Journal of Computer Science 4 (7): 530-537, 2008
ISSN 1549-3636
© 2008 Science Publications

Synthesizing Behavioral M odel of Event-Based Requirements

Seyyed Morteza Babamir
Department of Computer Engineering, University asKan, Kashan, Iran

Abstract: Problem Statement: in the software engineering field, satisfactionuser's requirements
by software has been a matter of concern. Therefooaitoring software behavior against user's high-
level requirements has already received a conditeerand significant attention. However, the gap
between low-level software behavior and high-lenegjuirements has put an obstacle in the way of
monitoring. Approach: to overcome the obstacle, we presented a methsgnihesize a behavioral
model of the event-based requirements in threesst€l) eliciting event-based requirements; (2)
specifying the requirements in event-based formala@ (3) mapping the formulae into a behavioral
model.Results: to show effectiveness of the method, it was &gpto requirements of a safety critical
system, called Railroad Crossing Control (RCC) and a behavioral model was synthesized. The
model was used to synthesize monitor of the RC@&gysThe monitor is responsible for surveillance
of software behavior for preventing the collisiogtlween the train and some car at the junctionibf ra
and roadConclusions. we proposed a systematic method started fromsussguirements elicitation
and concluded with its behavioral specificationc#® of the method was on event-based real-time
requirements which were stated by scenarios imjaesee of real-time interactions.

Key words: Requirements Specification, Event-Based, Behaviodel

INTRODUCTION The aim of this study was to present a method to
synthesize a behavioral model from event-basedsuser
A concern in some software engineering fieldsrequirements. In the first step, we consideredesgyst
such as software monitoring, software developmenenvironment consisting of some concerns and then
process, for example, has been reconciling behafior elicited event-based user's requirements in enwviest
system software with high-level users' requirementsevents and its related reactions. For exampleh@ t
For run-time software monitoring, for example, the RCC system, "train" is an environment concern dnad t
reconciliation helps us to able to monitor the sgst arrival activity is an event and moving down theega
software behavior and determine whether the sofiwarits related reaction, which it is used to contrbe t
behavior is in accord with high-level users'system environment.
requirements or not. Having elicited the requirements, in the second
Since in real-time systems, users' requirementstep, we presented a formal specification of the
indicate real-time constraints posing on the systenfequirements in predicates having an event-variable
environment, the concern has been reconciling iehav its premise and an action-variable in its conclusio,
of system software with the real-time constraims. each predicate premise indicates an environmentteve

class of real-ime systems is the event-based one and each predicate conclusion indicates a required

which the system is responsible for adequate r Onaction. Lastly, the requirements were mapped to a
Y P 4 SO t5rmal mode-based specification, which a mode

fo the system_ environment events. Th? adequatﬁdicates a system software operation and correspon
response is a timely response to the environment ofj}it, 5 system action. The mode-based specification

observing an environment event. indicating behavior model of the system softwares wa
A Railroad Crossing Control (RCC) system, for shown in the Petri-Nets automakon
example, is a real-time system that a "train aftiisaa To synthesize the behavioral model, we

system environment event, "moving down the 'gatesystematically mapped a sequence of event happening
is a system reaction and "moving down the gatelyime and reaction to a required mode changing of theesys

on observing the train-arrival event" is a usersoftware. The need for the mapping, which has
requirement. stipulated b¥, has shown by Fig.EFL

Corresponding Author: Seyyed Morteza Babamir, Department of Computerirtggging, University of Kashan, Kashan, Iran
Tel: +98-361-5555333 Fax: +98-5559930
530

