Journal of Computer Science 4 (7): 525-529, 2008
ISSN 1549-3636
© 2008 Science Publications

Solving Protein Folding Problem using Elitism-Based Compact Genetic Algorithm
Amr Badr, Ibtehal M. Aref, Basma M. Hussien and iYBsan

Department of Computer Science, Faculty of Compuaed Information,
Cairo University, Cairo, Egypt

Abstract: Proteins are vital components of living cells.nAmber of diseases such as Alzheimer's,
Cystic fibrosis and Mad Cow diseases are showrgalt from misfunctioning of protein®roblem
statement: Protein folding problem is the process of predigtihe optimal 3D molecular structure of
a protein, or tertiary structure, which is an imdion of its proper functionApproach: An
enhancement over persistent elitist compact gemdgiorithm (pe-cGA) was made to minimize the
energy of proteins indicating how far it is froms ptimal 3D structure. Energy was calculated using
the Empirical Conformational Energy Program for fbgs (ECEPP) packagResults. Experiments
were performed on the Met-enkephalin protein. Thieaeced algorithm reached an energy of -7.378
in 140,000 iterations surpassing the Distributeché®ie Algorithm (DGA) which reached the same
energy in 700,000 iterations. A comparison was aiade with the Breeder Genetic Algorithm (BGA)
which did not reach this energy in the first pla€enclusions’Recommendations. Results show that
the enhanced algorithm is superior to DGA and BG# @ computational alternative to costly
laboratory methods and an efficient means for sglharganic docking problems.

Keywords. Estimation of distribution algorithm, elitism-baseompact genetic algorithm, persistent
elitist compact genetic algorithm, non-persistditise compact genetic algorithm

INTRODUCTION The  prediction of molecular  structure
i .. (polypeptide’s native conformation) of a proteivegi
Proteins are fundamental components of all I|V|ngon|y its amino acid sequence is not an easy tagk)ds
cells. The bacteria that infect us, the plantsamichals  ymerous potential applicatidls This structure
we eat, the hemoglobin that carries oxygen to OUprediction problem is commonly referred to as the
tissues, the insulin that signals our bodies taesto protein folding problem. Efforts to solve it nearly
excess sugar, the antibodies that fight infectit  5\ways assume that the native conformation
actin and myosin that allow our muscles to COmrathorresponds to the global minimum free energy sifite
and the collagen that makes up our tendons anthe system. Given this assumption, a necessaryirstep
ligaments (and even much of our bones) are alkglying the problem is the development of efficient
examples of proteins. To make proteins, ribosomegiopal energy minimization techniques. This is a
string together amino acids into long, linear cbain ifficult optimization problem because of the namelr
Like shoelaces, these chains loop about each other 5nq multi-modal nature of the energy function.
variety of ways (i.e., they fold). But, as with koelace, The motivation of this work is to find the optimal

only one of these many ways allows the protein to3p structure of protein (angles of amino acids)oto
function properly. Yet lack of function is not aly@the | ;sed in the treatment by using Estimation of

worst scenario. , , Distribution Algorithm (EDA.
Recent discoveries have shown that some diseases
(Alzheimer's disease, Cystic fibrosis, Mad Cow MATERIALSAND METHODS

disease, and many cancer types) are the result of
misfolded proteins. Also, protein misfolding is reh The algorithm:

many O.f the unexpected diffi_culties biOtGChnOIOgyEstimation of Distribution Algorithm (EDA): Instead
companies encounter when trying to produce human .

proteins in bacteria. of using tradlfuona_ll recombmatl_on _ and mutation
A misfolded protein can actually poison the Ce”Soperat[(l)]rs, Estimation of Distribution  Algorithm

around it, so misfolded protein could be worse taan (EDA)"™ generates offspring population according to

normally folded one. the estimated probabilistic model of parent popoifat
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Also, EDAs express the interrelations explicitlyahgh  all the variables in a problem as uni-variate
the joint probability distribution associated withe  (independent). In Uni-variate Marginal Distribution
individuals of variables selected at each generafite  Algorithm (UMDA)®!, the joint probability distribution
probability distribution is calculated from a daéalk of is factorized as a product of independent uni-taria
selected individuals of previous generation. Themmarginal distribution.
offspring are generated from sampling this proligbil
distribution. Neither crossover nor mutation is lgggp  Bi- variate dependencies. To solve the problem of pair
in EDAs. But the estimation of the joint probalyilit wise interaction among variables, population based
distribution associated with the database contgitite =~ Mutual Information Maximization for Input Clustegn
selected individuals is not an easy task. The fitnart  (MIMIC)™ Algorithm, Combining Optimizers with
of EDA is shown in the Fig. 1. Mutual Information Trees (COMIT), Bi- variant
Marginal Distribution Algorithm (BMDAY! were
Different EDA approaches: introduced. Where there is at most two-order
Independent variables: The easiest way to calculate dependency among variables.
the estimation of probability distribution is¢onsider
Multiple dependencies. The factorization of the joint
probability is calculated as a product of marginal
distribution of variable size. These marginal
distributions of variable size are related to theables

Generate initial population of size M

A

Select N (<=M ) individuals

v

Calculate joint probability distribution of tl
selected individuals using one of the EDA

methods

¥

Generate offspring by sampling the probab
distribution

y

Replace old population by offspring accord
to replacement strategy

Terminate
conditions

satisfied ?

