
Journal of Computer Science 4 (8): 638-645, 2008 
ISSN 1549-3636 
© 2008 Science Publications 

Corresponding Author: A.M.J. Md. Zubair Rahman, Kongu Engineering College, Perundurai, Tamilnadu, India 
638 

 
An Efficient Algorithm for Mining Maximal Frequent Item Sets 

 
A.M.J. Md. Zubair Rahman and P. Balasubramanie 

Kongu Engineering College, Perundurai, Tamilnadu, India 
 

Abstract: Problem Statement: In today’s life, the mining of frequent patterns is a basic problem in 
data mining applications. The algorithms which are used to generate these frequent patterns must 
perform efficiently. The objective was to propose an effective algorithm which generates frequent 
patterns in less time. Approach: We proposed an algorithm which was based on hashing technique 
and combines a vertical tidset representation of the database with effective pruning mechanisms. It 
removes all the non-maximal frequent item-sets to get exact set of MFI directly. It worked efficiently 
when the number of item-sets and tid-sets is more. Results: The performance of our algorithm had 
been compared with recently developed MAFIA algorithm and the results show how our algorithm 
gives better performance. Conclusions: Hence, the proposed algorithm performs effectively and 
generates frequent patterns faster. 
 
Key words: Mining-frequent item sets-hashing-MAFIA 

 
INTRODUCTION 

 
 Frequent pattern mining plays a major role in many 
data mining applications like mining association rules, 
correlations. Frequent patterns are the patterns that 
occur frequently in the given data set. If a set of items 
appear frequently together in a transaction data set, it is 
referred as frequent item set. If a set of items are 
occurring frequently in a sequential manner, it is 
referred as frequent sequential pattern. If a substructure 
like subtrees, subgraphs occurs frequently it is called as 
frequent structured pattern. These frequent items can be 
represented in the form of association rules. The 
association rule problem is a very important problem in 
the data-mining field with numerous practical 
applications including consumer market-basket 
analysis, inferring patterns from web page access logs 
and network intrusion detection. The association rule 
model was introduced by Agrawal[1]. Support and 
confidence are the two measures of rule interestingness. 
They reflect the usefulness and certainty of discovered 
rules respectively. If there is an association rule like X 
=> Y (support = a%, confidence = b%) then it means 
that a% of all transactions show that X and Y are 
together and b% of customers who purchased X also 
bought Y, where X and Y are items. Association rules 
must satisfy both minimum support threshold and a 
minimum confidence threshold. Such rules are called 
strong[2]. 
 
Support (X => Y)       = P(X U Y) 
Confidence (X => Y)  = P(Y|X) 
  = Support (X U Y) / Support (X) 

 Let I be a set of items. If there is an item A ⊆  I, A 
is a k-itemset if the cardinality of itemset A is k. The 
support of an itemset measures how often A occurs in 
the database. If Support (A) ≥ minsup, A is referred as 
frequent itemset. Informally, if the support of an itemset 
A satisfies a predefined minimum support threshold, 
then A is a Frequent Itemset (FI). An itemset is closed 
if there exists no proper super itemset B such that B has 
the same support as A. An itemset A is Frequent Closed 
Itemset (FCI) if A is both closed and frequent. An 
itemset A is a Maximal Frequent Itemset (MFI) if A is 
frequent and there exists no super itemset B such that 
A⊂  B and B is frequent. It is straight forward to 
observe that the following relation ship holds: MFI ⊆ 
FCI ⊆ FI[29]. Frequent pattern mining can be classified 
based on the completeness of patterns to be mined, the 
levels of abstraction involved in the rule set, the number 
of data dimensions involved in the rule, the types of 
values handled in the rule, the kinds of rules to be 
mined, the kinds of patterns to be mined. Algorithms 
for frequent itemset mining can be classified into three 
categories as Apriori-like algorithms, frequent pattern 
growth based algorithms such as FP-growth and 
algorithms that use the vertical data format. 
 The process of finding association rules has two 
separate phases[13]. In the first phase, we find set of 
Frequent Itemsets(FI) in the database. In the second 
phase, we set the set FI to generate “interesting 
patterns. In practice, the first phase is time consuming.  
 Wherever there are very long patterns (patterns 
containing many items) are present in the data, it is 