J. Computer <ci., 4 (7): 530-537, 2008

Environment ‘ Monitor real-time event- action variables called real-time
interactions and is formally specified based onrive
Calculus (ECY formulae. Then a behavioral model in
. Petri-Nets is generated from the formula. The EC is
Executing Mode . . .
Software L, capable of stating interrelationship between oenaes
@ of environment events and initiating environment
Properties states. This feature assists us in the bridging gap
Requirements between the event-based specification and the-state

based one. While each EC formula formally shows an

interrelationship between an environment event amd

i Penvironment state changing, the Petri-Net shows the

software behavidt system state changing corresponding with the foamul

In"® in a reverse manner, we stated the expected

Problem Statement: In the SOftWa.re engineering f|e|d, behavior (States) of a program in a tabular metnod

SatiSfaCtion Of user's requirements by SOftWareHm then extracted the program Security po“cies in B@

a matter of concern. To get this satisfaction,vgafe formulae from the table.

behavior should be monitored against user's higétle

requirements. However, the gap be_tween low-levelp o approach principles: Our approach deals with

software behavior and high-level requirements hats p e rationalization of user-level requirements by
an obstacle in the way of monitoring. To bridgetb@ gy thesizing a behavioral model of the requirements
gap, we reconciled high-level (user-level) requeets 5o me efforts stated were recently made to systeenati

with low-level (operational-level) ones in threems: g process by deriving a behavior model from
we (1) elicited event-based requirements; (2) ${Beti gconarios of interactions between the system
the elicited requirements in event-based formula@ a .. iconment and the system software: however, we

(3) mapped the formulae to a behavioral model. focus on event-based real-time systems and theréfor
is necessary to use a event-aware formal method to
MATERIAL AND METHODS specify event-based requirements and use a moaetbas
.) . formal method supporting clearly events to specify
Reconciling high-level (user-level) requiremerds t pehavioral model.
low-level (o_peranonal—level) ones is a matter of To contribute to resolve the above mentioned
concern, which has alread)_/ proposed by others. _Th€oncern, this study aims to present a method to map
common method to state high-level requirements is dvent-based real-time users' requirements to
narratlve style gf requwem%nr;cs ;.e., fﬂfggar'oﬁ'ﬁfﬁ corresponding system software behaviors. The mgppin
Icnommeosnsan?:thodegouingiif Io?vr-lseve(l re ai?enment ei e Is accomplished in three steps. In the first stystem
. specity q 5 1€ environment events and system reactions to thetgven
behavioral model is an automata-based one. For

instanc&, specify high-level requirements in MSC '€ elicited from user's and expert's vocabulatyiclv
consists of their concerns. On observing an elbgn

and then generate a behavioral model in Labeleéﬁ it should tmel d v tak
Transition System (LTS)Kruger et al.’% shows high- e system, it should timely and properly takes som

level requirements in MSC and then generates &Ction fo react to the event. The sequence event-
behavioral model in UML Statechartsamsweerd and €action indicates an interaction between thstesy
Willemet*¥ shows user-level requirements in MSC and@nd its environment. Since an interaction real-
generates requirements specification in Lineatime one, its specification should be time aeav
Temporal Logic (LTL) formula and then generates alhe elicitation of events and their relatedticas
state-based (mode-based) model in Buchi automata. from user's and expert's concerns constitutisgr's
a similar manner, sorft&*® show scenarios in UML requirements are described in the research.
Sequence Diagrams and then generate behavioral mode In the second step, we generate an implicatica rul
in UML Statecharts. The derivation of the SCR tabul for each interaction in form of Rule;Ror Rule R
model from goal-oriented specification of requirertse with an event in its premise and an action in its
is a translation from special high-level requiretseto conclusion. The rules indicate a mandatory and a
behavioral model used B$. prohibitory reaction respectively. The first rukates if
However in this research, we consider real-timeEvent ¢ happens at time, the system is obliged to take
requirements via the scenarios stated in a sequaince Action a at most afteiAt. Rule R, states if Eventje

