V* 
• att is a partial function V × Â → Str. For each v ∈ 

V, the set {@l ∈Â | att(v, @l) is defined} is 
required to be finite 

• root ∈ V is called the root of T 
 
 The parent-child edge relation on V, {(v1, v2) | v2 
occurs in ele(v1)}, is required to form a rooted tree. 
Note that, the children of an element node can be either 
zero or more element nodes or one string. 
 
Definition 4 (path in XML tree): Given an XML tree 
T, a string: p1…pn with p1 ,…, pn-1∈Ê and pn∈Ê 
UÂU{S} is a path in T if there are vertices v1 … vn−1∈V 
s.t.: 
 
• v1 = root, vi+1  is  a  child of vi (1 ≤ i ≤ n − 2), 

lab(vi) = pi (1 ≤ i ≤ n − 1) 

• If pn ∈ Ê, then  there  is  a  child vn of vn−1 s.t. 
lab(vn) = pn. If pn = @l, with @l∈Â, then att(vn−1, 
@l) is defined. If pn = S, then vn−1 has a child in Str 

• We let paths(T) stand for the set of paths in T 
 
 Now, we give a definition of a tree conforming to 
the XSchema (T╞ X) and a tree compatible with X 
( T X< ). 
 
Definition 5: Given an XSchema X = (E, A, M, P, r, ∑) 
and an XML tree T = (V, lab, ele, att, root), we say that 
T is valid w.r.t. X (or T conforms to X) written as (T╞ 
X) if: 
 
• lab: V → E 
• For each v ∈ V, if M(lab(v)) = S, then ele(v) = [s], 

where s ∈ Str. Otherwise, ele(v) = [v1, … , vn] and 
the string lab(v1) … lab(vn) must be in the regular 
language defined by M(lab(v)) 

• att is a partial function, att: V × A → Str, s.t. for 
any v ∈ V and @l ∈ A, att(v, @l) is defined iff @l 
∈ P(lab(v)) 

• lab(root) = r 
• We say that T is compatible with X (written T ⊲X) 

iff paths(T) ⊆ paths(X) 
• Clearly, T╞ X ∈ T ⊲X 
 
Definition 6: Given two XML trees T1 = (V1, lab1, ele1, 
att1, root1) and T2 = (V2, lab2, ele2, att2, root2), we say 
that T1 is subsumed by T2, written as T1 ≤ T2 if: 
 
• V1 ⊆ V2 
• root1 = root2 
• lab2|V1 = lab1 
• att2|V1×Â = att1 
• ∀ v ∈ V1, ele1(v) is a sub-list of a permutation of 

ele2(v) 
 
Definition 7: Given two XML trees T1 and T2, we say 
that T1 is equivalent to T2 written T1 ≡ T2, iff T1 ≤ T2 
and T2 ≤ T1 (i.e., T1 ≡ T2 iff T1 and T2 are equal as 
unordered trees): 
 
• We define [T] to be the ≡-equivalence class of T 
• We write: [T]╞ X if Ti╞ X for some Ti ∈ [T] 
• It is easy to see that for any T1 ≡ T2, paths(T1) = 

paths(T2), hence 
• T1 ⊲ X iff T2 ⊲ X 
• We shall also write T1 < T2 when T1 ≤ T2 and T2 ≰ 

T1 
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 In the following definition, we extend the notion of 
tuple for relational databases to the XML model. In a 
relational database, a tuple is a function that assigns to 
each attribute a value from the corresponding domain. 
In our setting, a tree tuple t in a XML Schema X is a 
function that assigns to each path in X a value in 

Vert∪Str∪{φ} in such a way that t represents a finite 
tree with paths from X containing at most one 
occurrence of each path. We show that an XML tree 
can be represented as a set of tree tuples.  
 
Definition 8 (tree tuples): Given XML Schema X = 
(E, A, M, P, r, ∑), a tree tuple t ∈ X is a function, t: 
paths(X) → VertUStrU{φ} such that: 
 

• For p ∈ EPaths(X), t(p) ∈ Vert∪{φ} and t(r) ≠ φ  

• For p ∈ paths(X) − EPaths(X), t(p) ∈ Str ∪ {φ} 
• If t(p1) = t(p2) and t(p1) ∈ Vert, then p1 = p2 
• If t(p1) = φ and p1 is a prefix of p2, then t(p2) = φ 
• {p ∈ paths(X) | t(p) ≠ φ} is finite 
 
 T(X) is defined to be the set of all tree tuples in X. 
For a tree tuple t and a path p, we write t.p for t(p). 
 
