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Abstract: Proteins are vital components of living cells. A number of diseases such as Alzheimer's, 
Cystic fibrosis and Mad Cow diseases are shown to result from misfunctioning of proteins. Problem 
statement: Protein folding problem is the process of predicting the optimal 3D molecular structure of 
a protein, or tertiary structure, which is an indication of its proper function. Approach: An 
enhancement over persistent elitist compact genetic algorithm (pe-cGA) was made to minimize the 
energy of proteins indicating how far it is from its optimal 3D structure. Energy was calculated using 
the Empirical Conformational Energy Program for Peptides (ECEPP) package. Results: Experiments 
were performed on the Met-enkephalin protein. The enhanced algorithm reached an energy of -7.378 
in 140,000 iterations surpassing the Distributed Genetic Algorithm (DGA) which reached the same 
energy in 700,000 iterations. A comparison was also made with the Breeder Genetic Algorithm (BGA) 
which did not reach this energy in the first place. Conclusions/Recommendations: Results show that 
the enhanced algorithm is superior to DGA and BGA and a computational alternative to costly 
laboratory methods and an efficient means for solving organic docking problems. 
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INTRODUCTION 
 
 Proteins are fundamental components of all living 
cells. The bacteria that infect us, the plants and animals 
we eat, the hemoglobin that carries oxygen to our 
tissues, the insulin that signals our bodies to store 
excess sugar, the antibodies that fight infection, the 
actin and myosin that allow our muscles to contract, 
and the collagen that makes up our tendons and 
ligaments (and even much of our bones) are all 
examples of proteins. To make proteins, ribosomes 
string together amino acids into long, linear chains. 
Like shoelaces, these chains loop about each other in a 
variety of ways (i.e., they fold). But, as with a shoelace, 
only one of these many ways allows the protein to 
function properly. Yet lack of function is not always the 
worst scenario. 
 Recent discoveries have shown that some diseases 
(Alzheimer’s disease, Cystic fibrosis, Mad Cow 
disease, and many cancer types) are the result of 
misfolded proteins. Also, protein misfolding is behind 
many of the unexpected difficulties biotechnology 
companies encounter when trying to produce human 
proteins in bacteria.  
 A misfolded protein can actually poison the cells 
around it, so misfolded protein could be worse than a 
normally folded one. 

 The prediction of molecular structure 
(polypeptide’s native conformation) of a protein given 
only its amino acid sequence is not an easy task, but has 
numerous potential applications[1]. This structure 
prediction problem is commonly referred to as the 
protein folding problem. Efforts to solve it nearly 
always assume that the native conformation 
corresponds to the global minimum free energy state of 
the system. Given this assumption, a necessary step in 
solving the problem is the development of efficient 
global energy minimization techniques. This is a 
difficult optimization problem because of the non-linear 
and multi-modal nature of the energy function. 
 The motivation of this work is to find the optimal 
3D structure of protein (angles of amino acids) to be 
used in the treatment by using Estimation of 
Distribution Algorithm (EDA)[2]. 

 
MATERIALS AND METHODS  

 
The algorithm: 
Estimation of Distribution Algorithm (EDA): Instead 
of using traditional recombination and mutation 
operators, Estimation of Distribution Algorithm 
(EDA)[1] generates offspring population according to 
the estimated probabilistic model of parent population. 



J. Computer Sci., 4 (7): 525-529, 2008 
 

526 

Also, EDAs express the interrelations explicitly through 
the joint probability distribution associated with the 
individuals of variables selected at each generation. The 
probability distribution is calculated from a database of 
selected individuals of previous generation. Then 
offspring are generated from sampling this probability 
distribution. Neither crossover nor mutation is applied 
in EDAs. But the estimation of the joint probability 
distribution associated with the database containing the 
selected individuals is not an easy task. The flow chart 
of EDA is shown in the Fig. 1. 
 
Different EDA approaches: 
Independent variables: The easiest way to calculate 
the  estimation  of probability distribution is to consider 
 

Generate initial population of size M 

Select N ( <= M ) individuals 

Calculate joint probability distribution of the 
selected individuals using one of the EDA 

methods 

Generate offspring by sampling the probability 

distribution 

Replace old population by offspring according 

to replacement strategy 

Terminate 
conditions 
satisfied ? 

Get solution 

NO YES 

 
 

 
Fig. 1:  EDA flowchart 

all the variables in a problem as uni-variate 
(independent). In Uni-variate Marginal Distribution 
Algorithm (UMDA)[3], the joint probability distribution 
is factorized as a product of independent uni-variate 
marginal distribution. 
 