531

Fig. 1: Reconciling event-based requirements wit

J. Computer <ci., 4 (7): 530-537, 2008

happens at tima, the system is prohibited to take Table 1: Event-based requirements :
Action g. Time AT is an allowable deadline for the S€d Concern Event Action Max delay

mandatory reaction, which the system should meet i . €1 G Ata

before the next event happening. Generation of the ' o a AT,

rules is described in the study. An instance ofrtlies

for the RCC system is shown by RulgsRind Rule R4 Now, we deal with formalizing Table 1 to formally

respectively. specify the requirements. For each row of Tablavd,

take Rule R1.1 or Rule R1.2 and consider an

(Ry.1): Happens(et) — TakeAct(a T+A1) environment state initiated by the event. In theCRC

(R12): Happens(gt) — TakeNotAct(d system, for example, we consider the approachizig st

(Ry9): Happens(train-arrival, 1) - TakeAct(gate initiated by the arrival event. Then, we make Rules
moving downT+At) OAT <71 R1.1 and R1.2 state-aware in Rules R1.3 and R1.4,

(R.): Happens(enter-to-cross) — TakeNotAct (gate Which g indicates the environment state. The new rules
moving up) consist of three variable, event, state and action.

(Ru9: Happens(g 1) O Initiates(g, §;) - TakeAct(g,
T+AT)
Happens(g 1) O Initiates(g, §) —

In the third step, the event-based specificat®n i
mapped to a mode-based one indicating a transition
from the current mode of the system software t@wa n (Ri):
one, which is specified by Petri-Nets automaton. A
mode indicates a system software operation an%

; . . " .Eve
corresponds with a system action. The mapping
described in this study.

Now, we use the central axiom S in the Simplified
Event Calculus (SEEY!. The axiom has shown by
?:ormula k. in whichBis a fluent andng and a; are
events. A fluent is a variable or a predicate clearits

. , truth value during time; therefore, it is analogoith a
Obtaining Event-Based Requirements, Step One: An - giate variable. S%, if we replace the fluent %y state
event is an environment activity and an action is &ariable and the premise of Rules#R; 4 by the right-
system response to the activity, which we obta@mth h4ng side of Formula;F, we will have Rules 1.5 and
from user's and expert's vocabulary (Table 1). ¥serq g by which we able to show relation between
concerns are the environment concerns should bgnvironment states and related system actionstHeor
observed by the system. Table 1 shows event-basgeiCC system, an instance of Rulesfs Rule R ;
requirements in which we: (1) considered user's

concerns and took an event-variable for each eveat (F,,): HoldsAt@, 1) — Happens (0o, Tg) Olnitiates

concern entity. If a mandatory action should betaia (ao, B) O ~ Clipped to, B, T) Clipped o, B, 1) =
response to an event, we will assign an actiorctom Happens ¢;,79) O Terminates dy,
variable; however, if some prohibited action to be B) OTp<T;<T

taken, we will assign a Null value to the actiomiale, (R,s): HoldsAt(s, 1) - TakeAct(g, T+A1)

(2) determine a maximum allowable delay for eachR, g): HoldsAt(s, 1) - TakeNotAct ()

action taking. (R.7): Happens(arrival,T) - TakeAct(MoveDown,
For the RCC system, an instance of a concern of T+AT)

Table 1 is as follows: the,G= train is a concern whose

events are F= Arrival (to arrive at input line), Specifying mode-based requirements, step three: In

E;» = Entrance (to enter to cross) ang E Departure this study, we aim to represent a behavioral

(to pass from output line). specification of event-based requirements stated by

Rules R; and R, and mapped to the rules to Rules

Formalizing event-based requirements, step two: Ris and R For this purpose, we use an automata-

The sequences of event-action requirement in Table based specification called Petri-Nets. To represent

show a real-time interaction between the systemitand behavioral specification by Petri-Nets, we shouldpm

environment; so, the requirements should be timepremise and conclusion parts of the rules predictie

aware. This shows need to time-based specificatfon elements of a Petri-Net.

the interactions, which originally implied by the, R A Petri-Net consists gflaces, arcs andtransitions

obligatory Rule and the R prohibitory Rule in the which places_ are gonnected to transitions__by arcs.
research. Places constitute inputs/outputs to/fromngitons.