Example 2: Suppose that X is the XML Schema shown 
in example 1. Then a tree tuple in X assigns values to 
each path in paths(X) such as: 
 
t(courses) = v0 
t(courses.course) = v1 
t(courses.course.@cno) = csc200 
t(courses.course.title) = v2 
t(courses.course.title.S) = Automata Theory 
t(courses.course.taken_by) = v3 
t(courses.course.taken_by.student) = v4 
t(courses.course.taken_by.student.@sno) = st1 
t(courses.course.taken_by.student.name) = v5 
t(courses.course.taken_by.student.name.S) = Deere 
t(courses.course.taken_by.student.grade) = v6 
t(courses.course.taken_by.student.grade.S) = A+ 
 
Definition 9 (treeX): Given XML Schema X = (E, A, 
M, P, r, ∑) and a tree tuple t ∈ T(X), treeX(t) is defined 
to be an XML tree (V, lab, ele, att, root), where: 
• root = t.r  
• V = {v ∈ Vert | ∃ p ∈ paths(X) such that v = t.p} 
• If v = t.p and v ∈ V, then lab(v) = last(p) 
• If v = t.p and v ∈ V, then ele(v) is defined to be the 

list containing  

• {t.p' | t.p' ≠ φ and p' = p.τ, τ ∈E, or p' = p.S, 
ordered lexicographically 

• If v = t.p, @l ∈ A and t.p.@l ≠ φ , then att(v, @l ) 
= t.p.@l 

 
Example 3: Let X be the XML Schema from example 
1 and t the tree tuple from Example 2. Then, t gives rise 
to the following XML tree: 
 

V2

V1

V0

V3 

V4 

V5 V6

Automata theory 

A+

st1 

Deere 

Csc200

 
 
Proposition 1: If t ∈ T (X), then treeX(t) ⊲X. 
 
 We would like to describe XML trees in terms of 
the tuples they contain. For this, we need to select 
tuples containing the maximal amount of information. 
This is done via the usual notion of ordering on tuples 
(relations). 
 
• If we have two tree tuples t1, t2, we write t1 ⊆ t2 if 

whenever t1.p is defined, then t2.p is also defined 
and t1.p ≠ φ ∈ t1.p = t2.p 

• As usual, t1 ⊂ t2 means t1 ⊆ t2 and t1 ≠ t2 
• Given two sets of tree tuples, Y and Z, we write: Y 

⊆ b Z, if: ∀ t1 ∈ Y ⇒ t2 ∈ Z s.t. t1 ⊆ t2 
  
Definition 10 (tuplesX): Given XML Schema X and an 
XML tree T such that T ⊲X, tuplesX(T) is defined to be 
the set of maximal tree tuples t (with respect to ⊆), s.t. 
treeX(t) is subsumed by T, that is: 
max⊆{ t ∈T (X) | treeX(t) ≤ T } 
Note that: 
 
• T1 ≡ T2 implies tuplesX(T1) = tuplesX(T2) 
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• Hence, tuplesX applies to equivalence classes: 
tuplesX([T]) = tuplesX(T) 

• The following proposition lists some simple 
properties of tuplesX(·) 

 
Proposition 2: If T ⊲X, then tuplesX(T) is a finite 
subset of T(X). Furthermore, tuplesX(·) is monotone: T1 
≤ T2 implies tuplesX(T1) ⊆b tuplesX(T2). 
 
Proof: We prove only monotonicity. Suppose that T1 ≤ 
T2 and t1 ∈ tuplesX(T1). We have to prove that ∃ t2 ∈ 
tuplesX(T2) such that t1 ⊆ t2. If t1 ∈ tuplesX(T2), this is 
obvious, so assume that t1 ∉ tuplesX(T2). Given that t1 
∈ tuplesX(T1), treeX(t1) ≤ T1 and therefore, treeX(t1) ≤ 
T2. Hence, by definition of tuplesX(·), there exists t2∈ 
tuplesX(T2) such that t1 ⊂ t2, since t1∉ tuplesX(T2).  
 