J. Computer Sci., 4 (8): 638-645, 2008 
 

639 

often impractical to generate the entire set of frequent 
itemsets or closed itemsets[27]. There is much research 
on methods for generating all frequent itemsets 
efficiently[3,7,8,9,15,18,31] or just the set of maximal 
frequent itemsets[6,10,12,14,27]. Most of these algorithms 
use a breadth-first approach, i.e., finding all k-itemsets 
before considering (k+1) itemsets. However, with dense 
datasets such as telecommunications and census data, 
where there are many, long frequent patterns, the 
performance of these algorithms degrades incredibly. 
 This degradation is due to the following reasons: 
these algorithms perform as many passes over the 
database as the length of the longest frequent pattern. 
Secondly, a frequent pattern of length l, when l is large, 
the frequent itemset mining methods become CPU 
bound rather than I/O bound. In other words, it is 
practically unfeasible to mine the set of all frequent 
patterns for other than small l. There are two current 
solutions to the long pattern mining problem. The first 
one is to mine only the maximal frequent itemsets[19], 
which are typically orders of magnitude fewer than all 
frequent patterns. While mining maximal sets help 
understand the long patterns in dense domains, they 
lead to a loss of information; since subset frequency is 
not available maximal sets are not suitable for 
generating rules. The second is to mine only the 
frequent closed sets[19-21]. Closed sets are lossless in the 
sense that they uniquely determine the set of all 
frequent itemsets and their exact frequency. At the 
same time closed sets can themselves be orders of 
magnitude smaller than all frequent sets, especially on 
dense databases. 
 The large itemset problem is reasonably well 
solved at least for the case of very sparse sales 
transaction data, when the pattern lengths are short[6, 13]. 
An interesting analysis of the impact of different kinds 
of data on access costs has been provided in[18]. An 
Apriori-style algorithm with improved counting 
techniques using column wise data access for databases 
with a larger number of items has been also been 
discussed in the same study. We maintain that when the 
actual frequent patterns are wide, even the CPU-costs 
of any algorithm which is based on the Apriori-
framework would be compromised by the investigation 
of all 2k subsets of frequent k-patterns. In such cases, 
the frequent itemset generation algorithms become 
CPU-bound. GenMax utilizes a backtracking search for 
efficiently enumerating all maximal patterns. GenMax 
uses a number of optimizations to quickly prune away a 
large portion of the subset search space. It uses a novel 
progressive focusing technique to eliminate non-
maximal itemsets, and uses diffset propagation for fast 
frequency checking. 

 Mafia is good for mining a superset of all maximal 
patterns, GenMax is the method of choice for 
enumerating the exact set of maximal patterns. We 
further observe that there is a type of data, where 
MaxMiner delivers the best performance. We denote by 
Fk the set of frequent k-itemsets, and by FI the set of all 
frequent itemsets. A frequent itemset is called maximal 
if it is not a subset of any other frequent itemset. The 
set of all maximal frequent itemsets is denoted as MFI. 
Given a user specified miti-sup value our goal is to 
efficiently enumerate all patterns in MFI. Backtracking 
algorithms are useful for many combinatorial problems. 
There are two main ingredients to develop an efficient 
MFI algorithm. The first is the set of techniques used to 
remove entire branches of the search space, and the 
second is representation used to perform fast frequency 
computations. We will describe below how GenMax 
extends the basic backtracking routine for FI, and then 
the progressive focusing and diffset propagation 
techniques it uses for fast maximality and frequency 
checking. 
 Some of the algorithms in the literature such as 
MaxMiner avoid this by implementing look aheads[27], 
in which supersets of frequent patterns are used in order 
to prune off potential candidates in the search. Other 
innovative ideas for handling these problems are 
discussed in[23]. Recently, the merits of a depth-first 
approach have been recognized[6]. 
 The database representation is also an important 
factor in the efficiency of generating and counting 
itemsets. Generating the itemset Z = (X U Y) refers to 
creating t(Z) = t(X) ∩ t(Y), and counting is the process 
of determining support(Z) in T. Most previous 
algorithms use a horizontal row layout, with the 
database organized as a set of rows and each row 
representing a transaction. The alternative vertical 
column layout associates with each item X a set of 
transaction identifiers (tids) for the set t(X). The 
vertical representation allows simple and efficient 
support counting 
 Basic Properties of Itemset-Tidset Pairs We use the 
concept of a closure operation[24,25] to check if a given 
itemset X is closed or not. We define a closure of an 
itemset X, denoted c(X), as the the smallest closed set 
that contains X. Recall that i(Y ) is the set of items 
common to all the tids in the tid set Y , while t(X) are 
tids common to all the items in X. To find the closure 
of an itemset X we first compute the image of X in the 
transaction space to get t(X). We next map t(X) to its 
image in the itemset space using the mapping i to get 
i(t(X)). It is well know that the resulting itemset must 
be closed[25], i.e., c(X) = i ◦ t(X) = i(t(X)). It follows 
that an itemset X is closed if and only if X = c(X). For 
example the itemset ACW is closed since c(ACW) = 
i(t(ACW)) = i(1345) = ACW. The support of an itemset 