NO

[ Get solution

Fig. 1: EDA flowchart

’7

that are contained in the same group and to the
probability distribution associated with them (\adnlies
are strongly related).

In this study, the multiple dependencies are used
because all the variables (protein angles) arenglyo
related.

The MVDA has several types like Factorized
Distribution Algorithm (FDA)?, Extended Compact
Genetic Algorithm, Bayesian Optimization Algorithm
(BOA)®, Estimation of Bayesian Networks Algorithm
(EBNA)® and Elitism-based Compact Genetic
Algorithm (ECGAY*.

Elitism-based Compact Genetic Algorithm (ECGA):
There is two elitism-based compact Genetic Algongh
(cGAs)-persistent elitist compact genetic algoritfpe-
cGA), and non-persistent elitist compact Genetic
Algorithm (ne-cGAJ. The aim is to design efficient
compact-type GAs by treating them as Estimation of
Distribution Algorithms (EDASs) for solving diffictl
optimization problems without compromising on
memory and computation costs. The idea is to déhl w
issues connected with lack of memory-inherent
disadvantage of cGAs-by allowing a selection pressu
that is high enough to offset the disruptive effeft
uniform crossover. The point is to properly rectmci
the cGA with elitism. The pe-cGA finds a near oim
solution (i.e., a winner) that is maintained asglas
other solutions (i.e., competitors) generated from
probability vectors are no better. It attempts to
adaptively alter the selection pressure accordinthé
degree of problem difficulty by employing only the
pair-wise tournament selection strategy.
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Parameters. if fitness (Echrom) > fitness (Nehrom)
n: population sizel: chromosome length, - tate (Behrom)
) . | chrom = mutate(Echrom);
Echrom:  elite  chromosome, Nchrom: new Evaluate{chrom),
chromosome. if fitness (chrom) = fitness (Echrom)
Echrem = chrom;
Step 1. }1
Initialize probability vector ? 8¢
fori:=1 to | do p[i] := 0.5; chrom := mutate(Nchrom);
Evaluate(chrom);
Step 2. if fitness (chrom) = fitness (Nchrom)

Generate one chromosome from the probability wrect WO

if the first generation then

o
-

Echrom := generate (p); Fig. 3: Mutation
[*initialize the elite chromosome?*/

Nchrom := generate (p); The first modification is the addition of mutation

[*generate a new chromosome*/ Mutation will be performed by adding a secondary
tournament to each cycle that compares the
Step 3. _ S performance of the current champion string with a
Let them compete and let the winner inherit mutated version of itself. If the mutated versioinsy it
persistenty laces the old champion as the elite stringHerrtext
Winner, loser := compete (Echrom, Nchrom); replaces the old champion QS € elite s_rlng oerrex .
Echrom := winner; tournament. Note that our implementation of mutatio
[*update the elite chromosome*/ presumes elitism. This allows periodic sampling of
individuals around the champion independent of the
Step 4. . current state of the genome probability vector. &da
Update the probability vector : . . o
fori=11to | do more formally describe this operation by modifyithg
if winneri] ? loser(i] then standard cGA to contain elitism and by adding a new
if winner[i] == 1 then pl[i] := p[i] + 1/n; step as described in the pseudo code of Fig. 3.
else pfi] == p[i] — 1/n; We also found that considering the probability

vector as the final solution is not the optimalusioin,

Step 5. . e . .

Check if the probability vector has converged. S0 the se_cond and final _mo_dl_flcano_n is to consither

Go toStep 2, if it is not satisfied. final solution as the best individual (in our catbes one
with minimum energy) in all generations.

Step 6. The complete algorithm became as in Fig. 4.

The probability vector represents the final solntio

The algorithm was implemented in C/C++ using
Fig. 2: the pe-cGA pseudo code Microsoft Visual Studio. Empirical Conformational
Energy Program for Peptides (ECEPP) package was
The ne-cGA further improves the performance ofused to evaluate energy of proteins.
the pe-cGA by avoiding strong elitism that may l¢ad

premature convergence. It may seem that the ne-cGA RESULTS
gives better results, and this is true for somélers.
But in this work, we found out (from experimental The target protein in this study is Met-

results) that the pe-CGA is better and more s@tédl o ohnalif2. Met-enkephalin is the protein that
the protein folding problem.