Example 4: In example 1, we saw the XML Schema X 
and a tree T conforming to X. In example 2, we saw 
one tree tuple t for that tree, with identifiers assigned to 
some of the element nodes of T. If we assign identifiers 
to the rest of the nodes, we can compute the set 
tuplesX(T): 
 
{(v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5, 
Deere, v6, A+) 
(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8, 
Smith, v9, B-) 
(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere, 
v15, A) 
(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith, 
v18, B+)} 
 
 Finally, we define the trees represented by a set of 
tuples Y as the minimal, with respect to ≤, trees 
containing all tuples in Y. 
 
Definition 11 (treesX): Given XML Schema X and a 
set of tree tuples Y ⊆T (X), treesX(Y) is defined to be: 
 
min≤{T | T ⊲X and ∀ t ∈ Y, treeX(t) ≤ T}. 
 
 Notice that, if T ∈ treesX(Y) and T ' ≡ T, then T ' is 
in treesX(Y). The following shows that every XML 
document can be represented as a set of tree tuples, if 
we consider it as an unordered tree. That is, a tree T can 
be reconstructed from tuplesX(T), up to equivalence ≡. 
 
Theorem 1: Given XML Schema X and an XML tree 
T, if T ⊲X, then trees(tuplesX([T])) = [T]. 

Proof: Every XML tree is finite and, therefore, 
tuplesX([T]) = {t1, …, tn}, for some n. Suppose that T ∉ 
treesX({t1, . . . , tn}). Given that treeX(ti) ≤ T, for each i 
∈ [1, n], there is an XML tree T ' s.t. T ' ≤ T and 
treeX(ti) ≤ T ', for each i ∈ [1, n]. If T ' < T, then there is 
at least one node, string or attribute value contained in 
T which is not contained in T '. This value must be 
contained in some tree tuple tj (j ∈ [1, n]), which 
contradicts treeX(tj) ≤ T'. Therefore, T ∈ 
treesX(tuplesX([T])).  
 Let T' ∈ treesX(tuplesX([T])). For each i ∈ [1, n], 
treeX(ti) ≤ T '. Thus, given that, tuplesX(T) = {t1, …, tn}, 
we conclude that T ≤ T ' and, therefore, by definition of 
treesX, T ' ≡ T. 
 
Example 5: It could be the case that for some set of 
tree tuples Y there is no an XML tree T such that for 
every t ∈ Y , tree(t) ≤ T. For example, let X be XML 
Schema, X = (E, A, M, P, r, ∑), where E = {r, a, b}, A 
= φ, M(r) = (a|b), M(a) = ε and M(b) = ε. Let t1, t2 ∈ T 
(X) be defined as: 
 
t1.r = v0 t2.r = v2 
t1.r.a = v1 t2.r.a = φ 
t1.r.b = φ t2.r.b = v3 
 
 Since t1.r ≠ t2.r, there is no an XML tree T such 
that, treeX(t1) ≤ T and treeX(t2) ≤ T: 
 
• We say that Y ⊆ T (X) is X-compatible if there is 

an XML tree T: T ⊲X and Y ⊆ tuplesX(T) 
• For X-compatible set of tree tuples Y, there is 

always an XML tree T: for every t ∈Y, treeX(t) ≤ T 
 
Proposition 3: If Y ⊆ T (X) is X-compatible, then: 
 
• There is an XML tree T such that T ⊲X and 

treesX(Y) = [T]  
• Y ⊆b tuplesX(treesX(Y)) 
 
Proof: 
 
• Suppose that X = (E, A, M, P, r, ∑). Since Y is X-

compatible, ∃ an XML tree T' = (V', lab', ele', att', 
root') s.t. T ' ⊲X and Y ⊆ tuplesX(T '). We use T' to 
define an XML tree T = (V, lab, ele, att, root) s.t. 
treesX(Y) = [T]. 

 For each v ∈ V', if there is t ∈ Y and p ∈ paths(X) 
s.t. t.p = v, then v is included in V. Furthermore, 
for each v ∈ V, lab(v) is defined as lab'(v), ele(v) = 
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[s1, . . . , sn], where each si = t'.p.S or si = t'.p.τ for 
some t' ∈ Y and τ ∈ E s.t., t'.p = v. For each @l∈A 
s.t., t'.p.@l ≠ φ and t'.p = v for some t' ∈ Y, att(v, 
@l) is defined as t'.p.@l. Finally, root is defined as 
root'. It is easy to see that treesX(Y) = [T] 

• Let t ∈ Y and T be an XML tree s.t. treesX(Y) = 
[T]. If t ∈ tuplesX([T]), then the property holds 
trivially. Suppose that t∉tuplesX([T]). Then, given 
that treeX(t) ≤ T, there is t' ∈ tuplesX([T]) s.t. t ⊂ t'. 
In either case, we conclude that there is t'∈ 
tuplesX(treesX(Y)) s.t. t ⊆ t'. 