J. Computer Sci., 4 (8): 638-645, 2008 
 

640 

X is also equal to the support of its closure, i.e., σ(X) = 
σ(c(X))[26, 27]. 
 For any two nodes in the IT-tree, Xi × t(Xi) and Xj 
× t(Xj ), if Xi ⊆ Xj then it is the case that t(Xj) ⊆ t(Xi). 
For example, for ACW ⊆ ACTW, t(ACW) = 1345 ⊆ 
135 = t(ACTW). Let us define f : P(I) → N to be a one-
to-one mapping from itemsets to integers. For any two 
itemsets Xi and Xj , we say Xi ≤ f Xj iff f(Xi) ≤ f(Xj ). 
The function f defines a total order over the set of all 
itemsets. For example, if f denotes the lexicographic 
ordering, then itemset AC ≤ AD, but if f sorts itemsets 
in increasing order of their support, then AD ≤ AC if 
σ(AD) ≤ σ(AC). There are four basic properties of IT-
pairs that CHARM leverages for fast exploration of 
closed sets. Assume that we are currently processing a 
node P × t(P) where [P] = {l1, l2, · · · , ln} is the prefix 
class. Let Xi denote the itemset Pli, then each member 
of [P] is an IT-pair Xi × t(Xi). 
 
Theorem 1: Let Xi ×t(Xi) and Xj ×t(Xj) be any two 
members of a class [P],with Xi ≤ f Xj,wher e f is a total 
order (e.g., lexic ographic or support-based). The 
following four properties hold:  
 
• If t(Xi) = t(Xj),then c(Xi) = c(Xj) = c(Xi U Xj) 
• If t(Xi) ⊂ t(Xj),then c(Xi)  ≠ c(Xj),but c(Xi) = c(Xi 

U Xj)  
• If t(Xi) ⊃ t(Xj),then c(Xi)  ≠ c(Xj),but c(Xj) = c(Xi 

U Xj) 
• If t(Xi)  ≠ t(Xj),then c(Xi)  ≠ c(Xj)  ≠ c(Xi U Xj) 
 
 In a thorough experimental evaluation, we first 
quantify the effect of each individual component on the 
performance of the algorithm. We then compare the 
performance of MAFIA against depth project, the most 
efficient previously known algorithm for finding 
maximal frequent itemsets[6]. Our results using some of 
the standard machine learning benchmark datasets 
indicate that MAFIA outperforms depth project by a 
factor of three to five on average. The main aim of 
developing this algorithm is to achieve CPU efficiency. 