Bi- variate dependencies: To solve the problem of pair 
wise interaction among variables, population based 
Mutual Information Maximization for Input Clustering 
(MIMIC) [4] Algorithm, Combining Optimizers with 
Mutual Information Trees (COMIT)[5], Bi- variant 
Marginal Distribution Algorithm (BMDA)[6] were 
introduced. Where there is at most two-order 
dependency among variables. 
 
Multiple dependencies: The factorization of the joint 
probability is calculated as a product of marginal 
distribution of variable size. These marginal 
distributions of variable size are related to the variables 
that are contained in the same group and to the 
probability distribution associated with them (variables 
are strongly related). 
 In this study, the multiple dependencies are used 
because all the variables (protein angles) are strongly 
related. 
 The MVDA has several types like Factorized 
Distribution Algorithm (FDA)[7], Extended Compact 
Genetic Algorithm, Bayesian Optimization Algorithm 
(BOA)[8], Estimation of Bayesian Networks Algorithm 
(EBNA)[9] and Elitism-based Compact Genetic 
Algorithm (ECGA)[10]. 
 
Elitism-based Compact Genetic Algorithm (ECGA): 
There is two elitism-based compact Genetic Algorithms 
(cGAs)-persistent elitist compact genetic algorithm (pe-
cGA), and non-persistent elitist compact Genetic 
Algorithm (ne-cGA)[11]. The aim is to design efficient 
compact-type GAs by treating them as Estimation of 
Distribution Algorithms (EDAs) for solving difficult 
optimization problems without compromising on 
memory and computation costs. The idea is to deal with 
issues connected with lack of memory-inherent 
disadvantage of cGAs-by allowing a selection pressure 
that is high enough to offset the disruptive effect of 
uniform crossover. The point is to properly reconcile 
the cGA with elitism. The pe-cGA finds a near optimal 
solution (i.e., a winner) that is maintained as long as 
other solutions (i.e., competitors) generated from 
probability vectors are no better. It attempts to 
adaptively alter the selection pressure according to the 
degree of problem difficulty by employing only the 
pair-wise tournament selection strategy. 
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 Parameters.     
  n: population size, l: chromosome length,  
  Echrom: elite chromosome, Nchrom: new 
chromosome. 
 
Step 1.    
 Initialize probability vector 
  for i:=1 to l do p[i] := 0.5; 
 
Step 2.     
 Generate one chromosome from the probability vector 
if the first generation then 
 
 Echrom := generate (p);  
/*initialize the elite chromosome*/ 
 
  Nchrom := generate (p);        
/*generate a new chromosome*/ 
 
Step 3.       
 Let them compete and let the winner inherit 
persistently  
Winner, loser := compete (Echrom, Nchrom);   
 Echrom := winner;  
 /*update the elite chromosome*/ 
 
Step 4.        
Update the probability vector 
  for i:= 1 to l do 
    if winner[i] ?  loser[i] then 
       if winner[i] == 1 then p[i] := p[i] + 1/n; 
 else p[i] := p[i] – 1/n; 
 
Step 5.        
Check if the probability vector has converged. 
Go to Step 2, if it is not satisfied. 
 
Step 6.        
The probability vector represents the final solution. 
  

 
Fig. 2: the pe-cGA pseudo code 

 
 The ne-cGA further improves the performance of 
the pe-cGA by avoiding strong elitism that may lead to 
premature convergence. It may seem that the ne-cGA 
gives better results, and this is true for some problems. 
But in this work, we found out (from experimental 
results) that the pe-cGA is better and more suitable for 
the protein folding problem. 
 The pseudo code of the pe-cGA is as in Fig. 2.  
 But from experimental results the pe-cGA alone 
did not give good results, so we needed to make 
enhancement over it to get better results. 
 
Enhancement over pe-cGA: In this study, pe-cGA is 
proposed in solving protein folding problem with the 
addition of two modifications: mutation, and keeping 
the best solution so far. 

 

 
 

Fig. 3: Mutation 
 
 The first modification is the addition of mutation. 
Mutation will be performed by adding a secondary 
tournament to each cycle that compares the 
performance of the current champion string with a 
mutated version of itself. If the mutated version wins, it 
replaces the old champion as the elite string for the next 
tournament. Note that our implementation of mutation 
presumes elitism. This allows periodic sampling of 
individuals around the champion independent of the 
current state of the genome probability vector. We can 
more formally describe this operation by modifying the 
standard cGA to contain elitism and by adding a new 
step as described in the pseudo code of Fig. 3. 
 We also found that considering the probability 
vector as the final solution is not the optimal solution, 
so the second and final modification is to consider the 
final solution as the best individual (in our case, the one 
with minimum energy) in all generations. 
 The complete algorithm became as in Fig. 4. 
 