 
 The example below shows that it could be the case 
that tuplesX(treesX(Y)) properly dominates Y, that is, Y 
⊆b tuplesX(treesX(Y)) and tuplesX(treesX(Y)) ⊈b Y. In 
particular, this example shows that the inverse of 
Theorem 1 does not hold, that is, tuplesX(treesX(Y)) is 
not necessarily equal to Y for every set of tree tuples Y 
, even if this set is X-compatible. Let X be as in 
example 5 and t1, t2 ∈ T (X) be defined as: 
 
t1.r = v0 t2.r = v0 
t1.r.a = v1 t2.r.a = φ 
t1.r.b = φ t2.r.b = v2 
 
Let t3 be a tree tuple defined as: 
 
t3.r = v0, t3.r.a = v1 and t3.r.b = v2 
 
 Then, tuplesX(treesX({t1, t2})) = {t3} since t1 ⊂ t3 
and t2 ⊂ t3 and, therefore, {t1, t2} ⊆b tuplesX(treesX({t1, 
t2})) and tuplesX(treesX({t1, t2})) ⊈b {t1, t2}. 
 From Theorem 1 and Proposition 3, it is 
straightforward to prove the following Corollary. 
 
Corollary: For a X-compatible set of tree tuples Y: 
treesX(tuplesX(treesX(Y))) = treesX(Y). 
 
Functional dependencies of XML schema: We define 
the functional dependencies for XML Schema by using 
the tree tuples representation that discussed previously.  
 
Definition 12 (functional dependencies): Given an 
XML Schema X, a functional dependency (FD) over X 
is an expression of the form: S1 → S2 where S1, S2 ⊆ 
paths(X), S1, S2 ≠ φ. The set of all FDs over X is 
denoted by FD(X). 
 
• For S ⊆ paths(X) and t, t' ∈ T (X), t.S = t'.S means 

t.p = t'.p ∀ p ∈ S. Furthermore, t.S ≠ φ means t.p ≠ 
φ ∀ p ∈ S  

Definition 13: If S1 → S2 ∈ FD(X) and T is an XML 

tree s.t. T ⊲X and S1 ∪ S2 ⊆ paths(T), we say that T 
satisfies S1 → S2 (written T╞ S1 → S2), if ∀ t1, t2 ∈ 
tuplesX(T), t1.S1 = t2.S1 and t1.S1 ≠ φ ∈ t1.S2 = t2.S2. 
 
• Note that: if tree tuples t1, t2 satisfy an FD S1 → S2, 

then for every path p ∈ S2, t1.p and t2.p are either 
both null or both not null 

 
Definition 14: If for every pair of tree tuples t1, t2 in an 
XML tree T, t1.S1 = t2.S1 implies they have a null value 
on some p ∈ S1, then the FD is trivially satisfied by T. 
 
• The previous definitions extends to the equivalence 

classes, since, for any FD f and T ≡ T', T╞ f iff T'╞ 
f 

• We write T╞ F, for F ⊆ FD(X), if T╞ f for each f 
∈F and we write T╞ (X, F), if T╞ X and T╞ F 

 
Example 6: Consider the XML Schema in example 1, 
we have the following FDs. Note that, cno is a key of 
course: 
 
• courses.course.@cno → courses.course (FD1) 

Another FD says that two distinct student 
subelements of the same course cannot have the 
same sno:  

• {courses.course,courses.course.taken_by.student.@
sno} → courses.course.taken_by.student (FD2) 

 
 Finally, to say that two student elements with the 
same sno value must have the same name, we use: 
 
• courses.course.taken_by.student.@sno → 
• courses.course.taken_by.student.name.S (FD3) 
 
Definition 15: Given XML Schema X, a set F ⊆ FD(X) 
and f ∈ FD(X), we say that (X, F) implies f, written (X, 
F) ⊦ f , if for any tree T with T╞ X and T╞ F, it is the 
case that T╞ f. The set of all FDs implied by (X, F) will 
be denoted by (X, F)+.  
 
Definition 16: an FD f is trivial if (X, φ) ⊦ f.  
 