 
MATERIALS AND METHODS 

  
 The problem of mining frequent itemsets has been 
a topic of Intensive research[14, 26]. Since the number of 
such sets is huge, it is common and more efficient to 
restrict the search to closed item-sets[26], where a set is 
closed if all its supersets have strictly lower frequency 
in the database. The collection of frequent closed sets 
contains the same information as the overall collection 
of frequent item-sets, but is much smaller. There is also 
a growing interest in mining structured data, such as 

graphs, and more generally multi-relational databases, 
and the notion of closed sets has also been imported to 
this richer setup. Another variation exist between 
mining in a single interpretation (graph), or across 
multiple interpretations. Finally, some authors restrict 
the implication relation used in defining closures to 
range-restricted clauses only. In addition to these 
differences, the notion of a closed set can be coupled 
with a closure operator that takes a set and calculates its 
closure and there is more than one way to define such 
closures. The literature gives the impression that these 
different choices are unimportant and that algorithmic 
issues can be studied independently of the semantics. 
Our investigation shows that this impression is false 
and that semantics do matter. 
 Methods for finding the maximal elements include 
All-MFS[28], which works by iteratively attempting to 
extend a working pattern until failure. A randomized 
version of the algorithm that uses vertical bit-vectors 
was studied, but it does not guarantee every maximal 
pattern will be returned. 
 Max Miner[27] is another algorithm for finding the 
maximal elements. It uses efficient pruning techniques 
to quickly narrow the search. Max Miner employs a 
breadth first traversal of the search space; it reduces 
database scanning by employing a look ahead pruning 
strategy Depth Project[30] finds long itemsets using a 
depth first search of a lexicographic tree of itemsets, 
and uses a counting method based on transaction 
projections along its branches. 
 It returns a superset of the MFI and would require 
post-pruning to eliminate non-maximal patterns. FP 
growth[31] uses the novel Frequent Pattern tree (FP-tree) 
structure, which is a compressed representation of all 
the transactions in the database. 
 Mafia[29] is the most recent method for mining the 
MFI. Mafia uses three pruning strategies to remove 
non-maximal sets. The first is the look-ahead pruning 
first used in Max Miner. The second is to check if a 
new set is subsumed by an existing maximal set. 
 The most important category of approaches in 
multi-relational classification is ILP. Besides ILP, 
probabilistic approaches are also popular for multi-
relational classification and modeling. The most 
important one is the probabilistic relational models 
(PRM's)[22,17] which is an extension of Bayesian 
networks for handling relational data. PRM's can 
integrate the advantages of both logical and 
probabilistic approaches for knowledge representation 
and reasoning. In[16] an approach is proposed to 
integrate ILP and statistical modeling for document 
classification and retrieval.  
 Given this conceptual framework, we can describe 
the most recent approaches to the maximal frequent 



J. Computer Sci., 4 (8): 638-645, 2008 
 

641 

itemset problem. As a baseline, Apriori traverses the 
lattice in a pure breadth-first manner, discovering all 
frequent nodes at level k before moving to level (k+1); 
Apriori finds support information by explicitly 
generating and counting each node[13]. Max Miner 
performs a breadth-first traversal of the search space as 
well, but also performs look aheads to prune out 
branches of the tree. The look aheads involve superset 
pruning, using apriori in reverse (all subsets of a 
frequent itemset are also frequent). In general, look 
aheads work better with a depth-first approach, but Max 
Miner uses a breadth-first approach to limit the number 
of passes over the database. Depth Project performs a 
mixed depth-first traversal of the tree, along with 
variations of superset pruning[6]. Instead of a pure 
depth-first traversal, Depth Project uses dynamic 
reordering of children nodes. With dynamic reordering, 
the size of the search space can be greatly reduced by 
trimming infrequent items out of each node’s tail. Also 
proposed in Depth Project is an improved counting 
method and a projection mechanism to reduce the size 
of the database. The other notable maximal pattern 
methods are based on graph-theoretic approaches. 
MaxClique and MaxEclat[10] both attempt to divide the 
subset lattice into smaller pieces (“cliques”) and 
proceed to mine these in a bottom-up Apriori-fashion 
with a vertical data representation. The VIPER 
algorithm has shown a method based on a vertical 
layout can sometimes outperform even the optimal 
method using a horizontal layout[11]. Other vertical 
mining methods for finding FI are presented by 
Holsheimer[4] and Savasere et al.[5]. The benefits of 
using the vertical tid-list were also explored by Ganti et 
al.[3]. 