 The algorithm was implemented in C/C++ using 
Microsoft Visual Studio. Empirical Conformational 
Energy Program for Peptides (ECEPP) package was 
used to evaluate energy of proteins. 
 

RESULTS 
 
 The target protein in this study is Met-
enkephalin[12]. Met-enkephalin is the protein that 
consists of five amino acids.  
 As we search for the structure that give minimum 
energy, the fitness of individuals is calculated in terms 
of energy. In our case the best individual is the 
individual with the minimum energy. We used an 
energy evaluator called Empirical Conformational 
Energy Program for Peptides (ECEPP)[13] to evaluate 
the individual energy. 
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/*initialize the elite chromosome*/ 
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/*generate a new chromosome*/ 
 
Step 3.       
 Let them compete and let the winner inherit persistently  
Winner, loser := compete (Echrom, Nchrom);   
 Echrom := winner;  
 /*update the elite chromosome*/ 
 
Step 4.        
Update the probability vector 
  for i:= 1 to l do 
    if winner[i] ?  loser[i] then 
       if winner[i] == 1 then p[i] := p[i] + 1/n; 
 else p[i] := p[i] – 1/n; 

 
 

Fig. 4: The pe-cGA with enhancement 
 
 A comparative study is made with two other 
algorithms (described below) that solve the same 
problem on Met-enkephalin protein using “ECEPP. The 
comparison is based on the best fitness (minimum 
protein energy) that each algorithm has reached with 
respect to the overhead (number of energy evaluations) 
needed to reach this result.  
 In Distributed Genetic Algorithm(DGA)[14], the 
total population is divided into sub populations. Each 
sub population is often called ”island”. In each sub 
population, normal genetic operations are performed for 
several generations. After a certain number of 
generations, some of the individuals are chosen and are 
moved to the other island. This operation is called 
“migration”. Because the population size in each island 
is small, the early convergence may happen in each 
island. However, the migration operation prevents the 
early convergence and 
maintains the diversity of the solutions during the 
search. Breeder Genetic Algorithm (BGA)[15], at each 
generation, the T % best individuals within the current 
population of N elements are selected. T % is called 
truncation rate and its typical values are within the 
range  10 to 50%. The selected individuals are 
randomly recombined and their offspring are mutated, 
so  as to generate  a  new  population  of  N-1  elements. 

 
Fig. 5: Comparing results 

 
Table 1: Comparing results 
Energy/Algorithm (0) (-3) (-7.378) 
DGA 280,000 430,000 700,000 
Breeder 10,150 28,320 - 
ECGA 3300 3800 140,000 

 
The best individual of the old population is then added 
to the new population, and the cycle of life continues. 
By doing so, the best individuals are treated as super-
individuals and mated together, hoping that this can 
lead to a fitter population. 
 Table 1 shows the performance of DGA and BGA 
against our enhanced ECGA. The number of 
evaluations needed is recorded for each algorithm at 
minimum energy. Figure 5, emphases the difference in 
performance between the two algorithms and our 
proposed one. Our proposed algorithm reaches requires 
little overhead than other two algorithms.  
 Also we can observe that the breeder algorithm did 
not reach -7.378 fitness. The DGA reached this fitness 
but we do not know exactly with how many 
evaluations, but we can note that our algorithm has 
reached this fitness with less than half the number of 
evaluations that the DGA needed to reach fitness 0. 
 From these results, it is shown that Elitism-based 
Compact Genetic Algorithm is very effective in solving 
protein folding problem. 
 

DISCUSSION 
 
 From the formulation of the protein folding 
problem, the angles that describe the protein structure 
in 3D are strongly inter-related and dependent. This is 
strongly tackled in Estimation of Distribution 
Algorithms (EDAs) and consequently the enhanced 
algorithm that model the interactions between 
chromosomes in terms of a probability distribution 
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vector. Thus, the enhanced algorithm moves 
progressively towards the optimal interacting angles 3D 
structure, by generating individuals conforming with 
higher fitness probability distribution individuals. 
 Moreover, it appears that the enhanced algorithm 
correctly balances exploration and exploitation needed 
for this problem. Distributed genetic algorithms (DGA) 
relies more on exploration rather than exploitation. 
Breeder genetic algorithm (BGA) did not reach the 
energy reached by enhanced algorithm in the first place. 
However, the overhead incurred in DGA and BGA is 
more than that for the enhanced algorithm. 
 

CONCLUSION 
 
 In this study, the molecular structure of Met-
enkephalin protein is predicted. The structure is always 
assumed to be the global minimum free energy state of 
the system. For this optimization problem, an 
enhancement of Elitism-based Compact Genetic 
Algorithm (ECGA) is made to minimize the protein 
energy. Results show that the enhanced ECGA have 
little overhead in terms of number of evaluations 
needed. 
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