532

J. Computer <ci., 4 (7): 530-537, 2008

T:: E1[Cs] T:: E1[Cs] s Titeq sin g0 Titey sm
-3 > -3 --->
Py P Py Ps S’Eh atii
_)O _:.® (a) (b)
Pz®7 P; O Fig. 3: The TTPN representing the environment
d=[2, 3] d=[2. 3] behavior
(a) (b)

Fig. 2: ATTPN (a) before and (b) after firing o (1) '&U O L. ;) '0
Each place may own some token(s) and associatéd wit

each transition there are an event and some

condition(s). A transition ignabled when its input(s) @m ey (b)my ey
place own some tokens. When the associated event on . . .
an enabled transition happens and its conditidmg), ~~eachabilty grapp, representing Fig. 3

the transition will fire. On firing a transition, the Each number in the marking vector indicates the

token(s) of input place(s) of the transition wile b b f tok f | d h ber i
removed and its output place(s) will take token(s) number of tokens of a place and each number in
' enabling vector indicates deadline of firing a #idon.

Transitions of a Petri-Net can be time-aware WhichR habilt tates that (1) stat
called timed transition Petri-Net (TTPRH. In a TTPN, Reachabilty grapp, states that: (1) statgsowns one
token and statg; ®wns no token before firing transition

firing an enabled transition can be delayed orlmaset T, (2) state § owns no token and statg &wns one
. . ijs i ow
by & deadline. Figure 2a shows a TTPN before fiitsig token after firing the transition and (3) trangiti®; is

transition in which transition ;Thas two input places . ; o
(P, and R), an output place @12 time unitspdeI:y and enabled before firing and disabled after firing.ah
p1, in fact, represents behavioral specification loé t

3 time units deadline. Since all input places @fown) ;
tokens, it is enabled and will fire not before@¢iunits ~ SYStem environment for a concern.

and not after 3 time units when eventiappens and e . .
conditions Cs hold. Figure 2b shows the TTPN afterSpecncylng the system behavior: In this research by

firing its transition in which a token has removieom representing .the system behavior, we complete the
; Petri-Net designated in the study. For this purpase
the input place and the output place has takekento . . . o
. . .___consider the conclusion part of obligatory/protobjt
By using Petri-Nets, we can show behavioral :
7 . ; Rules R5R;6 The rules show relation between states
specification of the system and its environment : ;
i . . of the system environment and the system actidnge |
concurrently. For this purpose, we first designate _ . . .
X . . hink of a system action as a system mode of ojperat
Petri-Net for each environment concern in study an

L . including the idle mode, the TakeAct predicate will
complete it in research for the system behavior. . .
represent happening a new mode of system operation;

therefore, each TakeAct predicate will represent a
transition from current system mode of operatiap (o

to new one (g which has shown in Relation ReVe
gesignate two places representing current and new
u . . " .
modes of operation with a transition between them i
the Petri-Net. For the TakeNoAct predicate, howgver
no places are considered.

Specifying the environment behavior: Considering
the premise of Rule R, we designated a Petri-Net for
each concern as follows. For each j (state of @em),
we designated a transition whose input and outp
places are ;s and g respectively and its event and
decline deadline arg eanddt; respectively (Fig. 3).
Before firing the transition, token of the inpuaqe
:c_npllcattehs tthi en_\/lronmentdls]c in ttmglsstaie.lA;tér (Rey): TakeAct(, T+AT;) = (HoldsAt(q., 1) O
iring, the token is removed from the input placeda HoldsAt(q;, T+AT;)
the output place takes a token indicating the
environment is in the;sstate. So, the Petri-Net implies We complete Fig. 3 as a TTPN in Fig. 4 in which
both of the HoldsAt(sj, t) and the ~HoldsAt(s;. 0;1 and q indicate the system operation modes before
1,T) predicates. and after taking the action respectively. The beiranf
We show the evolution of a TTPN of Fig. 3 by the TTPN is as follows: because environment tramsit
Reachability Graphp; in which my and ey are T; and the system transition are enabled, on hapgenin
marking and enabling vectors espectively. event ¢ transition T will fire before deadlin&t;.
533