 
Proposed Work: In general the structure of the 
transactional database may be in two different ways - 
Horizontal data format and Vertical data format. Here, 
we are using vertical data format for storing the 
transactions in the database. In vertical data format, the 
data is represented as item-tidset format, where item is 
the name of the item and tidset is the set of transaction 
identifiers containing the item.  We use hash data 
structure to represent this data format. Initially one hash 
is maintained for itemset and another hash for tidset. 
Different pointers are maintained as links between 
itemset and tidset as shown in the Fig. 1. 
 Let us consider the support to be 3. In such case, 
from the above structure the items I1, I2, I3 are frequent 
items ( Table 1). So, only these items will be considered 
to next level. 

 
Fig. 1: Hash structure for itemset and tidset. 

 

 
 

Fig. 2: Hash structure in second level 
 
Table 1: The vertical data format of the transactional database D in 

first level 
Itemset Tidset 
I1 T1, T4, T5, T7, T8, T9 
I2 T1, T2, T3, T4, T6, T8, T9 
I3 T3,T5,T6,T7,T8,T9 
I4 T2,T4 
I5 T1,T8 
 
 Now in the second level, intersection of tidset of all 
permutations of the frequent items is taken.  
 In the second level, the itemsets {I1, I2}, {I1, I3}, 
{I2, I3} are frequent itemsets. Now, total frequent 
itemsets are {I1, I2, I3, {I1,I2}, {I1,I3}, {I2, I3}}. 
From these, maximally frequent itemsets are {I1, I2}, 
{I1, I3}, {I2, I3}. This is shown in Fig. 2 and Table 2. 
 If we observe, the third level itemset {I1, I2, I3} 
has only 2 transactions {T8, T9} in tidset. So, this is not 
even frequent itemset. So, the frequent itemsets and 
maximally frequent itemsets obtained from the second 
level are the final result. It can observed that the 
number of levels increase if the support is less. If we 
increase the support, then number of levels decreases 
and so as the time to find MFI decreases.  
  



J. Computer Sci., 4 (8): 638-645, 2008 
 

642 

Table 2: The vertical data format of the transactional database D in 
second level 

Itemset Tidset 
I1, I2 T1, T4, T8, T9 
I1, I3 T5, T7, T8, T9 
I2, I3 T3, T6, T8, T9 
 
 The process will be continued till intersection can 
be taken. In this procedure we need not calculate the 
support of the itemset separately. It can be taken by the 
number of transactions in the tidset. Also the pruning 
can be done while finding the MFI itself, but not after 
finding FI completely. The proposed algorithm is given 
below. 
HBMFI 
Input: 
 D, a database of transactions Min_sup, the minimum 
threshold support 
Output: M, Maximal frequent itemsets in D 
Method: 
 
• Count the support of each item in a given set of 

transactions 
• if support(itemset) > = min_sup then 
• FI[i] = itemset; 
• find all permutations of the FI 
• find the intersection of the transactions of each 

items in each permutation 
• count the support of each FI  
• MFI = FI - subsets of FI 
• go to 2 
• return MFI 
 
 The proposed algorithm performs better because 
MFI is being calculated directly before computing FI 
completely. At each level, after computation of FI, we 
are computing MFI also. So, the time taken to compute 
MFI is negligible. And also it shows that no separate 
pruning is required. Hash data structure can be 
maintained to store database. This makes easy in 
performing several tasks. As we are following vertical 
data format, support also need not be calculated 
separately. In this case, support is directly given by the 
number of transactions in the tidlist of each FI.  
 

RESULTS  
 
  Figures 3-5 illustrate the results of comparing 
HBMFI to our implementation of MAFIA method, the 
state of the art method for finding maximal frequent 
items. Support is taken as X-axis and the time taken to 
find the MFI is taken as Y-axis. 
 