Primary and Foreign Keys of XML Schema: We 
present the definitions of the primary and foreign keys 
of the XML Schema. We'll use these definitions to 
introduce the normal forms of XML Schema. Also, we 
observe that while there are important differences 
between the XML and relational models, much of the 
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thinking that commonly goes into relational database 
design can be applied to XML Schema design as well. 
 
Definition 17 (key, foreign key and superkey): Let X 
= (E, A, M, P, r, ∑) be XML Schema, a constraint ∑ 
over X has one of the following forms: 
 
• key: e(l) → e, where e∈E and l is a set of attributes 

in P(e). It indicates that the set l of attributes is a 
key of e elements 

• foreign key: e1(l1) ⊆ e2(l2) and e2(l2) → e2 where e1, 
e2 ∈ E and l1, l2 are non-empty sequences of 
attributes in P(e1), P(e2), respectively and moreover 
l1 and l2 have the same length. This constraint 
indicates that l1 is a foreign key of e1 elements 
referencing key l2 of e2 elements 

• A constraint of the form e1(l1) ⊆ e2(l2) is called an 
inclusion constraint 

• Observe that a foreign key is actually a pair of 
constraint, namely an inclusion constraint e1(l1) ⊆ 
e2(l2) and a key e2(l2) → e2 

• superkey: suppose that, e ⊆ E and for any two 
distinct paths p1 and p2 in the XML Schema X, we 
have the constraint that: p1(e) ≠ p2(e). The subset e 
is called a superkey of X 

• Every XML Schema has at least one default 
superkey - the set of all its elements 

 
Normal forms of XML Schema: We will introduce 
the normal forms of XML documents. Our goal is to 
see what relational concepts we can usefully apply to 
XML. Can the normal forms that guide database design 
be applied meaningfully to XML document design? 
 
First normal form for XML schema (X-1NF): First 
normal form (1NF) is now considered to be a part of the 
formal definition of a relation in the basic relational 
database model. Historically, it was defined as: "The 
domain of an attribute in a tuple must be a single value 
from the domain of that attribute"[20]. 
Of course, XML is hierarchical by nature. An XML 
"tuple" can vary from first normal form in several ways, 
all of them are valid by means of data modeling: 
 

• It can have varying numbers of fields and 
default values for attributes  

• It can have multiple values for a field, through 
the maxOccurs attribute for particles 

• It can have choices of field types instead of a 
straight sequence or conjunction 

• Fields can be of complex type 
 

• The last feature is the most apparent when looking 
at an XML document. An XML tuple is a tree, not 
a table 

• The second feature affects the relational database 
normal forms. It may at first seem as a good way to 
model multiple children (of simple or complex 
type) directly under a parent, without having to 
resort to multiple tables and foreign keys just to 
express a simple one-to-many relationship 

 
Second normal form of XML schema (X-2NF): X-
2NF is based on the concept of full functional 
dependency. 
 
Definition 18: A FD S1 → S2, where S1, S2 ⊆ paths(X) 
is called full FD, if removal of any element's path p 
from S1, means that the dependency does not hold any 
more, (i.e., for any p ∈ S1, (S1-{p}) does not functional 
determine S2). 
 
Definition 19: A FD S1 → S2 is called partial 
dependency if, for some p ∈ S1, (S1-{p}) → S2 is hold. 
 
Example 7: Consider the following part of XML 
Schema called "Emp_Proj" 
 
<xs:complexType name “Emp_Proj”> 
 <xs:sequence> 
  <xs: element name = “Sss” type = “string”/> 
  <xs: element name = “Pnumber” type = 

“string”/> 
  <xs: element name = “Hours” type = “string”/> 
  <xs: element name = “Ename” type = “string”/> 
  <xs: element name = “Pname” type = “string”/> 
  <xs: element name = “Plocation” type = 

“string”/> 
 <xs:sequence> 
<xs: complexType> 
<xs: key name = “emSssKey”> 
 <xs: selector xpath = “Emp_Proj”/> 
 <xs: field xpath = “Sss”/> 
<xs: key> 
<xs: key name = “ProfectNoKey”> 
 <xs: selector cpath = “Emp_Proj”/> 
 <xs: field xpath = “Pnumber”/> 
</xs:key> 
 
With the following FDs: 
 
FD1: {Emp_Proj.Sss, Emp_Proj.Pnumber} → 

Emp_Proj.Hours 
FD2: Emp_Proj.Sss → Emp_Proj.Ename 
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FD3: Emp_Proj.Pnumber → {Emp_Proj.Pname, 
Emp_Proj.Plocation} 

 
Note that: 
 
• FD1 is a full FD (neither Emp_Proj.Sss → 

Emp_Proj.Hours nor Emp_Proj.Pnumber → 
Emp_Proj.Hours holds). 