J. Computer <ci., 4 (7): 530-537, 2008

Environment Table 2: Deadlines of the RCC real-time system
8 Ties S 8 € Sin Deadline Description

. . 5 s . Approach The distance between the input sensotrencrossing
3y to cross point is given (after the train detectedhe input
0y
-

sensor, at least it takes t time units until tamt

arrives at the crossing point.

7
aj & Exit to The interval time between two successiaing is
)

0y (8]

iiHl
- O_)
At System

(2) (b

Fig. 4: Behavioral specification of an event-based.l.he system comprised of an input sensor to moaitor

departure from the crossing point and the neit tra
arrival at the input sensor)

Pass Maximum speed of train is given (at leastlitake a
time unit until the train passes the crossing foin

Qjj+1 detect given (there is at least t/3 time units leetwa train
[’——)

system approaching train to the cross, an output sensor to
- - - - monitor a train exit from the cross, a timer to rion
j ’ ' : the passing of time, a gate to close and opendhé r
1 Off -1 1) - 0l - and a control unit. The unit controls the gate by t
0|l dn, 1]/ 0| | O} 3ty 10 system application. On sensing the train, the input
Al (o B S| oBBo.| . |. sensor (or the output one) notifies the control toi
1|l At oll ol | 1/l At 1| A move down (or move up) the gate. Therefore, the
oll. 1 0 0 system contains three monitoring and one contgllin

components. The system responses deadlines to the
- - - - events are shown in Table 2 in which the first #mel
mv, v my ey my ey my ey second row indicate the acceptable maximum time to
(1-a) (1~ b) (2 a) (2 b) close and to open the road respectively.
Reachabilty Graph, representing evolution of Fig. 4 DISCUSSION

Then duringAr;;, if system takes action;atokens will Obtaining event-based requirements. The system
remove from places;.$ and q, and placesjsand ¢ environment consists of the train and the road witie
will take the token; however, if the system tak&s n train needs to monitor; therefore, the set of comeés
action, token will only be removed from Plagg &nd [c, = train] and the set of the concern eveiss
Place g will take the token. Euain= [€11 = arrival, @, = entrance, ang= departure].
For the TTPN in Fig. 4, Reachability Graphis In response to the events, the system actions are:
completed as Reachability Gragh. Enabled vector Agysiert [a41 = "gate move down" for the arrival event,
mvy has 2n elements in which elements 1 to n represemi, = "no action" for the entrance event and=a"gate
state g to state ;s and elements n+1 to 2n representmove up" for the passed event]. Corresponding with
state @ to sate @. In Graphp,, evolving TTPN from Table 1, Table 3 shows train events and the
(1-a) into (1-b) represents firing both of the sition corresponding system actions.
(i.e., both event;ehappens and actiorj & obligated), Present study declared, to formalize event-base
while, evolving TTPN from (2-a) into (2-b) represen reqqirements state_d in Table 2, we should (_Jleterm'ae
firing only the environment transition (i.e., evegt ~ €nvironment (train) states. Eventeraises the
happens, but any action is prohibited by the systemapproaching state, Evenf,eaises the inside state and
Vector ey indicates that transition ;Tis no longer the Event g raises the passed event; so the concern
enabled after firing. states consist of e = [sl_1= distant (far from the rf':ul
crossing), & = approaching (near the rail crossing),
RESULTS s;3 = inside (within the rail crossing) and,s passed
(departure from the crossing)] which the defauluga
We applied our method to an event-based realis the “distant” value.
time system called Railroad Crossing Control (RCC) Moreover, there is a timer to monitor the passage
one: (1) we dealt with specification of the RCCteys of time, which the system application sets it twoze
user's requirements and presented behavioravhen the application receives an.fE event and
specification of the requirements. The RCC systas h increments it by one when it receives an Interrupt
been intended to prevent from the collision betwiaen ~ event; so the timer value always shows the elapsed
train and some car at the junction of @ild road. of an event (i.ed1).