 
 
Fig. 3: Time comparison of MAFIA and HBMFI on 

connect - 4 dataset 
 

 
Fig. 4: Time comparison of MAFIA and HBMFI on 

mushroom dataset 
 
  

 
 
Fig. 5: Time comparison of MAFIA and HBMFI on 

chess dataset 
 



J. Computer Sci., 4 (8): 638-645, 2008 
 

643 

The comparison of algorithms MAFIA and HBMFI is 
shown using different datasets in Fig. 3, Fig. 4 and Fig. 
5. 
The percentage in the improvement of the performance 
of the proposed algorithm, HBMFI is less in Chess 
dataset when compared to other datasets. The extremely 
low number of transactions and small number of 
frequent items at low supports muted the factors that 
HBMFI relies on to improve over MAFIA.  
 Both the algorithms scale linearly with the database 
size, but HBMFI is about 2 to 3 times faster than 
MAFIA. Thus we see that HBMFI performs better with 
large number of transactions and long itemsets. 

 
DISCUSSION 

 
 The testing of this algorithm has been carried out 
on the real datasets containing large number of 
transactions and long itemsets like chess, mushroom, 
connect4. At the lowest supports tested, the longest 
databases have over 20 items, making any algorithm 
that examines all possible subsets of these patterns 
infeasible. This makes the task of finding the MFI 
computationally intensive despite the small size of the 
databases. 
 For Connect-4, the increased efficiency of itemset 
generation and support counting in MAFIA and 
HBMFI explains the improvement. Connect-4 contains 
an order of magnitude more transactions than the other 
two datasets, amplifying the advantage in generation 
and counting.  
 For Mushroom, the improvement is best explained 
by how the MFI is computed at each level and found 
directly without waiting for FI completely. This leads to 
a much greater reduction in the overall search space 
than for the other datasets, since the reductions is so 
great at highest levels.  
 

CONCLUSION 
 
 We presented HBMFI, an algorithm for finding 
maximal frequent itemsets. Our experimental results 
demonstrate that HBMFI consistently outperforms 
MAFIA by a factor of 2-3 on average. The vertical data 
format representation of the database, the easy 
manipulations on hash data structure and directly 
computing MFI are the added advantages of this 
algorithm.  

REFERENCES 
 
1. Agrawal, R., T. Imielinski and A. Swami, 1998. 

Mining association rules between sets of items in 
very large databases. In the Proceedings of the 
ACM SIGMOD International Conference on 
Management of Data, May 25-28, Washington, 
D.C., US, pp: 207-216. http://doi.acm.org/ 
10.1145/170035.170072. 

2. Jiawei Han and Micheline Kamber, 2001. Data 
Mining: Concepts and Techniques. 1st  Edn., 
Morgan Kaufmann pp: 500. ISBN-10: 
1558604898. 

3. Ganti, V., J. Gehrke and R. Ramakrishnan, 2000. 
DEMON: mining and monitoring evolving data. 
ICDE 2000, San Diego, CA., pp: 439-448. 
http://www-db.cs.wisc.edu/dbseminar/spring00/ 
talks/demon_paper.pdf 

4.  Holsheimer M.,   M.  Kersten, H.    Mannila   and 
H. Toivonen, 1995. A perspective on databases and 
data mining. Proceeding of the 1st International 
Conference on Knowledge Discivery and Data 
Mining, Aug. 1995, AAAI Press, Montreal, 
Canada, pp: 150-155, 
http://www.cs.helsinki.fi/research/fdk/datamining/p
ubs/kdd95.ps.gz 

5.  Savasere, A., E. Omiecinski and S. Navathe, 1995. 
An efficient algorithm for mining association rules 
in large databases. Proceedings of 21st 
International VLDB Conference on Very Large 
Data Bases, Sep. 11-15, Morgan Kaufmann 
Publishers Inc.  San Francisco, CA, USA ., pp: 
432-444. http://portal. 
acm.org/citation.cfm?id=673300 

6. Ramesh C.  Agarwal,  Charu C. Aggarwal and 
V.V.V. Prasad, 2001. A tree projection algorithm 
for generation of frequent itemsets. J. Parallel 
Distribut. Comput., 61: 350-371. DOI: 10.1006/ 
jpdc.2000.1693  

7. Agrawal, R. H. Mannila, R. Srikant, H. Toivonen 
and A.I. Verkamo, 1996. Fast Discovery of 
Association Rules. In: Advances in Knowledge 
Discovery and Data Mining, Usama Fayyad, M. 
G.P. Shapiro, P. Smyth, and R. Uthurusamy, 
(Eds.). AAAI/MIT Press, Menlo Park, CA, USA., 
pp: 307 -28 I. SBN:0-262-56097-6 

8. Aggarwal, C.C. and P.S. Yu, 1998. Mining large 
itemsets for association rules. Bull. IEEE Comput. 
Soc. Technical Committee Data Eng.,: 23-31. 