• The FD: {Emp_Proj.Sss, Emp_Proj.Pnumber} → 
Emp_Proj.Ename is partial because Emp_Proj.Sss 
→ Emp_Proj.Ename holds. 

 
Definition 20 (X-2NF): An XML Schema X = (E, A, 
M, P, r, ∑) is in second normal form (X-2NF) if every 
elements e∈E and attributes l ⊆ P(e) are fully 
functionally dependent on the key elements of X. 
 
• The test for X-2NF involves testing for FDs whose 

left-hand side are part of the primary key. If the 
primary key contain a single element's path, the 
test need not be applied at all 

 
Example 8: The XML Schema Emp_Proj in the above 
example is in X-1NF but is not in X-2NF. Because the 
FDs FD2 and FD3 make Emp_Proj.Ename, 
Emp_Proj.Pname and Emp_Proj.Plocation partially 
dependent on the primary key {Emp_Proj.Sss, 
Emp_Proj.Pnumber} of Emp_Proj, thus violating the 
X-2NF test. 
 
• Hence, the FDs FD1, FD2 and FD3 lead to the 

decomposition of XML Schema Emp_Proj to the 
following XML Schemas EP1, EP2 and EP3: 

 
<xs: complexType name “EP1”> 
 <xs:sequence> 
  <xs: element name = “Sss” type = “string”/> 
  <xs: element name = “Pnumber” type = 

“string”/> 
  <xs: element name = “Hours” type = “string”/> 
 </xs element> 
 </xs:sequence> 
<xs:cmplexType> 
<xs:cmplexType name “EP2”> 
 </xs:sequence> 
  <xs: element name = “Sss” type = “string”/> 
  <xs: element name = “Pname” type = “string”/> 
 </xs:sequence> 
<xs:cmplexType> 
<xs:cmplexType name “EP3”> 
 </xs:sequence> 
  <xs: element name = “Pnumber” type = 

“string”/> 

  <xs: element name = “Pname” type = “string”/> 
  <xs: element name = “Plocation” type = 
“string”/> 
  </xs element> 
 </xs:sequence> 
<xs:cmplexType> 
<xs: key name = “empSssKey”> 
 <xs: selector xpath = “EP1”/> 
 <xs: field xpath = “Sss”/> 
</xs:key> 
<xs: key name = “ProjectNoKey”> 
 <xs: selector xpath = “EP1”/> 
 <xs: field xpath = “Pnumber”/> 
</xs:key> 
<xs: key name = “emp2SssKey”> 
 <xs: selector xpath = “EP2”/> 
 <xs: field xpath = “Sss”/> 
</xs:key> 
<xs: key name = “Project3NoKey”> 
 <xs: selector xpath = “EP3”/> 
 <xs: field xpath = “Pnumber”/> 
<xs:key> 
 
Third Normal Form of XML Schema (X-3NF): X-
3NF is based on the concept of transitive dependency. 
 
Definition 21: A FD S1 → S2, where S1, S2 ⊆ paths(X) 
is transitive dependency if there is a set of paths Z (that 
is neither a key nor a subset of any key of X) and both 
S1 → Z and Z → S2 hold. 
 
Example 9: Consider the following XML Schema 
called "Emp_Dept": 
 
Emp_Dept(Ssn, Ename, Bdate, Address, Dnumber, 
Dname, DmgrSsn)  
 
<xs: complexType name “Emp_Dept”> 
 <xs:sequence> 
  <xs: element name = “Sss” type = “string”/> 
  <xs: element name = “Ename” type = “string”/> 
  <xs: element name = “Bdate” type = “string”/> 
  <xs: element name = “Address” type = “string”/> 
  <xs: element name = “Dnumber” type = 

“string”/> 
  <xs: element name = “Dname” type = “string”/> 
  <xs: element name = “DmgrSsn” type = 

“string”/> 
 <xs:sequence> 
<xs:complexType> 
<xs: key name = “empSssKey”> 
 <xs: selector xpath = “Emp_Dept”/> 
 <xs: field xpath = “Sss”/> 
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</xs:key> 
 
With the following FDs: 
 