534

J. Computer <ci., 4 (7): 530-537, 2008

Table 3: Event-action constraints of the RCC system

S Concern Event Action Max delay
en a1 ATll<t

1 G e 2= ~a3 -
e a3 AT1<t/3

2 813

Leu¥e

8113

S“OTI:e'l 812 Tgﬁe
. P
Stlll U 811

Fig. 5: The TTPN of the train behavior in the RCC

2

system

Tag [o

ol RGN ol 3t 0 hte Lo
0 0 OTus

0 0 0

0 B8t

P O o o

d

Reachabilty grapps, representing evolution of Fig. 5

Formalizing event-based requirements: To formalize
event-based requirements, we use Rules d&d R4
and generate Rules,Rand R, for the train. Now
considering Rules R to R,3 we use Rules R and
Risand generate Rulegs R0 Rs 4

(R..)): Happens(g,t) O Initiates(e1,s15) — TakeAct
(a.ll, T+AT)

(Ro2): Happens(g, 1) O |Initiates(es, S3) -
TakeNotAct(ay)

(R.9): Happens(g,t) O Initiates(@ssis) — TakeAct
(a.lg, T+AT)

(Rs.p): Initially+(s14)

(Rs): HoldsAt(s,, T) — TakeAct(as, TAT) OAT <T

(Rs3): HoldsAt(ss, T) — TakeNotAct (as)

(Rs.9): HoldsAt(g4, T) — TakeAct(as, TAT) OAT<T

Specifying the environment behavior: To specify the

Train
s Tren sz Tziez 81z Taiers 814
| N
| |
81:11 81:12>t 81:13>t/{3
/ /
Ty ayy System Ts: ays
up down
M
S U
1\ A‘E“(t ATlZCt/B

Fig. 6: The TTPN of the RCC system behavior

1 0 0
0|[5t. 1{[o ol[0
ollo ol|| 5t.. 1| o
ollo |oFfr. |o|lo |oB BB EPEL| o st
1|0 1| ata of| o
ollo oll o 1] o
0] 0] 0]

o] o1

offo] ol o

ollo oll o
of®%e. [1|lo |oBBE- |10

ollo oll o

1| ot ollo

0 _1_

Reachabilty graphps, representing evolution of the
TTPN in Fig. 6

The Happens (e, 1) predicate (j =1,2,3)
indicates firing the transition and the Initigi@g sy)
predicate (j = 1, 2, 3) indicates moving token frtre
input place of the transition to its output plaédgter
firing the transition, the Petri-Net implies the
HoldsAf(syj:1, T) predicates (j 1, 2, 3). We have
shown the evolution of the TTPN of Fig. 5 by
Reachability Graplps.

Specifying the system behavior: Now, to specify the
system behavior, we use obligatory/prohibitory Rule

train (environment) behavior, we consider: (1) RuleR,; to R.3 and R; to Ry4 to complete the Petri-Net

Rs.1, (2) the premise part of the Ruleg;Rnd R, (3)
the premise part of the Rules Rand R; and (4) the

designated in Fig. 5. The rules show relation betwe
states of the train and the system actions. Pretedy

premise of Rules R and R4 and synthesize TTPN of declared, each TakeAct predicate can be represent b
the train (Fig. 5). For each statg @<j<4), we take a Relation Re so, we designate a pair of two places
place and for each Happens, we take a transitiorepresenting the HoldsAt(up;) and HoldsAt(down,
including the g event which the,s state initially has a 1+Art,) predicates with a transition between them in the
token. Having taken theplaces and the transitions, Petri-Net.