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.48.306 

9. Aggarwal, C.C. and P.S. Yu, 1998. Online 
generation of association rules. In Proceedings of 
the 14th International Conference on Data 
Engineering, Feb. 23-27,IEEE Xplore, Orlando, 
FL, USA., pp: 402-411. DOI: 
10.1109/ICDE.1998.655803 

10. Mohammed J. Zaki, 2000. Scalable algorithms for 
association mining. IEEE Trans. Knowl. Data Eng., 
12: 372-390. DOI: 10.1109/69.846291. 



J. Computer Sci., 4 (8): 638-645, 2008 
 

644 

11. Shenoy, P., J. Haritsa, S. Sudarshan, G. Bhalotia, 
M. Bawa and D. Shah, 2000. Turbo-charging 
vertical mining of large databases. Proceeding of 
ACM SIGMOD International Conference on 
Management of Data, June 2000, Dallas, Texas, 
USA,pp:22-33. 
http://doi.acm.org/10.1145/335191.335376 

12. Gunopulos, D., H. Mannila and S. Saluja,  1997. 
Discovering all most specific sentences by 
randomized algorithms. In Proceedings of the 6th 
International Conference on Database   Theory,  
Jan. 08-10,   Springer-Verlag    London,  UK.,  pp: 
215-229.  

 http://portal. acm.org/citation.cfm?id=656097 
13. Agrawal, R. and R. Srikant, 1994. Fast algorithms 

for mining association rules. Proceedings of the 
20th International Conference on Very Large 
Databases, Sep. 12-15, Santiago de chile, Chile, 
pp: 487-499. DOI: 10.1.1.40.7506. 

14. Lin, D.I. and Z.M. Kedem, 1998. Pincer search: A 
new algorithm for discovering the maximum 
frequent sets. In Proceedings of the 6th 
International Conference on Extending Database 
Technology, Mar. 23-27, Springer-Verlag  London, 
UK.,pp:105-119. 
http://portal.acm.org/citation.cfm?id=645338.6503
96. 

15. Park, J.S., M.S. Chen, P.S. Yu, 1995. An effective 
hash based algorithm for mining association rules. 
ACM SIGMOD Record, 24: 175-186. 
http://doi.acm.org/10.1145/568271.223813 

16. Rin Popescul and Lyle H. Ungar and Steve 
Lawrence and David M. Pennock, 2002. Towards 
structural logistic regression: Combining relational 
and statistical learning. In Proceedings of KDD- 
2002 Workshop on Multi-Relational Data Mining 
02, ACM, Alberta, Canada, pp: 130-141. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.19.6235 

17. Taskar, B., E. Segal and D. Koller, 2001. 
Probabilistic classification and clustering in 
relational data. In Proceedings of the 17th 
International Joint Conference on Artificial 
Intelligence 01, Lawrence Erlbaum Associates Ltd, 
USA.,pp:870-876. 
http://direct.bl.uk/bld/PlaceOrder.do?UIN=107907
671&ETOC=RN&from=searchengine 

18. Dunkel, B. and N. Soparkar, 1999. Data 
organization and access for effcient data mining. In 
the Proceedings of the 15th International 
Conference on Data Engineering, Mar. 23-26, 
IEEE Xplore,   Sydney,   NSW,   Australia, pp: 
522-529. DOI: 10.1109/ICDE.1999.754968 

19. Mohammed Zaki, J. and C.J. Hsiao, 2002. 
CHARM: An efficient algorithm for closed itemset 
mining. In Proceedings of SDM’02 Conference, 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.111.520 