FD1: Emp_Dept.Ssn → {Emp_Dept.Ename, 

Emp_Dept.Bdate, Emp_Dept.Address, 
Emp_Dept.Dnumber } 

FD2: Emp_Dept.Dnumber → {Emp_Dept.Dname, 
Emp_Dept.DmgrSsn} 

 
Note that: 
The dependency: 
 Emp_Dept.Ssn→ Emp_Dept.DmgrSsn is transitive 

through Emp_Dept.Dnumber in Emp_Dept, 
because both the FDs: 

 Emp_Dept.Ssn → Emp_Dept.Dnumber and 
 Emp_Dept.Dnumber → Emp_Dept.DmgrSsn 
hold and Emp_Dept.Dnumber is neither a key itself nor 
a subset of the key of Emp_Dept. 
  
Definition 22 (X-3NF): An XML Schema X = (E, A, 
M, P, r, ∑) is in third normal form (X-3NF) if it 
satisfies X-2NF and no (elements e ∈ E or l ⊆ P(e)) is 
transitively dependent on the key elements of X. 
 
Example 10: The XML Schema Emp_Dept in the 
above example is in X-2NF (since no partial 
dependencies on a key element exist), but Emp_Dept is 
not in X-3NF. Because of the transitive dependency of 
Emp_Dept.DmgrSsn (and also Emp_Dept.Dname) on 
Emp_Dept.Ssn via Emp_Dept.Dnumber.  
 
• We can normalize Emp_Dept by decomposing it 

into the following two XML Schemas ED1 and 
ED2: 

   ED1(Ssn, Ename, Bdate, Address, Dnumber)  
   ED2(Dnumber, Dname, DmgrSsn)  
 
<xs:complexType name “ED1”> 
 <xs:sequence> 
  <xs: element name = “Sss” type = “string”/> 
  <xs: element name = “Ename” type = “string”/> 
  <xs: element name = “Bdate” type = “string”/> 
  <xs: element name = “Address” type = “string”/> 
  <xs: element name = “Dnumber” type = 
“string”/> 
 <xs:sequence> 
<xs:complexType> 
<xs:complexType name “ED2”> 
  <xs: element name = “Dnumber” type = 

“string”/> 
  <xs: element name = “Dname” type = “string”/> 

  <xs: element name = “DmgrSsn” type = 
“string”/> 

 <xs:sequence> 
<xs:complexType> 
 
<xs: key name = “empSssKey”> 
 <xs: selector xpath = “ED1”/> 
 <xs: field xpath = “Sss”/> 
</xs:key> 
 
<xs: key name = “deptNoKey”> 
 <xs: selector xpath = “ED2”/> 
 <xs: field xpath = “Dnumber”/> 
</xs:key> 
 
Boyce-codd normal form of XML schema (X-
BCNF): Boyce-Codd Normal form of XML Schema 
(X-BCNF), proposed as a similar form as X-3NF, but it 
was found to stricter than X-3NF, because every XML 
Schema in X-BCNF is also in X-3NF, however, an 
XML Schema in X-3NF is not necessarily in X-BCNF. 
The formal definitions of BCNF differs slightly from 
the definition of X-3NF 
 
Definition 23 (X-BCNF): An XML Schema X = (E, A, 
M, P, r, ∑) is in Boyce-Codd Normal Form (X-BCNF) 
if whenever a nontrivial FD S1 → S2 holds in X, where 
S1, S2 ⊆ paths(X), then S1 is a superkey of X.  
 Also, we can consider the following definition of 
X-BCNF: 
 
Definition 24: Given XML Schema X and F ⊆ FD(X), 
(X, F) is in X-BCNF iff for every nontrivial FD f ∈ (X, 
F)+ of the form S → p.@l or S → p.S, it is the case that, 
S → p ∈ (X, F)+. 
 
• The intuition is as follows: Suppose that S → p.@l 

∈ (X, F)+. If T is an XML tree conforming to X 
and satisfying F, then in T for every set of values 
of the elements in S, we can find only one value of 
p.@l. Thus, for every set of values of S, we need to 
store the value of p.@l only once, in other words, S 
→ p must be implied by (X, F) 

• In definition 24, we suppose that, f is a nontrivial 
FD. Indeed, the trivial FD p.@l → p.@l is always 
in (X, F)+, but often p.@l → p ∉ (X, F)+, which 
does not necessarily represent a bad design 
 