above-mentioned cases (2), (3) and (4) constitiites We completed Fig. 5 as the TTPN in Fig. 6 in
TTPN. which the up and down places indicate the system

535

J. Computer <ci., 4 (7): 530-537, 2008

operation modes before and after taking the action
respectively. The behavior of the TTPN in Fig. Gas
follows: on happening,e Transition T will fire before
0T11. Then duringd,4, if system takes,g tokens will
remove from g and up places and thep sind down
places will take the token.

For the TTPN in Fig. 6, Reachability Graphwas
completed as Reachability Graph. Each element of
the graph has a marking vector and an enabling one.

Each marking vector consists of seven numerical
values (four values for the train states and tlwadaes
for the system states) in which each numerical esalu
indicates the number of tokens of a correspondiagep

The used automaton we presented to specify
behavior was Petri-Net. Since the net supports both
concurrency and time-aware constraints, it is
capable of behavioral specifying complex and real-
time requirements; while the used automata by
others, such as the LTS one has not the capability
to the requirements. However, since the UML
Statecharts automaton supports hierarchical and
nested states, the detailed and in-depth
requirements can be specified more detailed than
Petri-Nets.

Dealing with the goal-oriented requirements is an

of Fig. 6. Each enabling vector consists of fourinteresting issue used B which we didn't consider

numerical values (three values for the train evemid

them in this research. They have derived the event-

two values for the system actions) in which eachyaseq specification of requirements from goal-deidn

positive numerical value indicates an enable
transition/action deadline and each zero valuecatds
an disabled transition/action.

CONCLUSION

1.

In this study, we proposed a method to map event

and interaction based specification of real-time

requirements to the behaviomhe in which the former o

was specified based on Event Calculus Formulae and
the latter was specified in Petri-Nets and its
corresponding Reachability Graph.

In compare with the other related research, we
considered some issues not proposed by them:

« We proposed a systematic method started from
users' requirements elicitation and concluded with

behavioral specification of them. In our opinion, 3.

before formalizing users' requirements, they should
be elicited in a proper manner. This helps
requirements both to be taken comprehensively and

to be ready to formalize. This is why we use a4,

tabular method to elicit users' requirements. Using
tabular method to state users' requirements is an
appropriate method has already used by dfffers

* While others have used MSCs to state scenariog

and considered un-timed requirements, we
considered event-based real-time requirements and
stated them by scenarios in a sequence of real-time
interactions. The scenarios were formalized in

time-aware formulae and rules which the formulae

were stated based on Event-Calculus predicates.
Because the calculus is capable of stating
interrelationship between event happenings and
states, we could bridge gap between the
interaction-based specification and the behavioral
one.

536

nes in a tabular method.

REFERENCES

David, R. and H. Alla, 2005. Discrete, Continsiou
and Hybrid Petri Nets. 2nd Edn., Springer-Verlag,
ISBN: 978-3-540-22480-8, pp: 524.

Feather, M.S., S. Fickas, A.V. Lamsweerde and
C. Ponsard, 1998. Reconciling system
requirements and runtime behavior. Proceedings of
the 9th International Workshop on Software
Specification and Design, Apr. 16-18, IEEE
Computer Society, Washington, DC., USA.,
pp: 50-55. http://portal.acm.org/citation.cfm?
id=857205.858297

Delgado, N., A.Q. Gates and S.A. Roach, 2004.
Taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans. Software Eng.,
30: 859-872. DOI: 10.1109/TSE.2004.91.