20. Bastide, Y., R. Taouil, N. Pasquier, G. Stumme and 
L. Lakhal, 2000. Mining frequent patterns with 
counting inference. ACM SIGKDD Explorations 
Newsletter,2:66-75. 
http://doi.acm.org/10.1145/380995.381017 

21. Pasquier, N., Y. Bastide, R. Taouil and L. Lakhal, 
1999. Discovering frequent closed itemsets for 
association rules. In Proceedings of the 7th 
International Conference on Database   Theory, 
Jan. 10-12,   Springer-Verlag   London, UK.,   pp: 
398-416. http://portal. 
acm.org/citation.cfm?id=645503.656256 

22. Getoor, L., N. Friedman, D. Koller and B. Taskar, 
2001. Learning probabilistic models of relational 
structure. In Proceedings of International 
Conference on Machine Learning (ICML'01), 
Williamtown,MA,pp:170-177. 
http://direct.bl.uk/bld/PlaceOrder.do?UIN=100556
121&ETOC=RN&from=searchengine 

23. Zaki, M.J., S. Parthasarathy, M. Ogihara and                 
W. Li, 1997. New algorithms for fast discovery of 
association rules. In Proceeding of the 3rd 
International Conference on Knowledge Discovery 
and Data Mining 97, AAAI Press, pp: 283-286. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.42.5143  

24.  Zaki, M.J.,  2000. Generating non-redundant 
association rules. In Proceedings of the 6th ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining, Aug. 20-23, Boston, 
Massachusetts, US., pp: 34-43. 
http://doi.acm.org/10.1145/347090.347101 

25. Ganter B. and R. Wille, 1999. Formal Concept 
Analysis: Mathematical Foundations. 1st Edn., 
Springer-Verlag, USA., pp: 284. ISBN-10: 
3540627715. 

26. Gouda, K. and M.J. Zaki, 2001. Efficiently mining 
maximal frequent itemsets. In the Proceedings of 
International Conference on Data   Mining, 
Nov. 29-Dec. 02 2001, IEEE Computer Society  
Washington, DC, USA., pp: 163-170. 
http://portal.acm.org/citation.cfm?id=645496.6580
47&coll=GUIDE&dl=GUIDE  

27. Bayardo, R.J., 1998. Efficiently mining long 
patterns from databases. In the Proceedings of the 
1998 ACM SIGMOD International Conference on 
Management of Data, Seattle, June 001-04, 
Washington, United States, pp: 85-93. 
http://doi.acm.org/10.1145/276304.276313 



J. Computer Sci., 4 (8): 638-645, 2008 
 

645 

28. Gunopulos, D., H. Mannila and S. Saluja,  1997. 
Discovering all the most specific sentences by 
randomized algorithms. In Intenational Conference 
on Database Theory, Jan. 08-10, Springer-Verlag  
London,UK.,pp:215-229. 
http://portal.acm.org/citation.cfm?id=645502.6560
97 

29. Burdick, D., M. Calimlim and J. Gehrke, 2001. 
MAFIA: A maximal frequent itemset algorithm for 
transactional databases. In International 
Conference on Data Engineering, Apr. 02-06,  
IEEE Computer Society  Washington, DC, USA 
pp:443-452. 
http://portal.acm.org/citation.cfm?id=645484.6563
86&coll=GUIDE&dl=GUIDE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30. Agrawal, R., C. Aggarwal and V. Prasad, 2000. 
Depth first generation of long patterns. In the 
Proceedings of the 6th ACM SIGKDD 
international Conference on Knowledge Discovery 
and Data Mining, Aug. 20-23, Boston, 
Massachusetts, United States, pp: 108-118. 
 http://doi.acm.org/10.1145/347090.347114 

31. Han, J., J. Pei and Y. Yin, 2000. Mining frequent 
patterns without candidate generation. In the 
Proceedings of the 2000 ACM SIGMOD 
International Conference on Management of Data, 
May 15-18, Dallas, Texas, United States, pp: 1-12. 
http://doi.acm.org/10.1145/342009.335372 

  