The pseudo code of the pe-cGA is as in Fig. 2. COnsists of five amino acids. _ o
But from experimental results the pe-cGione As we search for the structure that give minimum
did not give good results, so we needed to make&nergy, the fitness of individuals is calculatedérms
enhancement over it to get better results. of energy. In our case the best individual is the
) ~individual with the minimum energy. We used an
Enhancement over pe-cGA: In this study, pe-CGA iS  gngrgy evaluator called Empirical Conformational

proposed in solving protein folding problem witheth .
addition of two modifications: mutation, and keepin Ene.rgy. Erogram for Peptides (ECEPPYo evaluate
the individual energy.

the best solution so far.
527



J. Computer i, 4 (7): 525-529, 2008

Parameters. 700,000 5
n: population sizel; chromosome length,
Echrom: elite chromosomeé\chrom: hew chromosome. 600,000 = - Breeder
Step 1.
InitFi)aIize probability vector = 500,000 I Ecca
fori:=1 to I do p[i] := 0.5; = =
= 400,000 =
Step 2. T";;
Generate one chromosome from the probability vettbe % 300,000 -
first generation then & ’
=]
Echrom:= generate (p); = 200,000 4
[*initialize the elite chromosome*/
100,000 -
Nchrom:= generate (p);
% *
/*generate a new chromosome*/ 0 l'_
0 -3 -7
SLtep ?1 d let the winner inherit p eestty Foerey
et them compete and let the winner inherit p ées ; . :
Winner, loser := compete ¢fzom Nchrony; Fig. 5: Comparing results
Echrom:= winner; )
Fupdate the elite chromosome*/ Table 1: Comparing results
Energy/Algorithm  (0) (-3) (-7.378)
Step 4. DGA 280,000 430,000 700,000
Update the probability vector Breeder 10,150 28,320 -
fori:z=1toldo ECGA 3300 3800 140,000
if winner[i] ? loser[i] then
ifwinner(i] == 1 then p[i] := p[i] + 1/n; The best individual of the old population is thefded
else p[i] := p[i] - 1/n; to the new population, and the cycle of life conés.

) . By doing so, the best individuals are treated gmeisu
Fig. 4: The pe-cGA with enhancement individuals and mated together, hoping that this ca
: : . lead to a fitter population.

A comparative study is made with two other Table 1 shows the performance of DGA and BGA

algorithms (described below) that solve the Sameagainst our enhanced ECGA. The number of

problem on Met-enkephalin protein using "ECEPP. Theevaluations needed is recorded for each algorithm a

comp_arison is based on the F’ESt fitness (minimu,n?ninimum energy. Figure 5, emphases the difference i
protein energy) that each algorithm has reachet W'tperformance between the two algorithms and our

respect to the overhead (number of energy evahgtio onosed one. Our proposed algorithm reaches esjuir
needed to reach this result. _ little overhead than other two algorithms.

In Distributed Genetic Algorithm(DGAY’, the Also we can observe that the breeder algorithm did
total population is divided into sub population®icB  not reach -7.378 fitness. The DGA reached thieitn
sub population is often called "island”. In eachbsu pyt we do not know exactly with how many
population, normal genetic operations are perforfoed  eyaluations, but we can note that our algorithm has
several generations. After a certain number ofeached this fitness with less than half the nundfer
generations, some of the individuals are chosenaa@d evaluations that the DGA needed to reach fitness 0.
moved to the other island. This operation is called  From these results, it is shown that Elitism-based

“migration”. Because the population size in eadand  compact Genetic Algorithm is very effective in soly
is small, the early convergence may happen in eachrotein folding problem.

island. However, the migration operation prevehts t

early convergence and DISCUSSION
maintains the diversity of the solutions during the
search. Breeder Genetic Algorithm (BGA) at each From the formulation of the protein folding

generation, the T % best individuals within thereat  problem, the angles that describe the protein strec

population of N elements are selected. T % is dallein 3D are strongly inter-related and dependents T#i

truncation rateand its typical values are within the strongly tackled in Estimation of Distribution

range 10 to 50%. The selected individuals areAlgorithms (EDAs) and consequently the enhanced

randomly recombined and their offspring are mutatedalgorithm that model the interactions between

S0 as to generate a new population of Nelmehts. chromosomes in terms of a probability distribution
528



J. Computer i, 4 (7): 525-529, 2008

vector. Thus, the enhanced algorithm movesr.
progressively towards the optimal interacting aa@®
structure, by generating individuals conforming hwit
higher fitness probability distribution individuals
Moreover, it appears that the enhanced algorithm
correctly balances exploration and exploitationdeee
for this problem. Distributed genetic algorithmsGR) 8.
relies more on exploration rather than exploitation
Breeder genetic algorithm (BGA) did not reach the
energy reached by enhanced algorithm in the flestep
However, the overhead incurred in DGA and BGA is9.
more than that for the enhanced algorithm.

CONCLUSION

In this study, the molecular structure of Met-
enkephalin protein is predicted. The structurehigags
assumed to be the global minimum free energy sifate 10
the system. For this optimization problem, an
enhancement of Elitism-based Compact Genetic
Algorithm (ECGA) is made to minimize the protein
energy. Results show that the enhanced ECGA have
little overhead in terms of number of evaluations
needed.
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