ITU-TS, 2000. Application of formal description
techniques Z.110-Z.119, Message sequence chart
Z.120-2.129. http://www.itu.int/ITU-T/2001-
2004/com17/languages/Z.120AnnB-0498.pdf.
Maum, S., 1996. The formalization of message
sequence chart€€omput. Networks ISDN Syst.,
28: 1643-1657. DOI: 10.1016/0169-
7552(95)00123-9

Damas, C., B. Lambeau and A.V. Lamsweerde,
2006. Scenarios, goals and state machines: A win-
win partnership for model synthesis. Proceedings
of 16th ACM SIGSOFT International Symposium
on Foundations of Softwar&ngineering (FSE),
Nov. 5-11, Portland, Oregon, USA., pp: 197-207.
DOI: 10.1145/1181775.1181800.

7.

10.

11.

12.

J. Computer <ci., 4 (7): 530-537, 2008

Damas, C., B. Lambeau, P.
A.V. Lamsweerds, 2005. Generating annotated
behavior models from end-user scenarios. IEEE
Trans. Software Eng., 31: 1056-1073. DOI:
10.1109/TSE.2005.138.

Uchitel, J., J. Kramer and J. Magee, 2003.

Synthesis of Behavioral Models from Scenarios.14.

IEEE Trans. Software Eng., 29: 99-115. DOI:
10.1109/TSE.2003.1178048.

Letier, E., J. Kramer, J. Magee and S. Uchitel,
2005. Monitoring and control in scenario-based
requirements analysis. Proceedings of 27th
International Conference on Software Engineering

(ICSE), May 15-21, St. Louis, MO., USA.,
pp: 382-391. http://portal.acm.org/citation.cfm? 15.
id=1062527.

Kruger, I., R. Grosu, P. Scholz and M. Broy989
From MSCs to statecharts. Proceedings of IFIP

International Workshop on Distributed and Parallel16.

Embedded Systems, Kluwer Academic Publishers,
1998, Norwell, MA., USA., pp: 61-71.
http://portal.acm.org/citation.cfm?id=328655.

Lamsweerd, A.V. and L. Willemet, 1998. Infegin 17.

declarative requirements specifications from
operational scenarios. IEEE Trans. Software Eng.,
24:1089-1114. DOI: 10.1109/32.738341.

Whittle, J. and J. Schumann, 2000. Generating
statechart designs from scenarios. Proceedings of
22nd International Conference on
Engineering (ICSE), June 4-11, IEEE Xplore Press,
USA., pp: 314-323. DOI: http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=870422.

537

Dupont and3. Makinen,

Software 18.

E. and T. Systa, 2001. MAS-an
interactive synthesizer to support behavioral
modeling in UML. Proceedings of 23rd
International Conference on Software Engineering
(ICSE), May 12-19, pp: 15-24, IEEE Xplore Press,
USA., DOI: 10.1109/ICSE. 2001.919077.
Landtsheer, R.D., E. Letier and A.V. Lamsweegerde
2003. Deriving tabular event-based specifications
from goal-oriented requirements models.
Proceedings of 11th IEEE Joint International
Conference on Requirements Engineering, Sept. 8-
12, IEEE Xplore Press, USA., pp: 200-210.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnu
ber=1232751.

Hermelen, F.V., V. Lifschitz and B. Porter, Z00
Handbook of Knowledge Representation. 1st Edn.,
Elsevier Science, USA., ISBN-10: 0444522115,
pp: 1034.

Babamir, S.M. and S. Jalili, 2006. A logicakbd
approach to detection of intrusions against
programs. Proceedings of the 2nd Conference on
Global E-Security, (ICGeS-06), London, pp: 72-79.
Sadri, F. And R. Kowalski, 1995. Variants o€ th
event calculus. Proceedings of the 12th
International Conference on Logic Programming
(ICLP), June 13-16, MIT Press, USA., pp: 67-82.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.18.296.

Ghezzi, C., M. Jazayeri and D. Mandrioli, 2002.
Fundamentals of Software Engineering. 2nd Edn.,
Prentice-Hall, USA., ISBN: 10: 0133056996,
pp: 624.