 To show how X-BCNF distinguishes good XML 
design from bad design, we consider example 1 again, 
when only functional dependencies are provided. 
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Example 11: Consider the  XML Schema from 
example 1 whose FDs are FD1, FD2 and FD3, shown in 
example 6. FD3 associates a unique name with each 
student number, which is therefore redundant. The 
design is not in X-BCNF, since it contains FD3 but 
does not imply the functional dependency:  
 
courses.course.taken_by.student.@sno → 
 courses.course.taken_by.student.name 
 
 To solve this problem, we gave a revised XML 
Schema in example 1. The idea was to create a new 
element info for storing information about students. 
That design satisfies FDs, FD1, FD2, as well as 
 
 courses.info.number.@sno → courses.info 
 
and can be easily verified to be in X-BCNF. 

 
RESULTS AND DISCUSSION 

 
 It was introduced in[6] an XML normal form called 
XNF, that defined in terms of functional dependencies, 
multi-valued dependencies and inclusion constraints. 
The normal form of [6] was defined in terms of two 
conditions: XML specifications must not contain 
redundant information with respect to a set of 
constraints and the number of schema trees must be 
minimal. Further, Embley, D. and Mok, W.Y. [6] 
presented a conceptual-model-based methodology that 
automatically generates XNF satisfied the DTDs and 
proved that the algorithms, which are part of the 
methodology, produce DTDs to ensure that the XML 
documents satisfy the properties of XNF. 
 It was proved in[7] that an XML specification given 
by a DTD, D and a set ∑ of XML functional 
dependencies is in XNF if and only if no XML tree 
conforming to D and satisfying ∑ contains redundant 
information. Thus, for the class of FDs defined in this 
article, the XML normal form introduced in[6] is more 
restrictive than our XML normal forms. The FD 
language used in[6] is based on a language for nested 
relations and it does not consider relative constraints.  
 In[8], a language for expressing FDs for XML was 
introduced. In that language, a FD is defined as an 
expression of the form: 
 
(p, [q1, . . . , qn → qm]) 
 
 where, p is a fully qualified path expression (i.e., a 
path starting from the XML document root), every qi (i 
∈ [1, n]) is a LHS (Left-Hand-Side) entity type, a LHS 
entity type consists of an element name in the XML 
document and the optional key attribute(s); and qm is a 
RHS (Right-Hand-Side) entity type, a LHS entity type 

consists of an element name in the XML document and 
an optional attribute name. An XML tree T satisfies this 
constraint if for any two subtrees T1, T2 of T whose 
roots are nodes reachable from the root of T by 
following path p, if T1 and T2 agree on the value of qi , 
for every i ∈ [1, n], then they agree on the value of qm. 
This language does not consider relative constraints and 
its semantics only works properly if some syntactic 
restrictions are imposed on the FDs. Note that, the 
normalization problem is not considered in[8].  
 In[14] the author presented a formal model for 
relational trees focusing on constructors for lists and 
disjoint unions. These leads to new definition and 
derivation rules for FDs. 
 The recent article[13] took a first step towards the 
design and normalization theory for XML documents. 
The authors introduced the concept of a FD for XML, 
over a DTD, defined an XML normal form called XNF 
and then show that XNF is a generalized form of 
BCNF. Other proposals for XML constraints (mostly 
keys) have been studied in[9,11] these constraints do not 
use DTDs. XML constraints that takes DTDs into 
account are studied in[12]. 
 The main contributions in this study were, the new 
definitions of FDs and normal forms of XML Schema. 
We have extended the definitions introduced by 
Marcelo Arenas and Leonid Libkin[13], that is based on 
XML DTD, to include the XML Schema instead. We 
shown how to use FDs to detect data redundancy in 
XML document and then proposed normal forms of 
XML Schema with respect to the FD constraints.  
 

CONCLUSION 
 
 We have studied the problem of schema design and 
normalization in XML databases model. We introduced 
new definitions of FD and normal forms of XML 
Schema (X-1NF, X-2NF, X-3NF and X-BCNF) with 
respect to the FD constraints. We have illustrated that 
our normal forms are necessary and sufficient to ensure 
all conforming XML documents have no redundancies. 
In the future work, we plan to introduce the 
decomposition algorithm for converting any XML 
Schema into normalized one, that satisfies X-BCNF. 
Also we intent to work on extending XML Schema 
normal forms to more powerful normal forms, in 
particular by taking into account multi-valued 
dependencies, so we can express the other normal 
forms of XML Schema such as X-4NF and X-5NF. 
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